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ABSTRACT

MODELING DISTRIBUTIONS OF TEST SCORES WITH MIXTURES OF BETA

DISTRIBUTIONS

Jingyu Feng

Department of Statistics

Master of Science

Test score distributions are used to make important instructional decisions about

students. The test scores usually do not follow a normal distribution. In some cases,

the scores appear to follow a bimodal distribution that can be modeled with a mixture

of beta distributions. This bimodality may be due different levels of students’ ability.

The purpose of this study was to develop and apply statistical techniques for fitting beta

mixtures and detecting bimodality in test score distributions.

Maximum likelihood and Bayesian methods were used to estimate the five pa-

rameters of the beta mixture distribution for scores in four quizzes in a cell biology

class at Brigham Young University. The mixing proportion was examined to draw con-

clusions about bimodality. We were successful in fitting the beta mixture to the data,

but the methods were only partially successful in detecting bimodality.
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Chapter 1

Introduction

The interpretation of test scores is a critical component of any educational pro-

gram. Teachers need to know as much as possible about how their students differ in

order to match classroom instruction to the specific needs of each student. School ad-

ministrators also need to plan for the long-term education of students. By investigating

the properties of distributions of test scores, teachers and school administrators can get

useful information about the students and teaching strategies.

The mean or the median indicates how well students master the material on

average. The variance indicates variability in the levels of mastery of the material.

The shape of the distribution also has meaning. For example, if the distribution is left

skewed, it may indicate either that students have mastered the material very well or the

test is too easy; if the shape is right skewed, it may indicate either that the test is too

hard or the way that the teacher delivers the material needs to be improved; if the shape

is bimodal, it may indicate that there are two learning styles or backgrounds in the class

and the teacher should modify the teaching style to accommodate the different needs.

Researchers can often detect bimodality visually if the peaks are sufficiently
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well-defined and far apart. However, bimodality may also be difficult to detect because

it may be disguised as a unimodal but complex distribution. Many methods have been

developed for detecting bimodality. Most of them can be categorized into two general

approaches. The first approach is to calculate an optimized bimodality measure, such

as the bimean (Dunn, Janos, and Rosenfeld 1983), Fisher distance (Phillips, Rosenfeld,

and Sher 1989) or entropy distance (Gilks, Richardson, and Spiegelhalter 1996), then

decide if the measure is extreme enough to suggest bimodality. This approach is usu-

ally highly computational and the critical value depends on the nature of the problem

(Gilks, Richardson, and Spiegelhalter 1996). The second approach is to fit a parametric

mixture model with a mixing parameter π, then draw the inferences about π.

In this paper, we use the second approach to test bimodality. We implement

this approach using a likelihood method based on the bootstrap (Davison and Hinkley

1997) and a Bayesian hierarchical method based on Markov Chain Monte Carlo. We

also discuss interesting features of both implementations.

We apply these methods to test scores from four quizzes in a cell biology class

at BYU (Figure 1.1). The scores for the four quizzes were whole numbers in [0, 15].

Because of the properties of the scores, we propose models involving mixtures of two

beta distributions to model the test score distributions.
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Figure 1.1: Histograms of scores on 4 quizzes in a cell biology class at BYU.
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Chapter 2

Literature Review

2.1 Bimodality Measures

For bimodality analysis based on measures of bimodality, there are several

choices, such as the bimean, Fisher distance and entropy distance. However, each of

them has some undesirable properties.

Methods based on the bimean and the Fisher distance proceed by dividing the

range of the data into two subsets (Phillips, Rosenfeld, and Sher 1989). The bimean

approach divides the range so as to minimize σ̂2
1 + σ̂2

2 where σ̂2
1 is the sample vari-

ance of the observations in the lower part of the range and σ̂2
2 is the sample variance

of observations in the upper part of the range. It does not involve either the means or

the population sizes. On the other hand, the Fisher distance (FD2) method divides a

population into two subsets so as to maximize

FD2 = n(µ̂1 − µ̂2)
2/(n1σ̂

2
1 + n2σ̂

2
2)

where σ̂2
1 and σ̂2

2 are as above, µ̂1 and µ̂2 are the corresponding sample means, n1 and

n2 are the corresponding sample sizes, and n = n1 + n2. The Fisher distance approach

is more powerful than the bimean apporach. The literature, does not discuss a sampling
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model or a statistical ”test” for bimodality based on these measures.

The entropy distance (ED) approach to bimodality analysis is to compare a two-

component mixture to ”the closest” single-component model where ”the closest” means

the model that minimizes

ED[g, h] =

∫
log(g(x)/h(x))g(x)dx

where h(x) is the single-component model and g(x) is the two-component model. If the

entropy distance is large enough, it indicates the presence of bimodality. This approach

is difficult to discuss in general because the critical value is dependent on the nature of

the problem.

2.2 Mixture Models and Methods

Mixture distributions have been used as models throughout the history of mod-

ern statistics. One of the first major analyses involving the use of mixture models was

undertaken over 100 years ago by Karl Pearson (Titterington, Smith, and Makov 1985).

He used a mixture of two normal probability density functions as a model to describe a

set of measurements on the ratio of forehead to body length for 1000 crabs.

A mixture of two distributions will not always have obvious bimodality unless

the means are sufficiently different. However, mixtures are often used to investigate

bimodality (Reschenhofer 2001).

