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RECOGNIZING CONSTANT CURVATURE

DISCRETE GROUPS IN DIMENSION 3

J. W. CANNON AND E. L. SWENSON

Abstract. We characterize those discrete groups G which can act properly
discontinuously, isometrically, and cocompactly on hyperbolic 3-space H3 in
terms of the combinatorics of the action of G on its space at infinity. The major
ingredients in the proof are the properties of groups that are negatively curved
(in the large) (that is, Gromov hyperbolic), the combinatorial Riemann map-
ping theorem, and the Sullivan-Tukia theorem on groups which act uniformly
quasiconformally on the 2-sphere.

1. Introduction

Characteristic features of hyperbolic non-Euclidean space Hn are its negative
curvature and its spherical space Sn−1 at infinity. A finitely-generated group G
which acts properly discontinuously, isometrically, and cocompactly on Hn captures
the geometry of Hn and its space Sn−1 at infinity in three interesting ways: (1)
the negative curvature of Hn is realized in the group G as negative curvature (in
the large) of the Cayley graph Γ of G (also known as Gromov word hyperbolicity
[15]); (2) this negative curvature ensures that the combinatorics and asymptotic
behavior of the group are computationally simple as captured by the notion of
automatic group [11]; and (3) the topology of the spherical space at infinity can be
extracted from the asymptotic behavior of the group itself [15].

Our aim is to characterize such groups, at least in dimension 3, in terms of their
combinatorial asymptotic behavior at infinity.

The principal difficulty we address is this: how does one distinguish a group act-
ing on a space of constant negative curvature from one acting on a space of variable
negative curvature? In high dimensions, the groups associated with constant cur-
vature form a proper subclass of those associated with variable negative curvature.
(See, for example, [23] and [16]. Compare with [20] and [29].) In dimension 2 the
two classes coincide. In dimension 3 the two classes may coincide, as required by
Thurston’s as yet unresolved geometrization conjecture [28]. Our hope is that our
result may prove useful in resolving that problem.

We now review the asymptotic features in terms of which we intend to state our
characterization theorem.
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1.1. Cayley graphs. A group G with finite generating set C = C−1 acts properly
discontinuously, isometrically, and cocompactly on its Cayley graph Γ = Γ(G,C).
(See, for example, [5], [6].) The graph Γ forms a combinatorial substitute for Hn.

1.2. Negative curvature in the large, and thin polygons. A metric space is
proper if its closed metric balls are compact. A space X with proper path metric
is negatively curved (in the large) (also known as Gromov hyperbolic [15]) if its
triangles are uniformly thin. That is, there is a non-negative constant δ such that
any point of one side of the triangle lies within δ of one of the other two sides.
Gromov hyperbolic groups are studied, for example, in [1], [2], [4], [6], [10], [15],
[27].

It is an easy exercise to show that if triangles are δ-thin, then n-gons are (n−2)δ-
thin for all n > 3. Trees are negatively curved with thinness constant 0. Hyperbolic
space is negatively curved with thinness constant δ = log(1+

√
2) (see [6]). Negative

curvature of the Cayley graph is an invariant of the group [1], [2], [4], [6], [10], [27] in
the sense that, if it is satisfied for one locally finite Cayley graph of G, it is satisfied,
with possibly different thinness constant, by every other locally finite Cayley graph
of G. Thus a group G is negatively curved if every locally finite Cayley graph of
G is negatively curved. Negative curvature of G captures the behavior in the large
of a classical geometry having (possibly varying) negative curvature.

1.3. The space at infinity. A space X with negatively curved proper path
metric d has a natural space at infinity, denoted ∂X . Points at infinity are
equivalence classes R(∞) of rays R : [0,∞) → X , rays R and S being equivalent
if lim supt→∞ d(R(t), S(t)) <∞ or equivalently if the set {d(S(t), R)} is bounded.
The topology at infinity is defined in terms of (combinatorial) half spaces in
X and (combinatorial) disks at infinity in ∂X . Let R : [a, b] → X be a segment
(possibly infinite) and t ∈ [a, b] a (finite) number. The half-space H(R, t) is defined
by the formula

H(R, t) = {x ∈ X | d(x,R([t, b])) ≤ d(x,R([a, t]))}

and the disk D(R, t) by the formula

D(R, t) = {[R′] ∈ ∂X | lim
r→∞ d(R′(r), X \H(R, t)) = ∞}.

The disks D(R, t) form a basis for a compact metric topology on the set ∂X (see
[27]). The resulting space is homeomorphic with the ones defined by Furstenberg
[13], Floyd [12], Gromov [15], and others. We are, however, particularly interested
in the geometric and combinatorial behavior of the basis of disks D(R, t). In the
classical negatively-curved geometry of Hn, the half-spaces are the standard classi-
cal geometric half-spaces and the disks at infinity are classical standard Euclidean
open (n− 1)-balls in the (n− 1)-sphere Sn−1 at infinity.

1.4. The characterization in outline. Our characterization will have three
features: we require (1) that Γ be negatively curved, (2) that the space ∂Γ be the
2-sphere, and (3) that the disks D(R, t) cover ∂Γ = S2 in a combinatorially nice
way. Our conclusion states that such conditions are necessary and sufficient in
order that a group G act properly discontinuously, isometrically, and cocompactly
on H3. We save the precise definition of condition (3) for Section 2 of the paper.
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The chief technical apparatus for the proof is developed in two papers, [7] and
[27]. The former has appeared in Acta Mathematica, but we include the necessary
proofs from the latter.

We express thanks to a number of people who have contributed directly or in-
directly to this work — Matt Grayson, who helped formulate an early version of
condition (3); M. Gromov, who gave the general definition of negative curvature
for discrete groups [15]; W. Parry and W. Floyd, who helped develop properties
of combinatorial moduli [9]; W. Thurston, C. McMullen, P. Doyle, R. Schwarz,
and O. Schramm, who discussed with us the physical and geometric significance of
condition (3); M. Bestvina, who showed us an important averaging trick; B. Rodin,
K. Stephenson, and A. Beardon, who discussed the relationship with circle pack-
ings and classical complex variables; A. Marden, who extended the hospitality of
the Geometry Center; Ghys, de la Harpe, and others with whom we discussed the
properties of negatively curved groups; D. Sullivan and Tukia, who supplied us with
relevant papers on quasiconformal mappings; and many others.

2. Statement of the main theorem

Our goal is to recognize a cocompact discrete Kleinian group combinatorially.
We are not trying just to approximate this structure, but rather to find the structure
exactly. Our characterization is technical. Therefore we shall spend a fair amount
of time in this exposition motivating the statement of the theorem and explaining
the geometric and combinatorial implications of the theorem. We need to recall
some history:

2.1. History.

Conjecture 2.1.1 [28]. A closed 3-manifold M3 which admits a Riemannian met-
ric of varying negative curvature also admits one of constant negative curvature.

If the conjecture is true, then the universal cover is isometric with hyperbolic
3-space H3, and the fundamental group of M3 acts geometrically on H3 and acts
conformally on the 2-sphere S2 at infinity.

