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SIAM J. Math. Anal.

Vol. 26, No. 1, pp. 21–34, January 1995

SLOW MOTION IN ONE-DIMENSIONAL CAHN-MORRAL
SYSTEMS

CHRISTOPHER P. GRANT∗

Abstract. In this paper we study one-dimensional Cahn-Morral systems, which are the mul-
ticomponent analogues of the Cahn-Hilliard model for phase separation and coarsening in binary
mixtures. In particular, we examine solutions that start with initial data close to the preferred
phases except at finitely many transition points where the data has sharp transition layers, and we
show that such solutions may evolve exponentially slowly; i.e., if ε is the interaction length then
there exists a constant C such that in exp(C/ε) units of time the change in such a solution is o(1).
This corresponds to extremely slow coarsening of a multicomponent mixture after it has undergone
fine-grained decomposition.

Key words. Cahn-Hilliard equation, phase separation, transition layers, metastability

AMS subject classifications. 35B30, 35B25, 35K55

1. Introduction. One of the leading continuum models for the dynamics of
phase separation and coarsening in a binary mixture is the Cahn-Hilliard equation,
which in the one-dimensional case can be written as

ut = (−ε2uxx + W ′(u))xx, x ∈ (0, 1)
ux = uxxx = 0, x ∈ {0, 1}.(1.1)

Here W represents the bulk free energy density as a function of the concentration
u of one of the two components of the mixture. (If, as is typically assumed, the
total concentration of the mixture is a constant then the concentration of the second
is determined by the concentration of the first.) The parameter ε represents an
interaction length and is assumed to be a small positive constant. This equation
was derived in [8] based on the free energy functional of van der Waals [29]

Eε[u] ≡
∫ 1

0

(
W (u) +

ε2

2
|ux|2

)
dx.(1.2)

We will usually work with the scaled energy Eε[u] ≡ ε−1Eε[u]. Also, we will write
Eε[u; a, b] when the integral is over the interval [a, b] instead of [0, 1].

In the early 1970s, Cahn and Morral [24] and DeFontaine [13] [14] initiated the
study of systems of partial differential equations that model the phase separation of
mixtures of three or more components in essentially the same way that the Cahn-
Hilliard equation models the separation of binary mixtures. (See Eyre [20] for a
comprehensive survey of these systems.) If the domain is again taken to be [0, 1],
then, after a change of variables, such systems can be written in the form

ut = (−ε2uxx + DW (u))xx, x ∈ (0, 1)
ux = uxxx = 0, x ∈ {0, 1},(1.3)

where u is now an n-vector (for a mixture with n + 1 components), and W maps
D(W ) ⊂ Rn into R. Again, Eε defined by (1.2) represents the total free energy of
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22 CHRISTOPHER P. GRANT

the mixture, and it is easy to check that it provides a Lyapunov functional for (1.3).
Note, also, that the mass

∫ 1

0 u dx of a solution is conserved.
We will make the following assumptions on W .
• D(W ) is open, convex, and connected;
• W ≥ 0 throughout its domain, and W has only finitely many zeros, call

them {z1, z2, . . . , zm}, (corresponding to the preferred homogeneous states, or phases,
of the system);

• W is C3 on D(W ) and has a continuous extension to its closure D(W );
• The Hessian D2W is positive definite at each zero of W , and W is bounded

away from 0 outside of each neighborhood of these points.
Additionally, we need to require that W increases as the boundary ∂D(W ) of the
domain is approached. The precise assumption we shall make is the following:

• For each point u in ∂D(W ), there is a closed, convex set S ⊂ D(W ) \u such
that

1. W is nonzero on Ω, the connected component of D(W ) \ S containing u;
2. the function ϕ that maps each point of Rn to its nearest point in S satisfies

W (ϕ(u)) ≤W (u) for all u ∈ Ω.
This assumption is trivially satisfied when D(W ) = Rn. It also holds whenever W
is C1 on D(W ), ∂D(W ) is a locally compact, oriented hypersurface of class C2, and
the (exterior) normal derivative of W is positive. (See, e.g., [21].) However, we state
the assumption in this general way because some of the most important examples
of D(W ) do not have smooth boundaries. For example, Eyre [20] and Elliott and
Luckhaus [18] study situations where D(W ) is a convex polytope and W satisfies the
assumptions given above.