The formula for a finite mixture density function is

p(x) = π1f1(x) + · · ·+ πkfk(x)

5



where 1 > πj > 0, j = 1, · · · , k, π1 + · · ·+ πk = 1

and fj(.) ≥ 0,
∫

x
fj(x)dx = 1, j = 1, · · · , k,.

Because of the flexibility of mixture models, mixtures of many kinds of distributions

have been studied, such as Normals (Hosmer 1973), Binomials (Gelfand and Solomon

1975), Compound Poissons (Paull 1978) and Geometrics (Harris 1983).

In line with the popularity of mixture models, a variety of methods have been de-

veloped to estimate the parameters of a mixture model, such as the method of moments,

maximum likelihood, Bayesian methods, minimum distance estimation and numeric

decomposition of mixtures.

The most fundamental ’parameter’ in the definition of a mixture model is the

number of components. In applications involving one or possibly two components, we

can approach the question of the number of component in hypothesis testing terms by

testing.

H0: single component

vs Ha: two components

Because H0 can be regarded as a special case of Ha, it is natural to consider applying

the generalized likelihood ratio test (Titterington, Smith, and Makov 1985). However,

since there is not a unique way of obtaining H0 from Ha, it is very hard to decide the ap-

propriate degrees of freedom for the chi-squared distribution (Titterington, Smith, and

Makov 1985).

Aitkin, Anderson, and Hinde (1981) proposed a mixture to model an extensive

body of educational research data on teaching styles and pupil performance. In the ab-
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sence of a general procedure to test the hypothesis, they essentially used a bootstrap

approach. Aitkin and Rubin (1985) adopted a Bayesian approach which places a prior

distribution on the vector of mixing proportions.

2.3 The Beta Distribution and Mixture of Betas

The beta distribution is related to the gamma distribution. It is a continuous

probability distribution with the probability density function (pdf) defined on the inter-

val (0, 1). The pdf of the beta distribution is

f(x) =
Γ(a + b)

Γ(a)Γ(b)
xa−1(1− x)b−1

where a, b>0 and 0<x<1.

The density function for a mixture of two beta distributions is simply the weighted

sum of two beta density functions,

f(x) = π
Γ(a1 + b1)

Γ(a1)Γ(b1)
xa1−1(1− x)b1−1 + (1− π)

Γ(a2 + b2)

Γ(a2)Γ(b2)
xa2−1(1− x)b2−1

where 0< π <1. The mixture of two beta distributions has rarely been used. A litera-

ture search produced only 2 uses of beta mixtures. A two-component beta mixture was

used to model gene expression measures and detect periodically expressed genes (Lu,

Zhang, and Qin 2004). The maximum likelihood method was used to estimate the five

unknown parameters. Also, in the problem of testing whether or not a given parametric

model is compatible with the data at hand, researchers used a Bayesian approach to es-

timate the number of components of a potentially infinite mixture of beta distributions
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(Robert and Rousseau 2002).

2.4 The Bootstrap

A problem with inferences about the mixing parameter in a beta mixture is that

the likelihood function may not be regular (Pawitan 2001). Such complications suggest

investigating nonparametric approaches to inference. Bootstrapping (Efron 1979) is a

computer-simulated, nonparametric technique for making inferences about a population

parameter based on sample statistics. The basic idea behind bootstrapping is that if the

sample is a good approximation of the population, the sampling distribution of interest

may be estimated by generating a large number of new samples (called resamples) from

the original sample. Bootstrapping is useful when inference is to be based on a complex

procedure for which theoretical results are unavailable or not useful for the sample sizes

met in practice (Davison and Hinkley 1997). Bootstrapping allows researchers to use

an estimator even if the theorical sampling distribution is not available.

The general bootstrap algorithm is:

1. Generate a sample x∗ of size n by sampling with replacement from the sample

{x1, x2, · · · , xn}.

2. Compute the statistic of interest θ̂∗ for this bootstrap sample.

3. Repeat steps 1 and 2 m times, where m is large.

Using this procedure we end up with bootstrap values θ̂∗ = {θ̂∗1, θ̂∗2, · · · , θ̂∗m}. These

bootstrap values are used for calculating standard errors, test statistics and other quan-
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tities of interest in inference. Note that θ̂∗ is treated as a sample from the unknown

distribution of θ̂.

2.5 Markov Chain Monte Carlo Computation

Markov Chain Monte Carlo (MCMC) is a numerical integration technique based

on simulation. It is primarily used in connection with the Bayesian approach to data

analysis for approximating posterior distributions of parameters. MCMC was devel-

oped in physics by Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller (1953), and

later generalized and put into a statistical framework by Hastings (1970). The principle

is to observe a succession of states; once convergence is reached, the consecutive states

are assumed to be drawn from the target probability distribution. Using MCMC, it is

possible to sample from general joint probability distributions which have been spec-

ified using conditional distributions. The conditional specifications allow dependent

samples from the joint distribution to be drawn. If the samples constitute an irreducible

ergodic Markov chain with stationary distribution, the ergodic theorem implies that

the samples can be used to characterize the joint distribution (Gilks, Richardson, and

Spiegelhalter 1996).

It is natural to implement MCMC to estimate the parameters of a mixture model

because in some situations the maximum likelihood estimators for parameters of a mix-

ture model do not exist whatever the sample size (Lehmann 1983).