Theorem 2.1.2 ([26] and [30]). In order that a group G act geometrically on H3,
it is necessary and sufficient that G act discretely and uniformly quasiconformally
on the 2-sphere S2.

2.2. Plan. In order to prove that a group acts uniformly quasiconformally on
the 2-sphere S2, we need a candidate action. We find that candidate in Gromov’s
theory [15] of negatively curved groups. (Recall the definitions from Section 1.)
In order that a group act geometrically on H3, it has long been known that the
group must be negatively curved in the sense of Gromov and that its natural space
at infinity must be the 2-sphere. (See, for example, [8].) The beginning point
of our characterization is the assumption that G is a negatively curved
group with a 2-sphere as its space at infinity.

At this point the real difficulties of the paper begin. The space at infinity has
only a topological structure and no obvious preferred smooth structure associated
with the given group action. Gromov [15] has defined a metric at infinity on which
the action is nicely behaved (see [10]), but it is likely that the 2-sphere with this
metric is not smooth and in fact has Hausdorff dimension higher than the desired
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dimension 2. There are examples of semigroup actions on the plane which are uni-
formly quasiconformal in the sense of Gromov’s metric which cannot be realized as
uniformly quasiconformal in any conformal structure on the plane. (See Section 8.)
Furthermore, among all possible topological conjugations of the action yielding a
round 2-sphere as underlying space, we could use Mostow’s rigidity theorem [22]
and the Sullivan-Tukia theorem [26] [30] to show that there is at most one pos-
sible conjugation, up to quasiconformal homeomorphism, which makes the action
uniformly quasiconformal in the classical sense. Among the uncountably many pos-
sible quasiconformal structures on S2, therefore, we are required to find exactly the
right one.

2.2.1. Quasiconformal homeomorphisms. A homeomorphism of a spherical or
planar domain is quasiconformal if, in the small, it distorts roundness a bounded
amount. That is, there is a constant K > 0 such that, if C is a sufficiently small
circle in the domain of the homeomorphism, then the image of C separates an
annulus having circle boundaries of radius r1 and r0 with 1 < r1/r0 < K.

2.2.2. Almost round sets. Thus, in order to characterize a quasiconformal
structure on a topological 2-sphere, it is necessary to decide which subsets of the
2-sphere are, or should be, within bounded distortion of round, or, as we shall say,
which subsets are almost round.

The sets which are almost round with respect to the standard structure on S2

may be defined as follows. Pick some distortion constant K > 0. Let X denote
some subset of the 2-sphere, and let p be a point of X . Define the inner radius r0 of
X with respect to p to be the distance from p to the complement of X . Define the
outer radius r1 of X with respect to p to be the supremum of the distances from p
to the points of X . We say that X is almost round (K) if there is a point p ∈ X
such that (r1/r0) < K.

2.2.3. Our tasks. Our tasks are (1) to pick out, using the combinatorial structure
of the group G alone, subsets of the 2-sphere which are distorted a bounded amount
by the group as measured by some unknown conformal structure on the surface and
should be the class of almost round sets, (2) to show the existence of analytic
coordinates on our topological 2-sphere under which the class of sets in question
does indeed form the class of almost round sets, and (3) to show finally by means of
the given sets that the group acts uniformly quasiconformally. The Sullivan-Tukia
theorem then completes the characterization.

2.2.4. Facing the tasks. We discuss the following questions.

1. How are we to pick out the potentially almost round sets?
2. How should one measure potential roundness of a set in a combinatorial set-

ting?

The combinatorial disks D(R, t) defined in Section 1 will serve as our
potential class of almost round sets. However, it is most unlikely that any
given metric on our space at infinity will both make the space smooth and make
the combinatorial disks round. We shall surely have to change our metric at least
conformally, probably by a general homeomorphism. In view of this necessary
change of coordinates, does it make sense to ask whether an individual set is almost
round? Every individual topological disk is round up to homeomorphism by the
Schoenflies theorem. Its interior is conformally round, by the Riemann mapping
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theorem, if one does not require that the homeomorphism act conformally on the
entire 2-sphere. Thus it would seem that every topological disk should be almost
round. But making one combinatorial disk metrically round may distort another
combinatorial disk. The difficulty involves not individual disks but the whole family
of disks taken together. Can they all together be made compatibly almost round?
Our procedure will be to use the combinatorial disks to measure the roundness of
all sets and to ask whether the information thus obtained is self-compatible.

The potential shape of a ring or annulus R under a conformal mapping
of a spherical or planar domain is measured by a number that is called
its conformal modulus. (See [19].) In electrical theory, these moduli measure
the resistance of the ring R considered as a metallic conducting plate. In geometry,
these moduli can be used to give a measure of the intrinsic roundness of R. These
moduli can be fairly well measured directly without actually finding a conformal
map which takes the rings onto round annuli. We shall act as if the combinatorial
disks were already almost round and defined a combinatorial metric on the 2-sphere.
We shall then change this metric in a combinatorially conformal way and optimize.
The procedure is a combinatorial version of the classical length-area estimates of
classical complex variable theory.

2.2.5. Combinatorial moduli and associated notions. Let C denote a finite
covering of a topological annulus or ring R. Let ρ : C → [0,∞) be an arbitrary
assignment of nonnegative weights to the elements of C. Then the ρ-area Aρ(R)
of R is defined to be the sum of the squares of the weights of the elements of C that
intersect R. If α is an arc in R, then the ρ-length Lρ(α) of α is defined to be the
sum of the weights of the elements of C that intersect α. The ρ-height Hρ(R) of R
is defined to be the minimum ρ-length of a curve in R joining the ends of R. The
ρ-circumference Cρ(R) of R is defined to be the minimum length of simple closed
curves in R which circle the hole in R. We then have the fundamental moduli

M(R, C) = sup
ρ
{Hρ(R)2/Aρ(R) | Aρ(R) 6= 0}

and

m(R, C) = inf
ρ
{Aρ(R)/Cρ(R)2 | Aρ(R) 6= 0}.

A sequence C1, C2, . . . of finite covers of the 2-sphere S2 or of the complex plane C
is said to be conformal if the diameters of the elements go to zero locally uniformly
as the index approaches infinity, and the following conditions are satisfied:

There is a positive number K with the following properties:

1. Approximate moduli are approximately well-defined . That is, for each ring R
in S2 (or C), there is a positive number m, called an approximate modulus
for R, such that, for all n sufficiently large, the two numbers Mn(R) =
M(R, Cn) and mn(R) = m(R, Cn) lie in the interval [m,K ·m].

2. Points are encircled by rings of arbitrarily large approximate modulus. That
is, for each point p ∈ S2 (C), each neighborhood N of p, and each positive
number P , there is a ring R in N separating p from the complement of N
which has an approximate modulus > P .

2.2.6. Standard coverings of ∂Γ by combinatorial disks. Let G be a group
with locally-finite negatively curved Cayley graph Γ. Fix a base vertex O for Γ.
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For each positive integer n, define

D(n) = {D(R, n) | R is a ray in Γ with R(0) = O}.