Note that any constant is an equilibrium solution to (1.3). A linear analysis of the
equation about an unstable constant equilibrium suggests that typical solutions that
start near such a constant undergo fine-grained decomposition with a characteristic
length scale that is O(ε). (See [22] for a precise mathematical formulation and rigorous
verification of this heuristic concept in the two-component case.) This fine-grained
decomposition of initially homogeneous mixtures has also been frequently observed in
physical experiments [7], [9]. In this paper we investigate the way solutions evolve after
this initial stage of decomposition. We, therefore, confine our attention to solutions
to (1.3) with initial data u(x, 0) = u0(x) close to the zeros of W through most of the
domain, with sharp transition layers, or interfaces, separating the intervals where u
is nearly constant.

Consider when n = 1 (i.e., the original Cahn-Hilliard equation (1.1)), the case for
which the most work has been done. Carr, Gurtin, and Slemrod [10] showed that all
of the local minimizers of Eε with any specified mass are monotone, so, in general, we
would expect that the fine-grained structure of u would coarsen as t→∞. Numerical
work by Elliott and French [17] indicates that this evolution occurs very slowly. (Such
slowly evolving states are sometimes said to be dynamically metastable.) Bronsard and
Hilhorst [5] have shown that, in a certain space, this evolution occurs at a rate that
is O(εk) for any power k. Using completely different techniques, Alikakos, Bates, and
Fusco [1] constructed a portion of the unstable manifold of a two-layer equilibrium that
intersects a small neighborhood of a monotone equilibrium and showed that the speed
of the flow along this connecting orbit, measured in the H−1 norm, is O(exp(−C/ε))
for some constant C. Recently, Bates and Xun [4] have found exponentially slow
motion for the multi-layer states of (1.1) by combining the methods of [1] with those
used by Carr and Pego [11] to study reaction-diffusion equations.
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The results that we present here are similar to those of Bates and Xun in that
we also obtain exponentially slow motion, but the methods we use are much simpler,
and they are valid not only for the two-component Cahn-Hilliard equation (1.1) but
for the multi-component Cahn-Morral system (1.3), as well. It should be mentioned,
however, that our results for the two-component two-layer case are weaker than those
of Alikakos, Bates, and Fusco, in the sense that we do not explicitly construct het-
eroclinic orbits. We deal only with the speed of motion and say nothing about the
geometric structure of the attractor.

In this paper, we apply the elementary, yet powerful, approach introduced by
Bronsard and Kohn [6] in their study of slow motion for reaction-diffusion equations.
The improvement from superpolynomial to exponential speed is made possible by
incorporating some ideas of Alikakos and McKinney [2] about the profile of constrained
minimizers of (1.2). Use is also made of techniques of Sternberg [27] for describing
the nature of globally stable steady-state solutions of (1.3) in the limit as ε→ 0.

In Section 2 we present a lower bound on the energy of any function that is
sufficiently close to a given simple function whose range is a subset of W−1({0}).
This result amounts to an error estimate for a convergence result of Baldo [3]. In
Section 3 we show how this estimate yields our main result on slow evolution of
solutions with transition layers. As in [6], the only information used about the time-
dependent partial differential equation is the time rate of change of the energy along
a solution path in phase space. Finally, in Section 4 we consider what the main result
implies about the motion of the transition layers themselves.

The questions of existence and regularity of solutions for (1.1) and (1.3) have
been extensively studied, and different authors have obtained various conditions on
W that ensure global existence of solutions [15], [16], [18], [19], [20], [25], [26], [28],
[30]. Rather than restricting ourselves to one particular set of such conditions, we shall
simply assume that W is such that for sufficiently smooth initial data with range in
D(W ) there exists a global solution that is in C(R+; H2(0, 1)) ∩ L2(0, T ; H4(0, 1)).
Given that global solutions exist, our goal is to provide some information about how
some of them evolve.

2. Error Estimates. Fix v : [0, 1] → W−1({0}) having (exactly) N jumps
located at {x1, x2, . . . , xN} ⊂ (0, 1). Fix r so small that B(xk, r) ⊂ [0, 1] for each k,
and

B(xk, r) ∩B(x`, r) = ∅

whenever k 6= `. (Here and below, B(x, r) represents the open ball of radius r centered
at x in the relevant space.) Let λj be the minimum of the eigenvalues of D2W (zj),
and let

λ = min{λj : zj ∈W−1({0})}.