The general Metropolis-Hastings algorithm for drawing a sequence xi, i = 0, ...,m
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of dependent samples with unnormalized pdf g(.) is:

1. Choose a starting value x0.

2. Set i=1.

3. Generate a candidate value y from a pdf p(y|xi).

4. If u ∼ µ(0, 1) < g(y)p(y|xi)
g(xi)p(xi|y)

), then xi = y else xi = xi−1.

5. Repeat steps 3 and 4 for i = 2, · · · ,m.

2.6 Nelder-Mead Simplex (NMS)

The NMS algorithm (Nelder and Mead 1965) has become a widely used method

for nonlinear unconstrained optimization because it does not require the objective func-

tion g(x) to be differentiable. Compared with other optimization algorithms, such as

Newton-Raphson Optimization With Line-Search, Quasi-Newton Optimization, Con-

jugate Gradient Optimization etc., the NMS method does not use any derivatives. The

NMS method is an iterative method that attempts to minimize a scalar-valued nonlinear

function of n real variables using only function values.

Four scalar parameters must be specified to define a complete Nelder-Mead

method: coefficients of reflection (ρ), expansion (χ), contraction (γ), and shrinkage

(σ). The nearly universal choices used in the standard Nelder-Mead algorithm are

ρ = 1, χ = 2, γ = 1
2

, and σ = 1
2

.

The result of each iteration is either (1) a single new vertex — the accepted point —

which replaces xn+1 in the set of vertices for the next iteration, or (2) a set of n new

10



points that, together with x1, form the simplex at the next iteration.

The likelihood function of a mixture model usually is quite complex and difficult

to differentiate. This makes NMS method a natural choice to maximize the likelihood

function for a mixture model.
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Chapter 3

Methodology

Our objective was to identify whether there were two sub-populations in the cell

biology class by detecting bimodality of the distribution of the students’ quiz scores. We

used two methods to approach this problem.

The first method was an empirical approach. After investigating the distribution

of scores, we proposed a mixture of discretized beta distributions. This model,

y ∼ πBeta(α1, β1) + (1− π)Beta(α2, β2),

has five parameters, α1, α2, β1, β2 and π. The likelihood is not regular, so inferences

could not be based on Fisher Information. To get the maximum likelihood estimates

of the parameters we used the NMS algorithms available in the NLP procedure of SAS

(SAS 2004). We used the bootstrap procedure with 1000 resamples to compute boot-

strap estimates of sampling distributions as well as simple percentile confidence limits

for all five parameters. We arbitrarily considered the distribution to be unimodal if the

confidence interval for the mixing parameter included 0.025 or 0.975 . Also, with the

scores divided into sixteen bins, Chi-Square goodness-of-fit tests with eleven degrees of

freedom were used to assess the fit of the mixture model. The SAS code for proc NLP

12



and the bootstrap resampling are in Appendix A. The R code for generating histograms

with superimposed fitted density function is in Appendix B.

The second method used a more theoretical approach, a Bayesian hierarchical

model. Inferences were based on the posterior distribution of the mixing parameter.

We first assumed that students’ ability levels followed a mixture of beta distributions.

For each student, the difficulty levels of the questions were then assumed to be draws

from some distribution with mean equal to the students ability. The score for each ques-

tion was then assumed to be a Bernoulli random variable with probability equal to the

question difficulty. Using the result on page 103 of McCullagh and Nelder (1989), the

complete quiz score then follows the binomial distribution. In symbols,

yi ∼ Beta mixture(π, α1, β1, α2, β2)

where yi is the difficulty for student i, and

ti ∼ Binom(15, yi)

where ti is the total score for student i.

The prior distribution for the mixing parameter π was noninformative. For the

other four parameters, we assumed there were two groups of students according to their

ability levels. The ability level is in [0, 1]. We assumed that one group had an aver-

age ability level of 0.33 and the other group had an average ability level of 0.66. The

standard deviation for the average ability level in both cases was assumed to be 0.13.

Thus, we specified there was a 95% chance that the average ability level of low ability

group was in [0.07, 0.59], and a 95% chance the average ability level of high ability

13



group was in [0.4, 0.92]. Therefore, the priors that we chose for α1, β1, α2 and β2 were

Gamma(4, 1), Gamma(8, 1), Gamma(8, 1) and Gamma(4, 1) respectively.

Based on the likelihood function for this hierarchical model and prior distribu-

tions for the five parameters, we used MCMC based on simple successive substitution

to estimate the posterior distributions for the parameters. We used 300,000 iterations as

a burn-in. We checked convergence of the chains by examining trace plots. Finally, we

used 20,000 iterations to estimate the posterior distributions of the parameters. Also, a

goodness-of-fit test for the Bayesian model was done using the predictive distribution

of each observation (Robert and Rousseau 2002). The percent of predictive values less

than each observation should follow a uniform distribution if the model fits the data

well. The R code for MCMC and the goodness-of-fit test are in Appendix C.
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Chapter 4

Results

4.1 Analysis of the Quiz 1 Scores Using the Likelihood Approach

The maximum likelihood estimates for the five parameters of the beta-mixture

model were: π̂ = 0.1604, α̂1 = 0.9451, β̂1 = 2.8284, α̂2 = 2.2243 and β̂2 = 0.7905.