2.3. Statement of the main theorem.

Main Theorem, Theorem 2.3.1. A group G can act properly discontinuously,
isometrically, and cocompactly on hyperbolic 3-space H3 if and only if G has a
locally finite Cayley graph Γ satisfying

1. Γ is negatively curved;
2. ∂Γ = S2; and
3. the sequence D(1), D(2), D(3), . . . is conformal.

If these conditions are satisfied with respect to one locally-finite Cayley graph and
base vertex O, they are satisfied with respect to all.

Remarks 2.3.2. Theorem 2.3.1 reduces a difficult 3-dimensional problem to a
difficult 2-dimensional problem, namely the estimation of combinatorial moduli.
The 2-dimensional problem has a combinatorial flavor, as we shall see at the end
of Section 3, where we shall prove that the sequence D(1), D(2), . . . is recursively
defined by a subdivision rule. The paper [9] is devoted to the study of the estimation
of combinatorial moduli. That subject is complex and beautiful.

Tukia [30] and Cannon and Cooper [8] have given an earlier 3-dimensional char-
acterization of the groups of Theorem 2.3.1.

Theorem [8]. A finitely generated group G can act properly discontinuously, iso-
metrically, and cocompactly on hyperbolic 3-dimensional space H3 if and only if a
locally-finite Cayley graph Γ for G is quasi-isometric with H3.

The theorem follows from Tukia’s work, though it is not explicitly stated. The
Cannon-Cooper paper has a generalization to finite volume groups which suggests
a generalization of Theorem 2.3.1 to finite volume groups.

The major ingredients in our work have two sources: the combinatorial Riemann
mapping theorem from [7] and fundamental properties of negatively curved groups
and spaces from [27]. Since the material from [27] is not generally available, we
include the necessary proofs here, which fill most of Sections 3 and 4.

3. Negatively curved spaces and groups

Most of this section appears in Swenson’s thesis [27]. We assume that X is a
space with a proper path metric that is negatively curved (see Section 1). We
assume that δ is a thinness constant for X so that n-gons in X are (n− 2)δ-thin.

Such spaces were defined in generality by Gromov [15] and have been studied
extensively. See, for example, [1], [2], [4], [5], [6], [10], [15], [27] and others.

The geometry of negatively curved spaces is startlingly different from the Eu-
clidean geometry with which most of us are familiar.

First of all, the spaces behave very much like trees. If a result seems unusual,
a glance at a tree will usually illustrate the unusual behavior in a concrete set-
ting. Probably the best technique for viewing the negatively curved space as a
tree is embedded in a very insightful result of Gromov termed in [10] “lemma of
approximation”.

Theorem 3.1 [10, Chapter 6, Theorem 1]. Let X be a negatively curved space with
thinness constant δ; let X0 = {x0, x1, . . . , xn} be a collection of n + 1 points of
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X ∪ ∂X and let Y denote a union of segments [x0, xi]. Suppose further that 2n ≤
2k+1. Then there exist a simplicial tree, denoted Tr(Y ), and a continuous function
f : Y → Tr(Y ) with the following two properties:

1. For each i, the restriction of f to [x0, xi] is an isometry onto its image. In
particular, for each point x ∈ Y , the distances d(f(x), f(x0)) and d(x, x0) are
equal.

2. For every x, y ∈ Y , one has d(x, y)− 2kδ ≤ d(f(x), f(y)) ≤ d(x, y).

In other words, the distance relationships among any finite number of points of
X are very well approximated by the distance relationships in some tree Tr(Y ).
We shall not make explicit use of this lemma; but, if the reader will attempt to
construct the appropriate trees associated with each of our lemmas, it will soon
become apparent why the lemma is true or what direction should be pursued in
proving the lemma.

Second, negatively curved spaces are not assumed to have any particularly nice
local behavior, so that one has to get used to ignoring most local information.
Roughly speaking, any behavior at roughly the scale of δ or one of its small multiples
can be ignored without peril.

In summary, any serious theorem-proving must rely on an entire new arsenal of
fundamental facts which the uninitiated reader may find unpalatable since there
are so many of them. In an attempt to aid the digestion, we collect the facts
without interruption for proofs, then give the proofs consecutively at the end of the
section. The facts should be studied and contemplated as a whole, independent
of the proofs, since they come in related families. After one has a feeling for the
nature of these facts, one can either construct proofs or read those given.

Notation. Let x1, . . . , xn ∈ X . Then [x1, . . . , xn] denotes a broken geodesic path
with vertices x1, . . . , xn. That is, [x1, . . . , xn] is the union of segments [x1, x2],
. . . , [xn−1, xn]. The closed polygon with the same vertices, P [x1, . . . , xn], differs
from [x1, . . . , xn] only in the inclusion of a segment joining x1 and xn.

Positive functions of δ. Our assertions involve positive constants which usually
depend only on the thinness constant δ. Exact values for these constants either are
given explicitly in the proofs or can be deduced from the arguments given there.
Statements are more conceptual and proofs are easier if we do not worry about
obtaining the best possible constants.

Fundamental arguments. Let P [x1, . . . , xn] denote an (n − 2)δ-thin n-gon.
The following arguments are used again and again:

Distance-from-projection. If d(xn, x1) = d(xn, [x1, x2]), then x1 lies within
2(n− 2)δ of the broken geodesic, [x2, . . . , xn].

Proof. If d(xn, x1) ≤ (n−2)δ, we are done. Otherwise, let x ∈ [xn, x1] be at distance
(n − 2)δ from x1. Points y 6= x near to x in [xn, x1] are at distance ≤ (n − 2)δ of
[x2, . . . , xn] since P [x1, . . . , xn] is (n− 2)δ-thin and y is not within (n− 2)δ of
[x1, x2]. By continuity, x is within (n− 2)δ of [x2, . . . , xn]. Hence

d(x1, [x2, . . . , xn]) ≤ d(x1, x) + d(x, [x2, . . . , xn]) ≤ 2(n− 2)δ.

Connectedness. If [a, b] ⊂ [xn, x1] and a and b are within (n − 2)δ of different
sides of [x1, . . . , xn], then some point x ∈ [a, b] is within (n− 2)δ of two sides of
[x1, . . . , xn].
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Proof. Let Ki denote the closed subset of [a, b] consisting of those points within
(n− 2)δ of [xi, xi+1], i = 1, . . . , n− 1. These sets cover the connected set [a, b]; at
least two are nonempty; hence at least two intersect.

Distance-to-projection. Suppose P [x1, . . . , xn] is a closed polygon with x1 a
projection of xn on [x1, x2]. If x ∈ [x1, x2] is within N of [xn, x1], then d(x, x1) ≤
2N . If in addition x2 is a projection of x3 on [x1, x2], and if d(x, [x2, x3]) ≤ N ,
then d(x1, x2) ≤ 4N .

Proof. Clear.

Definitions.

3.2. A interval R in X is an isometric embedding of a connected subset of the
real line R into X . We use the symbol R both for the function and for its image.
We are particularly interested in rays, which have [0,∞) as domain of definition;
segments [x, y], which have a finite closed interval as domain with x and y as
image endpoints; and lines, which have the entire real line R as domain. With
segments there is some ambiguity in the notation since geodesics joining two points
need not be unique; we therefore adopt the convention that, if x and y are already
on an interval, then [x, y] is the obvious subpath of that interval; otherwise the
choice of the path [x, y] will be immaterial.