For any function z on [0, 1] we write z̃(x) ≡
∫ x

0 z(s) ds. We are interested in
solutions corresponding to initial data u(x, 0) = u0(x) such that ũ0 is close to ṽ in
the L1 norm. To the discontinuous function v we assign an asymptotic energy

E0[v] ≡
N∑

k=1

φ(v(xk − r), v(xk + r)),

where

φ(ζ1, ζ2)
def= inf {J [z] : z ∈ AC([0, 1];D(W )), z(0) = ζ1, z(1) = ζ2} ,
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and

J [z] def=
√

2
∫ 1

0

√
W (z(s))|z′(s)| ds.

It is easy to check that φ is a metric on the domain of W . Also, note that Young’s
inequality and a change of variable imply that

Eε[z; a, b] ≥ φ(z(a), z(b)).

Lemma 2.1. Let C be any positive constant less than r
√

2λ. Then there are
constants C1, δ > 0 (depending only on W , v and C) such that, for ε sufficiently
small, ∫ 1

0

|ũ(x)− ṽ(x)| dx ≤ δ ⇒ Eε[u] ≥ E0[v]− C1 exp(−C/ε).

Proof. Let K be a compact set in the domain of W containing W−1({0}) in its
interior, and set κ = sup{‖D3W (ζ)‖ : ζ ∈ K}. Choose r̂ > 0 and ρ1 so small that
C ≤ (r− r̂)

√
2λ− nκρ1 and that B(zj , ρ1) is contained in K for each zj ∈ W−1({0}).

Choose ρ2 so small that

inf
{
φ(ζ1, ζ2) : zj ∈W−1({0}), ζ1 6∈ B(zj , ρ1), ζ2 ∈ B(zj , ρ2)

}
> sup

{
φ(zj , ζ2) : zj ∈ W−1({0}), ζ2 ∈ B(zj , ρ2)

}
,

and |zj − z`| > 2ρ2 if zj and z` are different zeros of W .
Let

F (ρ2) = inf{φ(ζ1, ζ2) :zj1 , zj2 ∈W−1({0}), zj1 6= zj2 ,

ζ1 ∈ B(zj1 , ρ2), |(ζ2 − zj2) · (zj2 − zj1)| ≤ ρ2|zj2 − zj1 |}.(2.1)

By our assumptions about W , F (ρ2) > 0, so there exists M ∈ N such that MF (ρ2) >
E0[v]. Pick such an M , and set δ = r̂2ρ2/(5M2).

Now assume that
∫ 1

0 |ũ(x) − ṽ(x)| dx ≤ δ, and let us focus our attention on
B(xk, r), a neighborhood of one of the transition points of v. For convenience, let
v+ = v(xk + r) and v− = v(xk − r). Suppose |u − v| ≥ ρ2 throughout (xk, xk + r̂),
and let IM be an open subinterval of (xk, xk + r̂) of width r̂/M . If we assume without
loss of generality that Eε[u] ≤ E0[v] then for ε sufficiently small there must be some
x̂ ∈ IM such that u(x̂) ∈ B(zj1 , ρ2) for some zj1 ∈ W−1({0}). (Otherwise the rescaled
bulk free energy would be too high.) If∣∣∣∣(u− v) · zj1 − v+

|zj1 − v+|

∣∣∣∣ ≥ ρ2

throughout IM then it is not hard to check that we would have∫
IM

|ũ(x)− ṽ(x)| dx ≥
∫

IM

∣∣∣∣(ũ(x)− ṽ(x)) · zj1 − v+

|zj1 − v+|

∣∣∣∣ dx > δ,

which is a contradiction. Hence,∣∣∣∣(u− v) · zj1 − v+

|zj1 − v+|

∣∣∣∣ < ρ2
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somewhere on IM . But then the rescaled energy on IM must be no less than F (ρ2).
Partitioning (xk, xk + r̂) into M equal intervals of width r̂/M and using the preceding
result, we have Eε[u; xk, xk + r̂] ≥ MF (ρ2) > E0[v], contrary to assumption. Hence,
there is some r+ ∈ (0, r̂) such that

|u(xk + r+)− v+| < ρ2.

Similarly, there is some r− ∈ (0, r̂) such that

|u(xk − r−)− v−| < ρ2.

Next, consider the unique minimizer z : [xk + r+, xk + r]→ Rn of the functional
Eε[z; xk + r+, xk + r] subject to the boundary condition

z(xk + r+) = u(xk + r+).