The empirical beta mixture model visually fits the data well (Figure 4.1). The goodness-

of-fit test had a value of 15.6608, which is less than the critical value 19.6751. This

indicates that the data are consistent with the beta-mixture model. The bootstrap density

for π̂ is given in Figure 4.2 and the bootstrap densities for α̂1, β̂1, α̂2 and β̂2 are given

in Figure 4.3. The 95% bootstrap interval for π is (0.0206, 0.5342); hence we conclude

that quiz 1 scores are unimodal.

4.2 Analysis of the Quiz 1 Scores Using the Bayesian Approach

The posterior means for the five parameters were: π̄ = 0.2911, ᾱ1 = 4.8202,

β̄1 = 3.4261, ᾱ2 = 1.3876 and β̄2 = 0.5607. The posterior distribution for π is given in

Figure 4.4 and the posterior distributions for α1, β1, α2 and β2 are given in Figure 4.5.

The plot for the goodness-of-fit test is given in Figure 4.6. The plot indicates that the

15
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Figure 4.2: Bootstrap density for π̂ for scores for quiz 1.
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Figure 4.3: Bootstrap densities for α̂1, β̂1, α̂2 and β̂2 for scores for quiz 1.
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Bayesian model fits the data well. We also checked the trace plots to see whether the

chains converged. The trace plots show that π, α1, α2 and β2 converged, however the

chain for β1 did not converge. The 95% highest posterior density (hpd) interval for π is

(0.0001, 0.7843); hence we conclude that the scores are unimodal.

4.3 Analysis of the Quiz 2 Scores Using the Likelihood Approach

The maximum likelihood estimates for the five parameters of the beta-mixture

model were: π̂ = 0.95, α̂1 = 1.1221, β̂1 = 1.2443, α̂2 = 1.6161 and β̂2 = 0.000005.

The empirical beta mixture model does not visually fit the data well (Figure 4.7). The

bootstrap density for π̂ is given in Figure 4.8 and the bootstrap densities for α̂1, β̂1, α̂2

and β̂2 are given in Figure 4.9. The 95% bootstrap interval for π is (0.0384, 0.9522),

which on the surface would suggest bimodality. However, the goodness-of-fit test had a

value of 48.317, which is larger than the critical value 19.6751. This indicates that the

data are not consistent with the model involving a mixture of two betas.

4.4 Analysis of the Quiz 2 Scores Using the Bayesian Approach

The posterior means for the five parameters are: π̄ = 0.6783, ᾱ1 = 3.3818,

β̄1 = 3.3976, ᾱ2 = 0.2713 and β̄2 = 0.2431. The posterior distribution for π is given

in Figure 4.10 and the posterior distributions for α1, β1, α2 and β2 are given in Figure

4.11. The plot for the goodness of fit test is given in Figure 4.12. The plot indicates that

the Bayesian model does not fit the data well. We also checked the trace plots to see

whether the chains converged. All five chains converged. The 95% hpd interval for π is
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Figure 4.4: The posterior distribution for π for scores for quiz 1.
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Figure 4.5: The posterior distributions for α1, β1, α2 and β2 for scores for quiz 1.
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Figure 4.6: The goodness-of-fit test for the Bayesian model for the scores for quiz
1. The model is considered to fit the data well if the kernel density of the posterior
predictive quantiles (solid line) approximates the uniform density (dashed line).
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Figure 4.7: Histogram of scores for quiz 2 with fitted beta mixture model.
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Figure 4.8: Bootstrap density for π̂ for scores for quiz 2.
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Figure 4.9: Bootstrap densities for α̂1, β̂1, α̂2 and β̂2 for scores for quiz 2.

23



(0.5147, 0.8406), which on the surface would suggest bimodality. However, since the

data are not consistent with the model involving a mixture of two betas, this prevents us

from making any conclusion about bimodality.

4.5 Analysis of the Quiz 3 Scores Using the Likelihood Approach

The maximum likelihood estimates for the five parameters of the beta-mixture

model were: π̂ = .4058, α̂1 = 2.4325, β̂1 = 4.9303, α̂2 = 2.6094 and β̂2 = 0.8626.

The empirical beta mixture model visually seems to fit the data well (Figure 4.13). The

bootstrap density for π̂ is given in Figure 4.14 and the bootstrap densities for α̂1, β̂1, α̂2

and β̂2 are given in Figure 4.15. The 95% bootstrap interval for π is (0.1670, 0.8926),

which suggests that the distribution is bimodal. However, the goodness-of-fit test had a

value of 23.45504, which is slightly larger than the critical value 19.6751. This indicates

that the data are not consistent with the model involving a mixture of two betas.

4.6 Analysis of the Quiz 3 Scores Using the Bayesian Approach

The posterior means for the five parameters are: π̄ = 0.544, ᾱ1 = 3.16, β̄1 =

5.488, ᾱ2 = 8.4856 and β̄2 = 1.3595. The posterior distribution for π is given in

Figure 4.16 and the posterior distributions for α1, β1, α2 and β2 are given in Figure

4.17. The plot for the goodness of fit test is given in Figure 4.18. The plot indicates that

the Bayesian model does not fit the data well. We also checked the trace plots to see

whether the chains converged. The trace plots shows that chains for π, α1, β1 and β2

converged, however the chain for α2 did not converge. The 95% hpd interval for π is
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Figure 4.10: The posterior distribution for π for scores for quiz 2.
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Figure 4.11: The posterior distributions for α1, β1, α2 and β2 for scores for quiz 2.
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Figure 4.12: The goodness fit test for the Bayesian model for the scores for quiz 2. The
model is considered to fit the data well if the kernel density of the posterior predictive
quantiles (solid line) approximates the uniform density (dashed line).
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Figure 4.13: Histogram for scores for quiz 3 with fitted beta mixture model.