3.3. Since closed metric balls in X are compact (the metric is assumed proper), if
C is any nonempty closed subset of X and x is any point of X , then there is at least
one point of C that is as close to x as any other. We call such a point a nearest
point projection of x in C. If we want to be more formal, or if we want to
consider the entire set of nearest points, we may define π(x,C) to be the compact,
nonempty set of nearest point projections of x in C. Half-spaces H(R, n), which
we defined in Section 1, may be defined in terms of nearest point projection:

H(R, n) = {x ∈ X | d(x,R([n,∞)) ≤ d(x,R([0, n]))}
= {x ∈ X | π(x,R) ∩R([n,∞)) 6= ∅}.

It is convenient to have the notation Hc(R, n) for the complement of H(R, n) in
X .

Facts and intuitions.

Projections, segments, and rays.

3.4. (Set K = 4δ:) Nearest point projection is almost unique. For geodesics R and
points x ∈ X, the sets π(x,R) have diameter less than K.

3.5. (∀K1 > 0 set K2 = K1 + 2δ :) Two segments whose endpoints are less than
K1 apart (in pairs) are everywhere less than K2 apart.

3.6. (∃K1 = 8δ, ∃K2 = 24δ:) For intervals R and points x and y having nearest
point projections x′ and y′ into R with d(x′, y′) ≥ K1, geodesics from x to y roughly
follow, in turn, the three segments [x, x′], [x′, y′], and [y′, y]. In particular the
distance from x to y is within K2 of the sum of the three segment lengths.
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3.7. (∀K1 > 4δ ∃K2 = K2(K1, δ):) Two intervals, which anywhere approach one
another closely, viewed together form roughly the capital letter I That is, if two
intervals approach one another at some point within K1, then the two intervals
converge on one another linearly from the four ends (forming the flange ends of the
letter I) until they are within K1, and then they have subarcs which are uniformly
within K2 (forming the central arm of the letter I).

3.8. (Set K = 2δ:) Geodesic rays which are equivalent are not only asymptotically
a finite distance apart but asymptotically within K of one another, not as functions
but as sets.

3.9. (Set K = 6δ:) Equivalent rays R and S have strongly correlated parametriza-
tions. That is, there are positive numbers r and s such that, for all positive numbers
t, d(R(r + t), S(s + t)) ≤ K.

3.10. Given any sequence g1, g2, . . . of intervals all of which hit some compact set
K, there is a subsequence which converges uniformly on compact subintervals to a
interval R with `(R) = lim sup `(gi). Moreover, if lim sup d(K, endpoint-set(gi)) =
∞ then R is a line, where of course d(K, endpoint-set(gi)) = ∞ when gi has no
endpoints.

3.11. (∀K > 0 sufficiently large:) Inequivalent rays, R and S may have finite
subintervals on which they are within K of one another, but thereafter they diverge
metrically essentially as rapidly as their isometric parametrizations allow.

3.12. Given a ray R and a base point O in X, there is a ray S equivalent to R
which has initial point O.

3.13. Given two points at infinity, there is a line L joining those two points. That
is, L|[0,∞) is a ray representing one of those two points; L|(−∞, 0] represents the
other.

Half-spaces.

3.14. (Set K1 = 4δ, K2 = 2δ:) A half-space has a single entrance-exit. That is,
if H(R, n) is a half-space, x and y are points of X having nearest-point projections
x′ and y′ on R with d(x′, R(n)) ≥ K1 and d(y′, R(n)) ≥ K1, x

′ and y′ on opposite
sides of R(n) in R, then the segment [x, y] intersects the metric ball B(R(n), K2).

3.15. (Set K = 4δ:) Deep geodesic penetration (m ≥ 2K) into a half-space
H(R, n+m) from outside H(R, n) must proceed along a long narrow entrance cor-
ridor defined as a uniform K-neighborhood of the segment R([n+K,n+m−K]).

3.16. (∃K = K(δ) > 0:) If H(R, r) and H(R, r + t) are concentric half-spaces,
then the distance from H(R, r + t) to the complement Hc(R, r) is within K of t.

3.17. (∃K = K(δ) > 0:) Geodesics whose endpoints lie outside a half-space
H(R, n) can only penetrate into H(R, n+m) if m < K.

Definition. A set S is almost-convex(K) if any segment joining points of S is
contained in the K neighborhood of S.

3.18. Half-spaces and their complements are uniformly almost-convex(2δ).

3.19. (∃K = K(δ) > 0:) Half-spaces on inequivalent rays can be chosen disjoint.
What is required in order that H(R, r) and H(S, s) be disjoint is that R(r) be further
than K both from S and from a segment T joining R(0) to S(0), and, similarly,
that S(s) be sufficiently far from R and T .
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3.20. (∃K1 = 6δ, ∃K2 = K2(δ) > 0:) Half-spaces on equivalent rays nest uni-
formly. That is, if R and S are equivalent rays, and if, for all large n, R(r+n) and
S(s+n) are at distance ≤ K1, then, for all k ≥ K2, H(R, r+n+k) ⊂ H(S, s+n).

3.21. (Set K = 4δ:) Half-spaces H(R, r) are locally defined. That is, the half-space
H(R, r) is determined by a K-neighborhood of R(r) in R.

3.22. (Set K = 5δ:) Suppose R(0) = S(0) and suppose H(R, r) ∩ H(S, s) 6= ∅.
Then either R([r,∞)) has a point within K of S or S([s,∞)) has a point within K
of R.

3.23. (Set K = 16δ:) Suppose R and S are rays with R(0) = S(0) = O. If
S(∞) /∈ D(R, n), then

H(R, n+K) ∩H(S, n+K) = ∅.
Consequently, D(R, n+K) ∩D(S, n +K) = ∅.
Disks and shingles at infinity. We conjecture that, if ∂X is a 2-sphere, then the
combinatorial disks D(R, n) at infinity are in fact topological open disks. We do not
know how to prove our conjecture. On the other hand, the combinatorial Riemann
mapping theorem [7] which we wish to apply uses coverings of S2 by compact
connected sets, termed shingles. We thus cannot directly apply the coveringsD(n),
whose elements are, by construction, open rather than closed and may, conceivably,
be disconnected. Our next facts deal with that problem by passing from covers by
combinatorial disks to covers by shingles.

3.24. (∃K = K(δ) > 0:) Suppose R and S are rays and S(∞) /∈ D(R, n). Then
asymptotically S lies within K of Hc(R, n).

3.25. (Set K = 12δ:) Suppose that R and S are rays with R(0) = O = S(0). If
d(R(t), S(t)) > K, then H(R, t)∩H(S, t) = ∅. In particular, D(R, t)∩D(S, t) = ∅.
3.26. (∃K = K(δ) > 0:) If m > K, then the closure of D(R, n + m) lies in
D(R, n). Hence we can replace the open set D(R, n + m) by its closure without
expanding the size too much.