If the range of z is not contained in B(v+, ρ1) then

Eε[z; xk + r+, xk + r] ≥ inf{φ(z(xk + r+), ζ) : ζ 6∈ B(v+, ρ1)}
≥ φ(z(xk + r+), v+),(2.2)

by the choice of ρ2 and the choice of r+.
Suppose, on the other hand, that the range of z is contained in B(v+, ρ1). Then

the Euler-Lagrange equation for z is

z′′(x) = ε−2DW (z(x)), x ∈ (xk + r+, xk + r)
z(x) = u(xk + r+), x = xk + r+

z′(x) = 0, x = xk + r.
(2.3)

If we define ψ(x) ≡ |z(x)− v+|2 then ψ′ = 2(z − v+) · z′ and

ψ′′ = 2(|z′|2 + (z − v+) · z′′) ≥ 2
ε2

(z − v+) ·DW (z).(2.4)

Now Taylor’s theorem and the choice of ρ1 imply that

DW (z) = D2W (v+)(z − v+) + R,(2.5)

where |R| ≤ nκ|z − v+|2/2. Substituting (2.5) into (2.4) gives

ψ′′ ≥ 2
ε2

(z − v+) ·D2W (v+)(z − v+)− nκ

ε2
|z − v+|3

≥ 2λ

ε2
|z − v+|2 −

nκρ1

ε2
|z − v+|2

≥ µ2

ε2
|z − v+|2

=
µ2

ε2
ψ,

where µ = C/(r − r̂).
Thus, ψ satisfies

ψ′′(x)− (µ/ε)2ψ(x) ≥ 0, x ∈ (xk + r+, xk + r)
ψ(x) = |u(xk + r+)− v+|2, x = xk + r+

ψ′(x) = 0, x = xk + r.
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Following Alikakos and McKinney [2], we compare ψ to the solution ψ̂ of

ψ̂′′(x)− (µ/ε)2ψ̂(x) = 0, x ∈ (xk + r+, xk + r)
ψ̂(x) = |u(xk + r+)− v+|2, x = xk + r+

ψ̂′(x) = 0, x = xk + r,

which can be explicitly calculated to be

ψ̂(x) =
|u(xk + r+)− v+|2

cosh [(µ/ε)(r − r+)]
cosh

[µ

ε
(x− (xk + r))

]
.

By the maximum principle, ψ(x) ≤ ψ̂(x), so, in particular,

ψ(xk + r) ≤ |u(xk + r+)− v+|2

cosh [(µ/ε)(r − r+)]
≤ 2ρ2

2 exp
[
−C

ε

]
.

Consequently,

|z(xk + r) − v+| ≤ ρ2

√
2 exp(−C/(2ε)).(2.6)

Because W is quadratic at v+, (2.6) implies that, for some constant C1,

Eε[z; xk + r+, xk + r] ≥ φ(z(xk + r+), z(xk + r))
≥ φ(z(xk + r+), v+)− φ(v+, z(xk + r))
≥ φ(z(xk + r+), v+)− (C1/(2N)) exp(−C/ε).(2.7)

Combining (2.2) and (2.7), we see that the constrained minimizer of the proposed
variational problem satisfies

Eε[z; xk + r+, xk + r] ≥ φ(z(xk + r+), v+)− (C1/(2N)) exp(−C/ε).

But the restriction of u to [xk +r+, xk +r] is an admissable function, so it must satisfy
the same estimate

Eε[u; xk + r+, xk + r] ≥ φ(u(xk + r+), v+)− (C1/(2N)) exp(−C/ε).

A similar estimate holds for the energy of u on the interval [xk − r, xk − r−]. Hence,

Eε[u; xk − r, xk + r] = Eε[u; xk − r, xk − r−] + Eε[u; xk − r−, xk + r+]
+ Eε[u; xk + r+, xk + r]

≥ φ(v−, u(xk − r−))− (C1/(2N)) exp(−C/ε)
+ φ(u(xk − r−), u(xk + r+))
+ φ(u(xk + r+), v+)− (C1/(2N)) exp(−C/ε)

≥ φ(v(xk − r), v(xk + r))− (C1/N) exp(−C/ε).

Assembling all of our estimates,

Eε[u] ≥
N∑

k=1

Eε[u; xk − r, xk + r] ≥ E0[v]− C1 exp(−C/ε),

as was claimed.
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3. Slow Evolution. In this section we will consider a family of solutions uε(x, t)
to (1.3), parametrized by the corresponding interaction length ε.