27



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

π̂

B
oo

ts
tr

ap
 D

en
si

ty

Figure 4.14: Bootstrap density for π̂ for scores for quiz 3.
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Figure 4.15: Bootstrap densities for α̂1, β̂1, α̂2 and β̂2 for scores for quiz 3.
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(0.2997, 0.8055), which on the surface would suggest bimodality. However, since the

data are not consistent with the model involving a mixture of two betas, this prevents us

from making any conclusion about bimodality.

4.7 Analysis of the Quiz 4 Scores Using the Likelihood Approach

The maximum likelihood estimates for the five parameters of the beta-mixture

model were: π̂ = 0.1692, α̂1 = 1.2689, β̂1 = 2.8958, α̂2 = 2.6694 and β̂2 = 1.5534.

The empirical beta mixture model does not visually fit the data well (Figure 4.19). The

goodness-of-fit test had a value of 106.532, which is much larger than the critical value

19.6751. This indicates that the data are not consistent with the model, involving mix-

ture of two betas. The bootstrap density for π̂ is given in Figure 4.20 and the bootstrap

densities for α̂1, β̂1, α̂2 and β̂2 are given in Figure 4.21. The 95% bootstrap interval

for π is (0, 0.8108), which would indicate unimodality if the empirical model were

appropriate.

4.8 Analysis of the Quiz 4 Scores Using the Bayesian Approach

The posterior means for the five parameters are: π̄ = 0.709, ᾱ1 = 2.5545,

β̄1 = 2.1287, ᾱ2 = 1.1402 and β̄2 = 0.6997. The posterior distribution for π is given in

Figure 4.22 and the posterior distributions for α1, β1, α2 and β2 are given in Figure 4.23.

The plot for the goodness-of-fit test is given in Figure 4.24. The plot indicates that the

Bayesian model fits the data well. The trace plots show that all chains converged. The

95% hpd for π is (0.0781, 0.9994), which on the surface would suggest unimodality.
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Figure 4.16: The posterior distribution for π for scores for quiz 3.
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Figure 4.17: The posterior distributions for α1, β1, α2 and β2 for scores for quiz 3.
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Figure 4.18: The goodness fit test for the Bayesian model for the scores for quiz 3. The
model is considered to fit the data well if the kernel density of the posterior predictive
quantiles (solid line) approximates the uniform density (dashed line).
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Figure 4.19: Histogram for scores for quiz 4 with fitted beta mixture model.
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Figure 4.20: Bootstrap density for π̂ for scores for quiz 4.
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Figure 4.21: Bootstrap densities for α̂1, β̂1, α̂2 and β̂2 for scores for quiz 4.
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However, since the data are not consistent with the model involving a mixture of two

betas, this prevents us from making any conclusion about unimodality.
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Figure 4.22: The posterior distribution for π for scores for quiz 4.

37



0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

α1

D
en

si
ty

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

β1

D
en

si
ty

0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

α2

D
en

si
ty

0 1 2 3

0.
0

0.
5

1.
0

1.
5

β2

D
en

si
ty

Figure 4.23: The posterior distributions for α1, β1, α2 and β2 for scores for quiz 4.
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Figure 4.24: The goodness fit test for the Bayesian model for the scores for quiz 4. The
model is considered to fit the data well if the kernel density of the posterior predictive
quantiles (solid line) approximates the uniform density (dashed line).
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Chapter 5

Conclusion

A summary of results from the two approaches is given in Table 5.1 and Table

5.2. For the first quiz, both methods produced confidence intervals for π which included

the value 0.025. Also, both goodness-of-fit tests indicated that the data are consistent

with the beta-mixture model. Thus we can conclude that there is no bimodality. For the

second quiz, neither confidence interval included 0.025. However, both goodness-of-fit

tests indicated that the data are not consistent with the model. This lack-of-fit prevents

us from making any decision about bimodality. For the third quiz, neither confidence

interval included 0.025. Again, both goodness-of-fit tests showed that the data are not

consistent with the model, although the fit was visually good. So we cannot make a

decision about bimodality. For the fourth quiz, one interval included 0.025 while the

95% Bootstrap Interval for π Goodness-of-fit Test Conclusion
(0.02, 0.53) Yes Unimodal
(0.04, 0.95) No Not Available
(0.17, 0.89) No Not Available

(0, 0.81) No Not Available

Table 5.1: Summary Table of the Results from Likelihood Approach
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95% Posterior Interval for π Goodness-of-fit Test Conclusion
(0, 0.78) Yes Unimodal

(0.51, 0.84) No Not Available
(0.30, 0.81) No Not Available

(0.08, 1) No Not Available

Table 5.2: Summary Table of the Results from Bayesian Approach

other did not. Once again, both goodness of fit tests showed that the data are not con-

sistent with the model. So we cannot make any conclusion about the fourth quiz. Upon

more careful examination, the reason for lack-of-fit for the quiz 4 data is that a three-

component model may be more appropriate.

To compare the two approaches, both methods required a great deal of comput-

ing time. The likelihood approach took much longer and Proc NLP has limitations. It

cannot handle large data sets while using nms option. Also, it often failed to converge.