3.27. Suppose ∂Γ is locally connected for Γ, the locally finite Cayley graph of a
negatively curved group G. Then there exists a number m > 4δ, such that, for all
segments R : [−4δ,m] → Γ, there exists a component C of D(R, 0) such that for all
segments R′ : [−4δ, 4δ +m] → Γ extending R, D(R′,m) ⊂ C.

3.28. In the setting of (3.27) disks may be expanded to shingles in a canonical way
without increasing size too much. Simply replace the disk D(R, n) with the shingle
S(R, n, n−m) which is the closure of the component of D(R, n−m) which contains
D(R, n). By (3.27), the procedure makes sense. By (3.26), it increases the size a
controlled amount.

Finiteness and recursive properties of half-spaces, combinatorial disks,
and shinglings. We now restrict our attention to the case where X = Γ, where Γ
is a locally-finite Cayley graph for a negatively curved group G, and ∂Γ is locally
connected. We also restrict ourselves to rays R : [0,∞) → Γ with initial point R(0)
at some fixed vertex O, and to parameters n and m that are positive integers with
m < n. We then have the natural collections,

H(n) = {H(R, n)}, the combinatorial half-spaces;
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D(n) = {D(R, n)}, the combinatorial disks; and

S(n,m) = {S(R, n, n−m)}, the combinatorial shingles.

Recall that S(R, n, n−m) is the closure of the component of D(R, n−m) containing
R(∞); for m sufficiently large, S(R, n, n−m) contains D(R, n) by (3.27). See also
(3.26).

With these special assumptions and restrictions, the three collections are very
well-behaved, as the following facts demonstrate.

3.29. If, for the purpose of this proposition only, we let the base point O vary, then,
as the group G acts on the graph Γ, it also acts on the sets of all combinatorial
half-spaces, all combinatorial disks, and all shingles (of fixed parameter m). In all
three cases the action has only finitely many orbits.

3.30. With fixed base vertex O, the sequences H(n), D(n), and S(n, n−m) can be
defined by a finite recursion which may be interpreted as a subdivision rule. Since
our main theorem is stated in terms of the sequence D(n), n = 1, 2, . . . , it follows
that the constant curvature of a group G is dependent on the properties of this
subdivision rule on the 2-sphere.

Proofs.

Proof of 3.4. Construct the following diagram.

Figure 3.4

Let x′ and x′′ be nearest point projections from x to R. By the standard argu-
ment of connectedness some point y of [x′, x′′] lies within δ of y′ ∈ [x, x′] and of
y′′ ∈ [x, x′′]. By the standard argument of distance-to-projections, d(x′, x′′) ≤ K =
4δ.

Proof of 3.5. Construct the following diagram.

x y

1

y'

1 z

x'
z'

. .

...
.≤ Κ ≤ Κ

≤ 2δ

Figure 3.5
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Suppose d(x, x′), d(y, y′) ≤ K1. Let z′ ∈ [x′, y′]. Then z′ is within 2δ of z ∈
[y′, y, x, x′], hence within K2 = K1 + 2δ of [x, y].

Proof of 3.6. Construct the following diagram.

x y

y'x'

x''' y'''

m'

m

.
.

. .
.

.

.

.
≤ 2δ≤ 6δ

≤ 6δ

R

Figure 3.6

We set K1 = 8δ. If d(x′, y′) > K1, then the midpoint m of [x′, y′] lies at distance
> 4δ from x′ and y′. Hence, by distance-to-projection, m lies at distance > 2δ from
[x, x′] and from [y, y′], and consequently m lies ≤ 2δ from m′ ∈ [x, y]. By distance-
from-projection, x′ lies within 4δ of x′′ in [x,m′,m], hence within 6δ of x′′′ in [x,m′].
Similarly, y′ lies within 6δ of y′′′ in [y,m′]. By (3.5), [x, x′′′] is everywhere within
8δ of [x, x′], [x′′′, y′′′] is everywhere within 8δ of [x′, y′], and [y′′′, y] is everywhere
within 8δ of [y′, y]. Also, by the triangle inequality,

|d(x, y)− [d(x, x′) + d(x′, y′) + d(y′, y)]| ≤ 4 · (6δ).

Proof of 3.7. Construct the following diagram.

y

y''

y'

zz

z' z'

x

x'

x''

1

1

2

1

2

1

.
.

. .

.
.

.

.

.

.

.

.

≤ 2δ ≤ 2δ
≤ Κ ≤ Κ

Figure 3.7
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Fix K1 > 4δ. Let z1 be the first point of [x, y] within K1 of [x′, y′], z2 the last,
say d(z1, z

′
1) ≤ K1, d(z2, z

′
2) ≤ K1. By connectedness there is a point x′′ of [x, x′]

within 2δ of each of two sides of [x, z1, z
′
1, x

′]. Since z1 is the first point of [x, y]
within K1 of [x′, y′], x′′ cannot be within 2δ of both [x, z1] and [x′, z′1]. Hence x′′

is within 2δ of [z1, z
′
1]. Similarly, y′′ is within 2δ of [z2, z

′
2]. From (3.5) we conclude

that [x, z1] is near [x, x′′], [x′, z′1] is near [x′, x′′], [z1, z2] is near [z′1, z
′
2], [y, z2] is near

[y, y′′], [y′, z′2] is near [y′, y′′].

Proof of 3.8. Construct the following diagram.

.
.

.
.

.

.

R(0)
R

r´
r

≤ N

s

S
s´

S(0)

≤ N

R(∞)

S(∞)

Figure 3.8

Suppose rays R and S are asymptotically within N . Suppose d(R(0), S(0)) ≤ N
as well. Then let r′ in R be at distance > N + 2δ from R(0). Pick r ∈ [r′,∞) ⊂ R
at distance > N + 2δ from r′ such that d(r, S) ≤ N , say d(r, s) ≤ N . Then, in the
thin quadrilateral P [R(0), r, s, S(0)], r′ must be within 2δ of s′ ∈ [r, s, S(0), R(0)].
But r′ cannot be within 2δ of [R(0), S(0)] ∪ [r, s]. Hence s′ ∈ S. We conclude that
R is asymptotically within K = 2δ of S.

Proof of 3.9. Construct the following diagram.

•

•

•

• •

••

R(0)

S(0)

S(s)

R(r) t

t S(s+t)

R(r+t)

S(s´)

≤ 2δ ≤ 2δ

Figure 3.9

Let R and S be equivalent rays. By (3.8) there exist points r, s ∈ [0,∞) with
d(R(r), S(s)) ≤ 2δ such that for all r′ > r and s′ > s we have d(R(r′), S) ≤ 2δ
and d(R,S(s′)) ≤ 2δ. For all large values of t, R(r + t) is within 2δ of some S(s′).
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Comparing [S(s), S(s′)] with [R(r), R(r + t)], we find that d(S(s), S(s′)) is within
4δ of t. Therefore d(S(s + t), S(s′)) ≤ 4δ and d(R(r + t), S(s+ t)) ≤ 6δ.