Lemma 3.1. Suppose that C < r
√

2λ and the initial data uε
0 satisfies∫ 1

0

|ũε
0(x) − ṽ(x)| dx ≤ δ

2

and

Eε[uε
0] ≤ E0[v] +

1
g(ε)

for some function g and for all ε small, where δ is as in Lemma 2.1. Then

lim
ε→0

{
sup

0≤t≤min{g(ε),exp(C/ε)}

∫ 1

0

|ũε(x, t)− ũε
0(x)| dx

}
= 0.(3.1)

Proof. First note that the scaled total energy Eε[uε(·, t)] of the solution of a
Cahn-Morral system is nonincreasing in t, since

d

dt
Eε[uε(·, t)] = ε−1

∫ 1

0

[
DW (uε) · uε

t + ε2uε
x · uε

xt

]
dx

= ε−1

∫ 1

0

[
(DW (uε)− ε2uε

xx) · uε
t

]
dx

= −ε−1

∫ 1

0

|ũε
t |

2 dx.

Integrating this equation over t ∈ (0, T ) gives

Eε[uε
0]− Eε[uε(·, T )] = ε−1

∫ T

0

∫ 1

0

|ũε
t |

2
dx dt.(3.2)

Next, assume that uε
0 satisfies the conditions of the lemma and that T is small

enough that ∫ T

0

∫ 1

0

|ũε
t | dx dt ≤ δ/2.

Then ∫ 1

0

|ũε
0(x)− ũε(x, T )| dx ≤ δ/2,

so by the triangle inequality,∫ 1

0

|ũε(x, T )− ṽ(x)| dx ≤ δ.

Applying, Lemma 2.1 to ũε(·, T ) gives Eε[uε(·, T )] ≥ E0[v]− C1 exp(−C/ε). In com-
bination with (3.2), this yields∫ T

0

∫ 1

0

|ũε
t |

2
dx dt = ε(Eε[uε

0]− Eε[uε(·, T )])

≤ C1ε

[
1

g(ε)
+ exp(−C/ε)

]
,(3.3)



28 CHRISTOPHER P. GRANT

assuming, without loss of generality, that C1 ≥ 1.
Using Hölder’s inequality and (3.3) we have(∫ T

0

∫ 1

0

|ũε
t | dx dt

)2

≤
(∫ T

0

∫ 1

0

1 dx dt

)
·
(∫ T

0

∫ 1

0

|ũε
t |

2 dx dt

)

≤ C1Tε

[
1

g(ε)
+ exp(−C/ε)

]
.

Hence,

T ≥ 1
C1ε

[
1

g(ε)
+ exp(−C/ε)

]−1
(∫ T

0

∫ 1

0

|ũε
t | dx dt

)2

.(3.4)

Now suppose that ∫ ∞
0

∫ 1

0

|ũε
t | dx dt ≥ δ/2.

Then we can choose T such that
∫ T

0

∫ 1

0 |ũε
t | dx dt = δ/2. For this choice of T , (3.4)

yields

T ≥ δ2

4C1ε
[

1
g(ε) + exp(−C/ε)

] ≥ δ2

8C1ε
min {g(ε), exp(C/ε)} .

Then (3.3) implies that∫ δ2 min{g(ε),exp(C/ε)}/(8C1ε)

0

∫ 1

0

|ũε
t |

2
dx dt ≤ C1ε

[
1

g(ε)
+ exp(−C/ε)

]
.(3.5)

If, on the other hand,
∫∞
0

∫ 1

0
|ũε

t | dx dt < δ/2, then (3.3) must hold for every T ;
therefore, (3.5) is also true for this case.

Using Hölder’s inequality and (3.5) we see that for ε < δ2/(8C1)

sup
0≤t≤min{g(ε),exp(C/ε)}

∫ 1

0

|ũε(x, t) − ũε
0(x)| dx

≤
∫ min{g(ε),exp(C/ε)}

0

∫ 1

0

|ũε
t | dx dt

≤
(

min {g(ε), exp(C/ε)}
∫ min{g(ε),exp(C/ε)}

0

∫ 1

0

|ũε
t |

2
dx dt

)1/2

≤
(

min {g(ε), exp(C/ε)}C1ε

[
1

g(ε)
+ exp(−C/ε)

])1/2

≤
√

2C1ε.

Letting ε→ 0 we get (3.1).
The strength of estimate (3.1) in Lemma 3.1 depends on the efficiency of the tran-

sition layers in the initial data. In Theorem 3.3 below, we show that, in a neighborhood
of the step function v, there exist initial data that smooth out the discontinuities of v
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in an efficient enough manner that the corresponding solutions of (1.3) evolve expo-
nentially slowly. Before we present this theorem, we shall state and prove a technical
lemma about the existence and regularity of minimizing geodesics for the degenerate
Riemannian metric φ.