However, the goodness-of-fit test associated with the likelihood approach was much

easier than that for Bayesian approach. Also, the Bayesian goodness-of-fit test does not

have a strict decision rule.

Initially, when we approached this problem, we assumed that there were 15

questions, all of which were independent. In fact, there are three questions for each

test, each worth five points. This partially explains why the models did not fit well,

especially the Bayesian model. However, we hope the methods that we developed to

test bimodality can be used in similar situations and generalized.

The methods used in this study were only partially successful in detecting bi-

modality. The beta-mixture model only fit well for one data set, so conclusions about
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bimodality were hard to draw. Also, the cutoff value of 0.025 for drawing the conclu-

sion of bimodality was arbitrary. Instead of only looking at the mixing parameter with

an arbitrary cutoff, we should perhaps consider all parameters in assessing bimodality.
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Appendix A

data scores; infile ’g:/project/final/final3.txt’; input score;
run; data scores; set scores; where score<>.; proc print; run;

proc nlp data=scores tech=nms maxfunc=300000 maxiter=100000 ; max
logf; lincon

p>0,
p<1,
a2>0,
b2>0,
a1>0,
b1>0;

nlincon c2-c1>0; c1=a1*b2; c2=a2*b1; parms p=.5, a1=1,
b1=2.75,a2=2, b2=.5;
logf=log(p*(probbeta((score+1)/16,a1,b1)-probbeta((score)/16,a1,b1))+

(1-p)*(probbeta((score+1)/16,a2,b2)-probbeta((score)/16,a2,b2)));
run;
%macro profile (n=);
%do i=0 %to &n-2 %by 1;
ods listing close; proc surveyselect data=scores out=testing
sampsize=190 method=urs outhits; run; proc nlp data=testing
tech=nms maxfunc=300000 maxiter=100000 outvar=new; max logf;
lincon p>0,

p<1,
a2>0,
b2>0,
a1>0,
b1>0;

nlincon c1-c2<0; c1=a1*b2; c2=a2*b1; parms p=.5, a1=1, b1=2.75,
a2=2, b2=.5;
logf=log(p*(probbeta((score+1)/16,a1,b1)-probbeta((score)/16,a1,b1))+

(1-p)*(probbeta((score+1)/16,a2,b2)-probbeta((score)/16,a2,b2)));
run; data new; set new; where _TYPE_="PARMS"; run; data new5 ; if
&i=0 then set new(); else set new new5; run;
%end;
ods listing;
%mend profile;
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Appendix B

v=seq(0,16, by=1)
s<-read.table("G:/project/final/final1.txt",col.names="Q")
hist(s\$Q, breaks=v,xlab=’Score’, include.lowest = TRUE,
right=FALSE,main="") x<-seq(0,15,by=.1) pi<-.1604 a1<-0.9451
b1<-2.8284 a2<-2.2243 b2<-0.7905
prob<-(pi*(pbeta((x+1)/16,a1,b1)-pbeta((x)/16,a1,b1))+

(1-pi)*(pbeta((x+1)/16,a2,b2)-pbeta((x)/16,a2,b2)))
lines(x,190*prob) dev.copy2eps(file="G:\\project\\final\\sg1.eps")
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Appendix C

s<-read.table("c:/project/final1.txt",col.names="Q1")
t1<-as.matrix(s$Q1)

#remove missing value t1<-t1[!is.na(t1)] k<-length(t1) m<-15

length <-20000 burn <- 3000000

candsig.y<-.09 candsig.a1 <- .15 candsig.b1 <- .15 candsig.a2 <-.1
candsig.b2 <- .12 candsig.p<- .06

y<-matrix(.4,ncol=k,nrow=(length+burn)) a1 <- numeric(length+burn)
b1 <- numeric(length+burn) a2 <- numeric(length+burn)
b2<-numeric(length+burn) p <- numeric(length+burn)

a1[1]<-23/27 b1[1]<-46/27 a2[1]<-46/27 b2[1]<-23/27 p[1]<-.4

a1.theta<-4 a1.kapa<-1 b1.theta<-8 b1.kapa<-1 a2.theta<-8 a2.kapa<-1
b2.theta<-4 b2.kapa<-1

for(i in 2:(length+burn)){

# update yi (j = 1,...,k)
for (j in 1:k){

y[i,j]<-y[i-1,j]
old<-y[i-1,j]
new<-rnorm(1,old,candsig.y)
if ((new>=0) & (new<=1))
{

llo<-log(dbinom(t1[j],m,old))
+ log(p[i-1]*dbeta(old,a1[i-1],b1[i-1])
+(1-p[i-1])*dbeta(old,a2[i-1],b2[i-1]))

lln<-log(dbinom(t1[j],m,new))
+ log(p[i-1]*dbeta(new,a1[i-1],b1[i-1])
+(1-p[i-1])*dbeta(new,a2[i-1],b2[i-1]))

uu<-runif(1,0,1)
if(log(uu)<(lln-llo)){y[i,j]<-new}

}
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}

# update for a1
a1[i] <- a1[i-1]
old <- a1[i-1]
new <- rnorm(1,old,candsig.a1)

if (new>0)
{

llo <-sum(log(p[i-1]*dbeta(y[i,],old,b1[i-1])
+(1-p[i-1])*dbeta(y[i,],a2[i-1],b2[i-1])))
+ log(dgamma(old,shape=a1.kapa,scale=a1.theta))