Proof of 3.10. We first prove that if gi = [xi, yi] where xi → x and yi → y, then
some subsequence of the sequence of segments gi converges to a segment [x, y] from
x to y. Parametrize the segments using constant speed such that gi(0) = xi and
gi(1) = yi. Let r1, r2, . . . denote an enumeration of the rational numbers in [0, 1].
Let G denote the sequence of segments. Let G1 be a subsequence which omits g1
such that the elements of G1 converge on r1. Let G2 denote a subsequence of G1

which omits g2 such that the elements of G2 converge on r2. Define subsequences
Gi for i > 2 similarly. Let hi denote the first element of the subsequence Gi, and
let H be the sequence of hi. Then clearly the sequence H converges on r1, r2, . . . .
Since each element of H is a segment, convergence is uniform and H converges on
each number in [0, 1]. It is now easy to see that the limit is a segment from x to y.

We now consider the general case. Taking a subsequence if need be, we may
assume that lim `(gi) = lim sup `(gi). For each i let xi ∈ gi ∩ K. Taking a
subsequence if needed, we may assume that xi → x ∈ K. Let C = {intervals
S : x ∈ S, with some subsequence of subintervals of (gi) converging to S}. Al-
lowing the degenerate interval [x], we see that C 6= ∅. Since a nested union of
intervals is a interval, by Zorn’s Lemma, there is a maximal element R of C. If
lim `(gi)− `(R) > 0, then by taking a subsequence there is a convergent sequence of
yi ∈ gi with yi → y 6∈ R. Using the result in the first paragraph, we can extend R
to include y, contradicting the maximality of R, so that lim `(gi) = `(R). Similarly
if lim sup d(K, endpoint-set(gi)) = ∞, then R cannot have an endpoint, and so is a
line.

Proof of 3.11. Let K = max{4δ, d(R(0), S(0))}. If the set of positive numbers t for
which d(R(t), S) ≤ K were unbounded, then by (3.5) every point of R would lie
within some bounded distance of S, and so S and R would be equivalent. Since
they are not, there is a last point r ∈ R with d(S, r) ≤ K. Similarly there is a last
s ∈ S with d(s,R) ≤ K. Now apply (3.7).

Proof of 3.12. Construct the following diagram.

R(0) R(∞)

S jSi

•0

. . .

Figure 3.12

Let Si denote a segment [O, R(i)]. By (3.10), there is a subsequence of the
sequence S1, S2, . . . which converges to a ray S which will have O as its endpoint.
Applying (3.5) to R and Si shows that every point of S lies within some bounded
distance of R, and so S and R are equivalent.
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Proof of 3.13. Given two points at infinity, we may assume them represented by
rays R and S such that R(0) = S(0) = O, by (3.12). Since R(∞) 6= S(∞), by
(3.11) all the points of R within 2δ of S lie in a compact neighborhood C of O. Let
Ti = [R(i), S(i)]. By connectedness, some point ti of Ti lies within δ of both R and
S, hence in a δ-neighborhood of C. By (3.10), some subsequence of the segments Ti
converges to a line T . Since every point of Ti is within δ of R∪ S, the same is true
of T and we may parametrize T so that the negative end of T is a ray representing
R(∞), while the positive end of T represents S(∞).

Proof of 3.14. The argument is that of (3.6). Just as m in that proof was within
2δ of [x, y], so also, in this proof, R(n) is within 2δ of [x, y].

Proof of 3.15. Let L be a geodesic which penetrates H(R, n + m) from Hc(R, n).
Use (3.14) to show B(R(n+K), 2δ)∩L 6= ∅ and B(R(n+m−K), 2δ)∩L 6= ∅. Apply
(3.5) to the subinterval of L from B(R(n +K), 2δ) to B(R(n+m−K), 2δ).

Proof of 3.16. Choose K1, K2 as in (3.6), and set K = max{K1, K2}. If t ≤ K
there is nothing to prove, so we may assume t > K. Let x ∈ Hc(R, n) and
y ∈ H(R, n + t). Applying (3.6) to [x, y] yields d(x, y) ≥ t − K2 ≥ t − K, which
proves (3.16)

Proof of 3.17. This is an easy consequence of (3.15).

Proof of 3.18. Construct the following diagram.

Figure 3.18

Let x and y in H(R, n) have projections x′, y′ ∈ R([n,∞)). Every point z ∈ [x, y]
lies within 2δ of the union

[x, x′] ∪ [x′, y′] ∪ [y′, y] ⊂ H(R, n).

Similarly, Hc(R, n) is almost convex.
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Proof of 3.19. Construct the following diagram.

x' x
x''

R(r)• •S(s)

R(0) S(0)

x'''

r'

s'≤ 4δ ≤ 4δ

Figure 3.19

Let x ∈ H(R, r) ∩ H(S, s). Let x′, x′′, x′′′ be nearest point projections into
R, S, and T , respectively. Let r′ and s′ be nearest point projections of x′ and
x′′ into [x, x′′′]. We assume r and s so large that d(x′, T ) and d(x′′, T ) are > 4δ.
By distance-from-projection applied to P [x′, R(0), x′′′, x] and P [x′′, S(0), x′′′, x],
d(x′, r′) and d(x′′, s′) are ≤ 4δ. We may assume that r′ lies above s′ on [x, x′′′].
Then r′ is within 2δ of [x′′′, S(0), x′′, s′]. Consequently x′ is within 4δ+2δ+4δ = 10δ
of [x′′′, S(0), x′′].

Proof of 3.20. By (3.9) we reparametrizeR and S so that, for all t ≥ 0, d(R(t), S(t))
≤ K1. TakeK as in (3.16) and let M = K1+K. Fix s > M . Since d(R(0), Hc(S, 0))
≤ K1, by (3.16) R(0) ∈ Hc(S, s). Construct Figure 3.20.

Let x ∈ Hc(S, s), and let R(r) be a projection of x into R. By distance-from-
projection applied to P [R(0), x, R(r)], d(R(r), [R(0), x]) ≤ 2δ. By (3.18) every
point of [R(0), x] is within 2δ of Hc(S, s), and so d(R(r), Hc(S, s)) ≤ 4δ. Using
(3.16), R(r) 6∈ H(S, s′) for s′ > s+ 4δ +K. Since d(R(t), H(S, t)) ≤ K1, by (3.16)
R(t) ∈ H(S, s′) for all t ≥ s′+M . It follow that r < s′+M . Thus x 6∈ H(R, s+K2)
for K2 > M+4δ+K. This implies H(R, s+K2) ⊂ H(S, s). The result follows.

Proof of 3.21. We show that if R and S are intervals that agree on [−4δ, 4δ], then
H(R, 0) = H(S, 0). Construct Figure 3.21.

We identify the common image of [−4δ, 4δ] with the interval [−4δ, 4δ] of real
numbers. We take x ∈ H(S, 0) and prove x ∈ H(R, 0). Suppose on the contrary
that x /∈ H(R, 0). Let r be a projection of x in R, s a projection of x in S,
r ∈ R((−∞, 0)), s ∈ S([0,∞)).