Lemma 3.2.

1. For any two zeros zi and zj of W , there is a Lipschitz continuous path γij

from zi to zj, parametrized by a multiple of Euclidean arclength, that realizes the
distance φ(zi, zj); i.e., φ(zi, zj) = J [γij ].

2. There exists a positive constant C2 such that |γij(y) − zi| ≥ C2y for y suffi-
ciently small, and |γij(y)− zj | ≥ C2(1− y) for y sufficiently near 1.

Proof. Recall that outside of a neighborhood of its zeros W is bounded away from
0; therefore, it is possible to find a bounded set B ⊂ D(W ) such that if γ(0) = zi,
γ(1) = zj , and J [γ] ≤ φ(zi, zj) + 1 then the image of γ is contained in B. Extend W
continuously to B, and consider the problem of minimizing J [γ] over all γ satisfying
these boundary conditions and having images contained in B. Now, J [γ] is a para-
metric integral, and it is known that this new minimization problem has an AC global
minimizer γij [12]. The parameter of this minimizer can be chosen to be proportional
to arclength, and then γij will be Lipschitz continuous.

We claim that γij([0, 1]) is contained in D(W ). Suppose it is not. Then there
exists some y ∈ (0, 1) such that γij(y) ∈ ∂D(W ). By the assumptions on W , there
is a closed, convex set S ⊂ D(W ) \ γij(y) such that W is nonzero on the connected
component Ω of D(W )\S containing γij(y), and the function ϕ that maps each point
of Rn to its nearest point in S satisfies W (ϕ(u)) ≤W (u) for all u in Ω. Consider the
modified path γ̄ij from zi to zj defined by

γ̄ij(y) =
{

ϕ(γij(y)), if γij(y) ∈ Ω
γij(y), otherwise .

Note that ϕ is Lipschitz continuous with Lipschitz constant 1. Because of this and
the fact that S separates Ω from the rest of D(W ), γ̄ij is Lipschitz continuous. It is
also easy to check that J [γ̄ij ] < J [γij ]. This contradicts the optimality of γij ; hence,
the claim holds. This verifies that φ(zi, zj) = J [γij ].

We now prove the estimate on γij near zi; the estimate near zj can be derived
similarly. Again, we consider a modification of γij , this time the path γη

ij defined by

γη
ij(y) =

{
zi + (y/η)(γij(η)− zi), if 0 ≤ y ≤ η
γij(y), otherwise .

The optimality of γij implies that

√
2
∫ η

0

√
W (γij(s))|γ′ij(s)| ds ≤

√
2
∫ η

0

√
W (γη

ij(s))
|γij(η)− zi|

η
ds.(3.6)

Because D2W (zi) is positive definite, there are positive constants M1 and M2 such
that

M1|u− zi| ≤
√

W (u) ≤M2|u− zi|

in a small neighborhood of zi. Using this in (3.6), we find that

|γij(η)− zi|2 ≥M3

∫ η

0

|γij(s)− zi| ds
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for some constant M3. Applying a variant of Gronwall’s inequality [23] we obtain the
desired estimate.

Theorem 3.3. Given δ > 0, there exist constants C, ε̂ > 0 and a family of initial
conditions {uε

0 : 0 ≤ ε ≤ ε̂} of (1.3) satisfying homogeneous Neumann boundary
conditions and the estimate ∫ 1

0

|ũε
0(x) − ṽ(x)| dx ≤ δ

2

such that the corresponding solutions uε of (1.3) satisfy

lim
ε→0

{
sup

0≤t≤exp(C/ε)

∫ 1

0

|ũε(x, t)− ũε
0(x)| dx

}
= 0.

Proof. Lemma 3.2 shows that to each discontinuity xk of v there corresponds
an optimal path connecting v(xk − r) to v(xk + r). Note that it suffices to prove
the present theorem under the assumption that none of these optimal paths passes
through any zero of W (except at the endpoints of the path), since if the assumption
is not satisfied then v can be perturbed slightly to create a new step function that
does satisfy the assumption.

Given ε, set uε
0 = v outside of ∪m

j=1B(xk, r). For fixed xk, we shall again use the
notation v± for v(xk ± r) and will show that for ε sufficiently small we can define uε

0

inside B(xk, r) in such a way that uε
0 is very close to v (in the L1 sense) on B(xk, r),

Eε[uε
0; xk − r, xk + r] ≤ φ(v−, v+) + C3 exp(−C/ε) for some C and C3, and uε

0 is
continuous at the endpoints of B(xk, r). By taking C slightly smaller and applying
Lemma 3.1, the proof of the theorem will then be complete.