lln <-sum(log(p[i-1]*dbeta(y[i,],new,b1[i-1])
+(1-p[i-1])*dbeta(y[i,],a2[i-1],b2[i-1])))
+ log(dgamma(new,shape=a1.kapa,scale=a1.theta))

uu<-runif(1,0,1)
if(log(uu)<(lln-llo)){a1[i]<-new}

}

# update for b1
b1[i] <- b1[i-1]
old <- b1[i-1]
new <- rnorm(1,old,candsig.b1)

if (new>0)
{

llo <-sum(log(p[i-1]*dbeta(y[i,],a1[i],old)
+(1-p[i-1])*dbeta(y[i,],a2[i-1],b2[i-1])))
+ log(dgamma(old,shape=b1.kapa,scale=b1.theta))
lln <-sum(log(p[i-1]*dbeta(y[i,],a1[i],new)
+(1-p[i-1])*dbeta(y[i,],a2[i-1],b2[i-1])))
+ log(dgamma(new,shape=b1.kapa,scale=a1.theta))

uu<-runif(1,0,1)
if(log(uu)<(lln-llo)){b1[i]<-new}

}

# update for a2
a2[i] <- a2[i-1]
old <- a2[i-1]
new <- rnorm(1,old,candsig.a2)

if (new>0)
{

llo <-sum(log(p[i-1]*dbeta(y[i,],a1[i],b1[i])
+(1-p[i-1])*dbeta(y[i,],old,b2[i-1])))
+ log(dgamma(old,shape=a2.kapa,scale=a2.theta))

lln <-sum(log(p[i-1]*dbeta(y[i,],a1[i],b1[i])
+(1-p[i-1])*dbeta(y[i,],new,b2[i-1])))
+ log(dgamma(new,shape=a2.kapa,scale=a2.theta))

uu<-runif(1,0,1)
if(log(uu)<(lln-llo)){a2[i]<-new}
}
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# update for b2
b2[i] <- b2[i-1]
old <- b2[i-1]
new <- rnorm(1,old,candsig.b2)

if (new>0& new<(a2[i]*b1[i]/a1[i]))
{

llo <-sum(log(p[i-1]*dbeta(y[i,],a1[i],b1[i])
+(1-p[i-1])*dbeta(y[i,],a2[i],old)))
+ log(dgamma(old,shape=b2.kapa,scale=b2.theta))

lln <-sum(log(p[i-1]*dbeta(y[i,],a1[i],b1[i])
+(1-p[i-1])*dbeta(y[i,],a2[i],new)))
+ log(dgamma(new,shape=b2.kapa,scale=b2.theta))

uu<-runif(1,0,1)
if(log(uu)<(lln-llo)){b2[i]<-new}
}

# update for p
p[i] <- p[i-1]
old <- p[i-1]
new <- rnorm(1,old,candsig.p)

if (new>=0 & new<=1)
{

llo <-sum(log(old*dbeta(y[i,],a1[i],b1[i])
+(1-old)*dbeta(y[i,],a2[i],b2[i])))
lln <-sum(log(new*dbeta(y[i,],a1[i],b1[i])
+(1-new)*dbeta(y[i,],a2[i],b2[i])))
uu<-runif(1,0,1)

if(log(uu)<(lln-llo)){p[i]<-new}
}

}

# get mean and variance of five parameters

mean(p[burn+1:length+burn])
mean(a1[burn+1:length+burn])
mean(b1[burn+1:length+burn])
mean(a2[burn+1:length+burn])
mean(b2[burn+1:length+burn])
var(p[burn+1:length+burn])
var(a1[burn+1:length+burn])
var(b1[burn+1:length+burn])
var(a2[burn+1:length+burn])
var(b2[burn+1:length+burn])

# get 95% hpd

hp<-sort(p[burn+1:length+burn])
ha1<-sort(a1[burn+1:length+burn])
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hb1<-sort(b1[burn+1:length+burn])
ha2<-sort(a2[burn+1:length+burn])
hb2<-sort(b2[burn+1:length+burn])

hpd<-matrix(NA,500,3)

for (i in 1:500) {
hpd[i,1]<-hp[i]
hpd[i,2]<-hp[19499+i]
hpd[i,3]<-hpd[i,2]-hpd[i,1]

}
hpd[hpd[,3]==min(hpd[,3]),c(1,2)]

n<-5000 t1<-s\$Q1 k<-length(t1) py<-matrix(0,ncol=k-1, nrow=n)
ps<-matrix(0,ncol=k,nrow=n) pc<-numeric(k) pp<-numeric(n) pa1
<-numeric(n) pb1 <- numeric(n) pa2 <- numeric(n) pb2 <- numeric(n)
i<-150000 pa1[1]<-a1[i] pb1[1]<-b1[i] pa2[1]<-a2[i] pb2[1]<-b2[i]
pp[1]<-p[i]

pa1.theta<-4 pa1.kapa<-1 pb1.theta<-8 pb1.kapa<-1 pa2.theta<-8
pa2.kapa<-1 pb2.theta<-4 pb2.kapa<-1

candsig.py<-.09 candsig.pa1 <- .15 candsig.pb1 <- .15 candsig.pa2<-
.1 candsig.pb2 <- .12 candsig.pp<- .06

for (x in 1: k) { t1<-s$Q1[-x] py[1,]<-y[i,-x]