If r ∈ [−4δ, 0) or if s ∈ [0, 4δ], then [r, s] lies in S or in R, respectively, so that
[r, s] is an edge of a triangle P [x, r, s]. Some point of [r, s] lies by connectedness
within δ of each of [x, r] and [x, s] so that, by distance-to-projection, d(r, s) ≤ 4δ.
Hence both r and s lie in [−4δ, 4δ]. Thus d(x, r) = d(x, s), so that s is a projection
of x on R. Hence x ∈ H(R, 0).
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R(∞)=S(∞)

.

.

R(0) S(0)
≤K

R(r)

S(s)

S(s')

1

x

H(S,s)

H(S,s')

Figure 3.20

x

R S

r s-4δ 0 4δ
•••

Figure 3.21

If neither r nor s lies in [−4δ, 4δ], then consider the quadrilateral P [r, 4δ, s, x].
Since d(0, [4δ, s]) = 4δ, by thin quadrilaterals 0 lies within 2δ of [x, r] ∪ [x, s]. With
no loss of generality d(0, [x, s]) ≤ 2δ. By distance-to-projection d(0, s) ≤ 4δ, which
is a contradiction.
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Proof of 3.22. Construct the following diagram.

.

.
. . .

.

R(0) = S(0)

R S

x' x''

x

y''

y'

.≤ 2δ

≤ δ

≤ δ

≤ 2δ

z

z

Figure 3.22

Let x ∈ H(R, r) ∩H(S, s) have projections x′ ∈ R([r,∞)) and x′′ ∈ S([s,∞)).
Then x′ is within 2δ of a point y′ ∈ [R(0), x] and x′′ is within 2δ of a point
y′′ ∈ [R(0), x]. We may assume y′′ ∈ [x, y′]. Then y′ lies within δ of z ∈ [x′′, y′′] ∪
[S(0), x′′]. We conclude that d(x′, S) ≤ d(x′, y′) + d(y′, z) + d(z, S) ≤ 2δ + δ + 2δ
= 5δ.

Proof of 3.23. Suppose to the contrary that there exists a point x ∈ H(R, n+K)∩
H(S, n+K). Construct Figure 3.23.

Points x′ and x′′ are nearest point projections of x in R and S, respectively. The
point y is a point of S far beyond x′′ that is near a point y′ of Hc(R, n). Since
S(∞) /∈ D(R, n), we may choose y as near S(∞) as we wish and yet keep d(y, y′)
bounded by some uniform constant L. Point y′′ is a nearest point projection of y′

in R, necessarily in R([0, n)).
We examine the hexagon P [x′, y′′, y′, y, x′′, x]. By distance-from-projection, y′′ is

within 8δ of a point z of either [y′, y], [y, x′′], [x′′, x], or [x, x′]. We shall show that
z cannot be in any of these sets, a contradiction.

If z ∈ [y′, y], then d(y′′, y) ≤ 8δ+L, a contradiction provided that y is sufficiently
near S(∞).

If z ∈ [y, x′′], then d(S(0), z) ≤ n+ 8δ, a contradiction.
If z ∈ [x′′, x], then [x′′, x] ⊂ H(S, n + 16δ) is within n + 8δ of S(0); but

d(S(0), H(S, n + 16δ)) ≥ n + 14δ by the argument for (3.6), a contradiction. The
case with z ∈ [x, x′] is similar but with R instead of S.
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Figure 3.23

Proof of 3.24. Construct Figure 3.24.
There exists a positive number L such that

lim inf
t→∞ d(S(t), Hc(R, n)) < L.

Pick one point t0 such that d(S(t0), H
c(R, n)) ≤ L and let t1 be very large, such

that d(S(t1), H
c(R, n)) ≤ L. Choose u0 ∈ Hc(R, n) with d(u0, S(t0)) ≤ L, and

u1 ∈ Hc(R, n) with d(u1, S(t1)) ≤ L. Except for points near S(t0) and S(t1), by
thin quadrilaterals S(t) must lie within 2δ of [u0, u1], which in turn must lie within
2δ of Hc(R, n) by (3.18). We conclude that S lies asymptotically within 4δ of
Hc(R, n).

Proof of 3.25. Suppose there exists an x ∈ H(R, t)∩H(S, t), and construct Figure
3.25.

The points x′ and x′′ are nearest point projections of x into R and S, x′ ∈
R([t,∞)), x′′ ∈ S([t,∞)). The points y′ and y′′ are nearest point projections of x′

and x′′ into [O, x], O = R(0) = S(0). We may choose notation so that y′ ∈ [O, y′′].
By the argument of (3.22), x′ is within 5δ of some z′ ∈ [O, x′′].
In the (thin) triangle P [O, x′, z′], R(t) is within δ + 5δ = 6δ of [O, z′]. Since

both S(t) and R(t) are on the same sphere about O, and since d(R(t), S) ≤ 6δ, it
follows that d(R(t), S(t)) ≤ 2(6δ) = 12δ, a contradiction.

Proof of 3.26. Set K = 16δ. Suppose S is a ray with S(0) = R(0) and S(∞) /∈
D(R, n). By (3.23), D(R, n+K)∩D(S, n+K) = ∅. In particular, S(∞) is not an
element of the closure of D(R, n+K). That is, the closure lies in D(R, n).
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.

.
.

R(n)

R(∞)

S(∞)

S(t  )0

S(t  )1

u0.
. 1u

≤ L

≤ 2δ

≤ L

.
.

Figure 3.24

Figure 3.25
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Proof of 3.27. Suppose the contrary. Then for each integer m > 4δ there ex-
ists geodesics Rm and R̂m with Rm

∣∣
[−4δ,m]

= R̂m

∣∣
[−4δ,m]

such that D(Rm,m) and

D(R̂m,m) do not lie in the same component of D(Rm, 0) (which is D(R̂m, 0) by
(3.21)).

We observe that, translating by G, we may assume Rm(0) = Ri(0) for each

m, i > 4δ. Also, by virtue of (3.21), the pair Rm, R̂m could be used in place of the

pair Ri, R̂i for any 4δ < i ≤ m.
Using these two observations and passing to a subsequence if necessary, we may

assume by (3.10) that there is a ray R : [−4δ,∞) → Γ such that Rm

∣∣
[−4δ,m]

=

R
∣∣
[−4δ,m]

for each m. The component C of D(R, 0) containing R(∞) is open

(by local connectivity); hence for some N � 0, D(R,N) ⊂ C since the disks
D(R, n) form a neighborhood basis at R(∞). For all m ≥ N + 4δ, D(R,N) =

D(Rm, N) = D(R̂m, N) by (3.21). Clearly D(Rm,m) ⊂ D(Rm, N) ⊂ C and

D(R̂m,m) ⊂ D(R̂m, N) ⊂ C. This contradicts the choice of Rm and R̂m.

Proof of 3.28. The proof was indicated in the statement. It followed from (3.26)
and (3.27).

Proof of 3.29. By (3.21), half-spaces, hence combinatorial disks, are determined
by relatively short subsegments of rays, which we may take to have vertices of Γ
as endpoints. There are only finitely many combinatorial types of such segments.
Moreover by (3.27) we see that the same is true of combinatorial shingles. Result
(3.29) follows immediately.