Let γ : [0, 1]→ Rn be an optimal path from v− to v+ as described in Lemma 3.2.
Let σ be the Euclidean arclength of γ. Let y : R→ [0, 1] be the solution of

dy

dξ
= σ−1

√
2W (γ(y(ξ)))(3.7)

satisfying y(0) = 1/2. (Since
√

W and γ are Lipschitz continuous, a unique C1

solution is guaranteed to exist.) Note that limξ→∞ y(ξ) = 1 and limξ→−∞ y(ξ) = 0.
Define uε

0 inside B(xk, r) by

uε
0(x) =


v− + (γ (y (1− r/ε))− v−)(x− xk + r)/ε, xk − r < x < xk − r + ε

γ (y ((x− xk)/ε)) , xk − r + ε ≤ x ≤ xk + r − ε

v+ + (v+ − γ (y (r/ε− 1)))(x− xk − r)/ε, xk + r − ε < x < xk + r.

It is easy to see that uε
0 is continuous and, for ε sufficiently small, will satisfy the

L1 requirement; therefore, we only need to check the energy requirement. Note that

Eε[uε
0; xk − r, xk + r] =

∫ −r+ε

−r

[
1
ε
W (uε

0(x + xk)) +
ε

2
|uε′

0 (x + xk)|2
]

dx

+
∫ r−ε

−r+ε

[
1
ε
W (uε

0(x + xk)) +
ε

2
|uε′

0 (x + xk)|2
]

dx

+
∫ r

r−ε

[
1
ε
W (uε

0(x + xk)) +
ε

2
|uε′

0 (x + xk)|2
]

dx

def= I1 + I2 + I3.(3.8)
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Now, using (3.7) and the definition of γ we have

I2 =
∫ r−ε

−r+ε

[
1
ε
W

(
γ

(
y

(x

ε

)))
+

1
2ε

∣∣∣γ′ (y
(x

ε

))
y′

(x

ε

)∣∣∣2] dx

=
∫ r/ε−1

1−r/ε

[
W (γ(y(ξ))) +

1
2
|γ′(y(ξ))y′(ξ)|2

]
dξ

=
∫ r/ε−1

1−r/ε

√
2W (γ(y(ξ)))|γ′(y(ξ))|y′(ξ) dξ

=
∫ y(r/ε−1)

y(1−r/ε)

√
2W (γ(y))|γ′(y)| dy

≤ φ(v−, v+).(3.9)

Next, we estimate I1 (letting C3 represent a constant whose value may change
from line to line):

I1 =
1
ε

∫ −r+ε

−r

W

(
v− +

γ (y (1− r/ε))− v−
ε

(x + r)
)

dx

+
1
2

∣∣∣γ (
y

(
1− r

ε

))
− v−

∣∣∣2
≤ C3

∣∣∣γ (
y

(
1− r

ε

))
− v−

∣∣∣2
≤ C3

(
y

(
1− r

ε

))2

.(3.10)

Now, Lemma 3.2 implies that there exists a constant C > 0 such that, for ξ � 0,

y′(ξ) = σ−1
√

2W (γ(y(ξ))

≥ C

2rC2
|γ(y(ξ))− v−|

≥ C

2r
(y(ξ)).(3.11)

Applying a simple comparison argument to (3.11) yields

y(ξ) ≤ C3 exp
(

Cξ

2r

)
,

for ξ � 0. Substituting this into (3.10) we have

I1 ≤ C3 exp(−C/ε).(3.12)

Similarly,

I3 ≤ C3 exp(−C/ε).(3.13)

By substituting (3.9), (3.12), and (3.13) into (3.8), we see that uε
0 satisfies the

energy requirement, so we are done.
Remark. For the standard two-component case with W having two minima, the

maximum principle can be used more directly in the proof of Lemma 2.1 (see [2])
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and an explicit value of C can be obtained in Theorem 3.3. This C agrees with that
obtained in [1] and [4].

Remark. The initial data uε
0 just constructed are in W 1,∞(0, 1). Since Eε is

continuous on this space and elements of this space can be approximated arbitrarily
closely by Cp functions (for arbitrarily large p), the initial data in Theorem 3.3 can
be assumed to be arbitrarily smooth.

4. Motion of Transition Layers. From Theorem 3.3, which establishes slow
evolution in a certain abstract space, it is natural to infer that the transition layers
themselves move extremely slowly. This concept can be made precise in a number of
ways, one of which we present here.