for(i in 2:n){

# update pyi (j = 1,...,k-1)
for (j in 1:(k-1)){

py[i,j]<-py[i-1,j]
old<-py[i-1,j]
new<-rnorm(1,old,candsig.py)
if ((new>=0) & (new<=1))
{

llo<-log(dbinom(t1[j],m,old))
+ log(pp[i-1]*dbeta(old,pa1[i-1],pb1[i-1])
+(1-pp[i-1])*dbeta(old,pa1[i-1],pb2[i-1]))
lln<-log(dbinom(t1[j],m,new))
+ log(pp[i-1]*dbeta(new,pa1[i-1],pb1[i-1])
+(1-pp[i-1])*dbeta(new,pa1[i-1],pb2[i-1]))

uu<-runif(1,0,1)
if(log(uu)<(lln-llo)){py[i,j]<-new}

}
}

# update for pa1
pa1[i] <- pa1[i-1]
old <- pa1[i-1]
new <- rnorm(1,old,candsig.pa1)
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if (new>0)
{

llo <-sum(log(pp[i-1]*dbeta(py[i,],old,pb1[i-1])
+(1-pp[i-1])*dbeta(py[i,],pa2[i-1],pb2[i-1])))
+ log(dgamma(old,shape=pa1.kapa,scale=pa1.theta))
lln <-sum(log(pp[i-1]*dbeta(py[i,],new,pb1[i-1])
+(1-pp[i-1])*dbeta(py[i,],pa2[i-1],pb2[i-1])))
+ log(dgamma(new,shape=pa1.kapa,scale=pa1.theta))

uu<-runif(1,0,1)
if(log(uu)<(lln-llo)){pa1[i]<-new}

}

# update for pb1
pb1[i] <- pb1[i-1]
old <- pb1[i-1]
new <- rnorm(1,old,candsig.pb1)

if (new>0)
{

llo <-sum(log(pp[i-1]*dbeta(py[i,],pa1[i],old)
+(1-pp[i-1])*dbeta(py[i,],pa2[i-1],pb2[i-1])))
+ log(dgamma(old,shape=pb1.kapa,scale=pb1.theta))

lln <-sum(log(pp[i-1]*dbeta(py[i,],pa1[i],new)
+(1-pp[i-1])*dbeta(py[i,],pa2[i-1],pb2[i-1])))
+ log(dgamma(new,shape=pb1.kapa,scale=pa1.theta))

uu<-runif(1,0,1)
if(log(uu)<(lln-llo)){pb1[i]<-new}

}

# update for pa2
pa2[i] <- pa2[i-1]
old <- pa2[i-1]
new <- rnorm(1,old,candsig.pa1)

if (new>0)
{

llo <-sum(log(pp[i-1]*dbeta(py[i,],pa1[i],pb1[i])
+(1-pp[i-1])*dbeta(py[i,],old,pb2[i-1])))
+ log(dgamma(old,shape=pa2.kapa,scale=pa2.theta))

lln <-sum(log(pp[i-1]*dbeta(py[i,],pa1[i],pb1[i])
+(1-pp[i-1])*dbeta(py[i,],new,pb2[i-1])))
+ log(dgamma(new,shape=pa2.kapa,scale=pa2.theta))

uu<-runif(1,0,1)
if(log(uu)<(lln-llo)){pa2[i]<-new}
}

# update for pb2
pb2[i] <- pb2[i-1]
old <- pb2[i-1]
new <- rnorm(1,old,candsig.pb2)

if (new>0&new<(a2[i]*b1[i]/a1[i]))
{

llo <-sum(log(pp[i-1]*dbeta(py[i,],pa1[i],pb1[i])
+(1-pp[i-1])*dbeta(py[i,],pa2[i],old)))
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+ log(dgamma(old,shape=pb2.kapa,scale=pb2.theta))
lln <-sum(log(pp[i-1]*dbeta(py[i,],pa1[i],pb1[i])
+(1-pp[i-1])*dbeta(py[i,],pa2[i],new)))
+ log(dgamma(new,shape=pb2.kapa,scale=pb2.theta))
uu<-runif(1,0,1)

if(log(uu)<(lln-llo)){pb2[i]<-new}
}

# update for pp
pp[i] <- pp[i-1]
old <- pp[i-1]
new <- rnorm(1,old,candsig.p)

if (new>=0 & new<=1)
{

llo <-sum(log(old*dbeta(py[i,],pa1[i],pb1[i])
+(1-old)*dbeta(py[i,],pa2[i-1],pb2[i])))
lln <-sum(log(new*dbeta(py[i,],pa1[i],pb1[i])
+(1-new)*dbeta(py[i,],pa2[i-1],pb2[i])))
uu<-runif(1,0,1)

if(log(uu)<(lln-llo)){pp[i]<-new}
}

# generate predictive distribution
ps[i,x]<-rbinom(1,15,rbeta(1,pa2[i],pb2[i]))

uu<-runif(1,0,1)
if (pp[i]>uu){ps[i,x]<-rbinom(1,15,rbeta(1,pa1[i],pa2[i]))}

} pc[x]<-length(ps[ps[,x]<=s$Q1[x],x])/n } for( x in 1:190) {
pc[x]<-(length(ps[ps[-1,x]<s$Q1[x],x])-1)/(n-1)

} plot(density(pc),xlab="Percent of predictive values less than
observed value",main="")
dev.copy2eps(file="G:\\project\\final\\bg1.eps")
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