A fluid in contact with a semipermeable surface: Second-order integral equation approach

Douglas Henderson

Pawel Bryk

Stefan Sokolowski

Follow this and additional works at: https://scholarsarchive.byu.edu/facpub

Part of the Biochemistry Commons, and the Chemistry Commons

BYU ScholarsArchive Citation
Henderson, Douglas; Bryk, Pawel; and Sokolowski, Stefan, "A fluid in contact with a semipermeable surface: Second-order integral equation approach" (1997). Faculty Publications. 663.
https://scholarsarchive.byu.edu/facpub/663

This Peer-Reviewed Article is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
A fluid in contact with a semipermeable surface: Second-order integral equation approach

P. Bryk
Department for the Modelling of Physico-Chemical Processes, Faculty of Chemistry, MCS University, 20031 Lublin, Poland

D. Henderson
Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602

S. Sokolowski
Department for the Modelling of Physico-Chemical Processes, Faculty of Chemistry, MCS University, 20031 Lublin, Poland

(Received 3 April 1997; accepted 16 June 1997)

An integral equation approach for a binary hard-sphere mixture interacting with a planar semipermeable wall (membrane) is formulated by using the second-order nonuniform or pair Ornstein–Zernike equation as well as the usual singlet Ornstein–Zernike equation. The results of the pair theory are compared with those obtained from the singlet theory and with computer simulation data. The pair approach is more accurate than the singlet theory. © 1997 American Institute of Physics.
\[\nabla \ln t_i(r_1) = \sum_{n=a,b} \int dr_2 \nabla \rho_n(r_2) c_{in}(r_1, r_2). \]

In the above, \(t_i(r) \) is the one-particle cavity function, \(\rho_i(r) = t_i(r) \gamma_i(r) \), and \(\gamma_i(r) = \exp[-v_i(r)/kT] \) is the Boltzmann factor.

The set of equations (3) and (4) must be supplemented by a closure relation between the nonuniform two-particle functions. We have chosen the Percus–Yevick (PY) approximation, i.e.,

\[h_{ij}(z_1, z_2, R_{12}) = f_{ij}(r_{12}) + 1 \]
\[c_{ij}(z_1, z_2, R_{12}) = f_{ij}(r_{12}) \gamma_{ij}(z_1, z_2, R_{12}), \]

where \(\gamma_{ij}(z_1, z_2, R_{12}) \) stands for the two-particle nonuniform cavity function, \(f_{ij}(r_{12}) = \exp[-\beta u_{ij}(r)] - 1 \) is the Mayer function, and \(R_{12} = \sqrt{(z_1 - z_2)^2 + R_{12}^2} \). Now, Eqs. (3)–(5) called here the PY2 approximation, form a closed set, which can be solved to yield the one- and two-particle correlation functions.

Assuming that the nonuniform direct correlation function in Eq. (4), \(c_{in}(r_1, r_2) \), can be approximated by its counterpart for an uniform mixture, \(c_{in}^0(r_1, r_2) \), having the same chemical potentials of both species as the investigated mixture, Eq. (4) reduces to the singlet HNC1 equation for the density profile:15,16

\[\nabla \ln t_i(r_1)/\rho_i = \sum_{n=a,b} \int dr_2 c_{in}^0(|r_1 - r_2|)[\rho_i(r_2) - \rho_n^0], \]

where \(\rho_n^0 \) are the uniform fluid densities. The PY1 equation for the density profile results from the expansion of the logarithm in Eq. (6) yielding

\[t_i(r_1)/\rho_i = 1 + \sum_{n=a,b} \int dr_2 c_{in}^0(|r_1 - r_2|)[\rho_i(r_2) - \rho_n^0]. \]

Both of these singlet equations, Eqs. (6) and (7), have been used by Zhou and Stell15 to study the behavior of the fluid in contact with a planar semipermeable membrane. The solution of these equations requires the knowledge of the functions \(c_{in}(r) \); they can be easily evaluated using the method described previously.21