Fix some closed subset K of D(W ) \W−1({0}), and define the interface I[u] of a
function u by

I[u] def= u−1(K).

This terminology is natural, since the set K is bounded away from the phases of
W , where the bulk energy is low. By analyzing how rapidly I[u] changes, we obtain
information on how fast the transition layers move.

Let d(A, B) denote the Hausdorff distance between the sets A and B, i.e.

d(A, B) = max
{

sup
a∈A

d(a, B), sup
b∈B

d(b, A)
}

.

We shall show that d(I[uε(·, t)], I[uε
0]) grows very slowly in t.

Theorem 4.1. Fix r̂ > 0 and δ̂ > 0. Then there exist constants C, ε̂ > 0 and a
family of initial conditions {uε

0 : 0 ≤ ε ≤ ε̂} of (1.3) satisfying homogeneous Neumann
boundary conditions and the estimate∫ 1

0

|ũε
0(x)− ṽ(x)| dx ≤ δ̂

such that the time T (r̂) necessary for d(I[uε(·, T (r̂))], I[uε
0]) to exceed r̂ satisfies

T (r̂) ≥ exp(C/ε).(4.1)

Proof. Assume, without loss of generality, that r̂ ≤ r. Choose ρ̂ small enough
that

inf
{
φ(ζ1, ζ2) : zj ∈W−1({0}), ζ1 ∈ K, ζ2 ∈ B(zj , ρ̂)

}
> 4N sup

{
φ(zj , ζ2) : zj ∈W−1({0}), ζ2 ∈ B(zj , ρ̂)

}
.

Choose M ∈ N so large that MF (ρ̂) > E0[v], where F is defined as in (2.1).
We claim that there exists ε0 > 0 such that for all ε ≤ ε0 and for all functions

z : [0, 1]→ Rn satisfying ∫ 1

0

|z̃(x)− ṽ(x)| dx ≤ ρ̂r̂2

17M2
(4.2)

and

Eε[z] ≤ E0[v] + 2N sup
{
φ(zj , ζ2) : zj ∈W−1({0}), ζ2 ∈ B(zj , ρ̂)

}
,(4.3)
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we have

d
(
I[z], {xk}Nk=1

)
<

r̂

2
.

Verification of Claim: Note first that if ε is sufficiently small then for each k there
exist

xk− ∈ (xk − r̂/2, xk)

and

xk+ ∈ (xk+, xk + r̂/2)

such that |z(xk±) − v(xk±)| < ρ̂. This follows as in the proof of Lemma 2.1. Now,
suppose the claim is violated. Then, reasoning as before

Eε[z] ≥
N∑

k=1

Eε[z; xk−, xk+]

+ inf
{
φ(ζ1, ζ2) : zj ∈ W−1({0}), ζ1 ∈ K, ζ2 ∈ B(zj , ρ̂)

}
≥ E0[v]− 2N sup

{
φ(zj , ζ2) : zj ∈W−1({0}), ζ2 ∈ B(zj , ρ̂)

}
+ inf

{
φ(ζ1, ζ2) : zj ∈ W−1({0}), ζ1 6∈ K, ζ2 ∈ B(zj , ρ̂)

}
> E0[v] + 2N sup

{
φ(zj , ζ2) : zj ∈W−1({0}), ζ2 ∈ B(zj , ρ̂)

}
≥ Eε[z],

which is a contradiction. Thus, the claim is true.
Apply Theorem 3.3 with δ = min{δ̂, ρ̂r̂2/(17M2) to obtain a parametrized set of

initial conditions {uε
0 : 0 ≤ ε ≤ ε̂}. Note that z = uε

0 satisfies (4.2) and, by the con-
struction in the proof of Theorem 3.3, satisfies (4.3) for ε sufficiently small. Applying
the claim we get

d
(
I[uε

0], {xk}Nk=1

)
<

r̂

2
,

for ε sufficiently small. By Theorem 3.3, the triangle inequality, and the fact that
Eε[uε(·, t)] is decreasing in t, we see that there is a constant C > 0 such that for ε
sufficiently small, z = uε(·, T ) satisfies (4.2) and (4.3) if T ≤ exp(C/ε). Thus, for all
such T we also have

d
(
I[uε(·, T )], {xk}Nk=1

)
<

r̂

2
.

By the triangle inequality we get

d (I[uε
0], I[uε(·, T )]) < r̂.

This means that (4.1) must hold.
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