The numerical algorithm for the solution of the system (4)–(6) consists of the expansion of the two-particle functions into a Fourier–Bessel series. We omit all the details of the numerical method; they can be found in our earlier publications.2–4 Computer simulations of the system have been carried out in canonical ensemble, as described earlier.22 In order to apply periodic boundary conditions, two semipermeable membranes were set at \(z = -ZL \) (together with its periodic replica at \(z = ZL \)) and at \(z = 0 \). The membranes divide the system into two subparts. In the subpart \(-ZL < z < 0 \) both components are present; the subpart \(0 < z < ZL \) contains only permeable component. The elongation parameter, \(ZL \), of the system must be large enough to assure the existence of “bulk” parts in both subsystems. Obviously, for any finite \(ZL \) we would rather deal with a collection of slits, but our test calculations22 have indicated that accepting \(ZL \approx 20\sigma_a \), the errors in the “bulk” density evaluation from the average density at the slit centre are small. Ensemble averages were accumulated over at least \(10^6 \) configurations after equilibrating from random distributions for \(10^7 \) configurations.

In Fig. 1, a comparison of the theoretically predicted and the simulated total density profiles, \(\rho_a(z) \) and \(\rho_b(z) \), are shown. To make the plots more transparent, only every second local density value, obtained from computer simulations, has been displayed. The calculations have been carried out assuming that both species have the same size [Fig. 1(a)] and for the ratio sizes of nonpermeable and permeable component equal to 1.5 [Fig. 1(b)] and 2.0 [Fig. 1(c)]. The values of total bulk densities, \(\rho^* = \rho_a \sigma_{aa} + \rho_b \sigma_{bb} \), in the region \(z < 0 \) were 0.7133, 0.8190, and 0.6818, respectively. Thus the system with the ratio size 1.5 is the most dense.

Let us discuss some general features that are observed in Fig. 1. The agreement between the profiles of permeable and non-permeable components, predicted by the PY2 theory, and the results of the simulations is good. Only in the nearest vicinity of the wall are slight differences observed; in general, the position of the first minimum and the second maximum of the density profiles are very well reproduced by the theory. Also, the bulk density of the permeable component for \(z > 0 \) agrees almost perfectly with the computer simulation result. For \(z < 0 \), the singlet theories are less accurate than the second-order theory, see especially Fig. 1(b), i.e., the most dense system. The bulk densities for \(z > 0 \), obtained from the singlet theories, are considerably less accurate. The PY1 approximation underestimates, these values, compared with the results of computer simulations. On the other hand, the HNC1 approximations overestimates these values. The singlet theory seems to be better when the size of nonpermeable particles is the same as that of the permeable particles.

Figure 2 shows some examples of the pair distribution functions of the nonpermeable component, evaluated for the size ratio 1 [Fig. 2(a)] and 2 [Fig. 2(b)]. The curves illustrate the correlations between a pair of particles located in the bulk part of the system, located in the plane of the membrane and for a perpendicular configuration of both particles, with one particle lying on the membrane. It can be seen that the location of the subsequent maxima and minima of the pair correlation functions is almost the same. The lateral correlations in the surface plane are slightly weaker, whereas the correlations in the direction perpendicular to the membrane are slightly stronger compared to the correlations in the bulk. For larger interparticle separations, the shape of all three functions is almost the same. Despite the lower bulk density, the differences between the above mentioned three functions are greater when \(\sigma_{aa}/\sigma_{bb} = 2 \) than when \(\sigma_{aa}/\sigma_{bb} = 1 \).

Our calculations indicate that the second-order theory is more accurate in predicting the density distribution of hard-sphere particles near a semipermeable membrane than are the singlet theories. Also, the second-order theory gives insight into the nature of the pair correlation functions. An extension of the theory to the case of semipermeable vesicles can be formulated by using the technique developed by Attard.5
Further, it is of interest to study more sophisticated interparticle forces and, more generally, the case of associating (or chemically reacting fluids). Such investigations are now in progress in our laboratory.

An alternative approach to the study of nonuniform fluids is the density functional approach. It is expected that this approach will be less computer intensive than that used here. The version of Rosenfeld–Kierlik–Rosinberg23,24 seems especially promising. This method is under investigation in our laboratory.

The financial support of the U.S. National Science Foundation (Grant No. CHE96-01971) and the Petroleum Research Fund of the American Chemical Society (Grant No. ACS-PRF-31573-AC9) is acknowledged with thanks. Also P.B. wishes to express gratitude to the KBN of Poland for its financial support of this project. D.H. is a John Simon Guggenheim Memorial Foundation Fellow.