Proof of 3.30. We shall construct a multi-valued function from our collections into
a finite parameter space involving two parameters. The subdivision rule will be
seen to reside essentially in this finite parameter space.

The first parameter is a geodesic word in the Cayley graph Γ of fixed length m′,
where m′ is chosen as follows. By (3.27), there is an integer m so large that, if
R : [−4δ, 4δ + m] → Γ is a segment, then D(R,m) lies in a single component of
D(R, 0). We may assume that δ is a positive integer and set m′ = 8δ + m. Notice
that there are only finitely many geodesic words of length m′.

For our second parameter , we choose the cone-type of a vertex of Γ. Recall that
cone-type was introduced in [5] as follows. The cone C(x,O) at a vertex x ∈ Γ
relative to the base vertex O ∈ Γ is the union of all points x′ ∈ Γ that can be
joined to O by a segment which passes through x. That is, C(x,O) is the shadow
of x in Γ cast by a light placed at O. Two vertices x, y ∈ Γ are said to have the
same cone-type if left multiplication yx−1 : Γ → Γ takes C(x,O) isomorphically to
C(y,O). By [5] or [6], a negatively-curved group has only finitely many cone-types.

Now let R : [0,∞) → Γ denote a ray with R(0) = O. Let n be an integer
> m+ 4δ. How do we parametrize H(R, n), D(R, n), and S(R, n, n−m)? For the
geodesic-word parameter W we take the group label on the segment

R|[n− (m + 4δ), n+ 4δ].

For the cone-type parameter C we take the cone-type of the terminal point
R(n+4δ) of the segment. A given H(R, n) (or D(R, n) or S(R, n, n−m)) may arise
from infinitely many different rays R, but only from finitely many parametrizations
(W,C).
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How is subdivision defined? Let e denote an edge beginning at R(n+ 4δ) which
lies in some extension R′ of R|[0, n + 4δ] to a ray. The finitely many labels which
will occur on such edges e are completely determined by the cone-type C. Let
W ′ denote the geodesic word formed from W by deleting the first letter of W and
adjoining the label of e. Let C′ denote the cone type of the terminal endpoint
of e. Then the parametrization corresponding to H(R′, n + 1), D(R′, n + 1), and
S(R′, n + 1, n + 1 −m) is (W ′, C′). That is, sets with parametrization (W,C) at
depth n all lead to sets at depth n + 1 with parametrizations of the finitely many
types (W ′, C′) associated with (W,C). The proof is complete.

4. Constant-curvature groups have conformal disk sequences

We prove in this section one half of the main theorem. To that end, we assume
that G is a group with a locally finite Cayley graph Γ quasi-isometric with hyper-
bolic 3-space H3. (It follows from Tukia [30], or as a special case of Cannon-Cooper
[8], that G acts isometrically, properly discontinuously, and cocompactly on H3,
but we shall not make use of that fact. This paper will, in the end, supply an-
other (difficult) proof of that fact.) Consequently, G is negatively curved and has
∂G = S2. We fix a base vertex O for Γ and recall the combinatorial disk cover of
∂G = S2 defined by

D(n) = {D(R, n) | R(0) = O}.
Our goal in this section is to show that the sequence D(1), D(2), . . . of disk covers
is conformal in the sense of 2.2.5 of Section 2.

4.1. Theorem. If Γ is quasi-isometric with H3, then the sequence D(1), D(2), . . .
of combinatorial disk covers of S2 = ∂Γ is conformal.

The proof will appear in Subsection 4.3, after preparation.

4.2. Almost-round covers by pairs. A pair (D,D′) of subsets, D ⊃ D′, of S2

is said to be almost-round (K) if there exist p ∈ D′ and r ≥ r′ > 0, r/r′ ≤ K, such
that the r′-neighborhood N(p, r′) of p in S2 lies in D′ while D ⊂ N(p, r). A finite
collection of pairs (D1, D

′
1), . . . , (Dk, D

′
k) in S2 is said to be a pair-cover of S2, if

the larger sets D1, . . . , Dk cover S2 while the smaller sets D′1, . . . , D
′
k are pairwise

disjoint. If each of the pairs (Di, D
′
i) is almost-round (K), then the cover is called

almost round. In application, the sets Di and D′i will be disks or combinatorial
disks.

There is a hyperbolically natural way to obtain almost round sets. Consider S2

as the space at infinity for hyperbolic 3-space H3. Use the Poincaré disk model for
H3. Consider rays R in H3 with initial point at the origin. The combinatorial disks
D(R, n) are then, in fact, round spherical disks in S2 with geometric center R(∞).
A pair (D(R, n), D(R, n+k)) is almost-round (K) with a K which depends only on
the parameter k. Any pair (D,D′) such that D(R, n + k) ⊂ D′ and D ⊂ D(R, n)
will also be almost round (K). We leave the proofs to the reader.

If one uses a base point other than the origin for the rays in question, then the
pairs (D(R, n), D(R, n + k)) will still be almost round (K ′) for a different K ′ that
depends both on the base point and on k. However, for n sufficiently large, the
parameter K ′ can be taken as near to K as desired. The reason for this stability
under change of base point is that almost roundnessK+ε is asymptotically invariant
under conformal mappings. Again, we leave the proof to the reader.
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4.2.1. Theorem. Almost-round covers by pairs define combinatorial moduli com-
parable with analytic moduli. Suppose that K > 0. Then there is a positive number
L depending only on K such that, if R ⊂ S2 is a ring (annulus) and if (D1, D

′
1),

. . . , (Dk, D
′
k) is a sufficiently fine pair-cover of R, with the cover almost round

K, then the combinatorial moduli M and m of R defined by D1, . . . , Dk and the
analytic modulus of R defined by the standard analytic conformal structure of S2

differ by a factor no bigger than L.

4.2.2. Theorem. Negatively curved groups define natural covers at infinity by
combinatorial disk-pairs. If G is a negatively curved group and Γ a locally finite
Cayley graph for G, then there is a k sufficiently large that, for all n, there is a pair-
covering of ∂Γ by combinatorial disk-pairs of the form (D(R1, n), D(R1, n+k)), . . . ,
(D(Rj , n), D(Rj , n+k)). That is, the combinatorial disks D(Ri, n+k) are disjoint
while the combinatorial disks D(Ri, n) cover ∂Γ.

4.2.3. Theorem. The natural covers by disk-pairs defined by a group G, with lo-
cally finite Cayley graph Γ quasi-isometric to H3, are almost round. Given the
graph Γ, for fixed k, there is a positive number K such that all of the combinatorial
disk-pairs (D(R, n), D(R, n+ k)) are almost round (K).

Proof of Theorem 4.2.1. This is Theorem 7.1 of [7], whose statement is due to Can-
non and whose proof is due in part to Bestvina.

Proof of Theorem 4.2.2. This theorem was claimed by Cannon at the annual meet-
ing of the American Mathematical Society in Phoenix, 1989. (See [6].) The first
written proof was developed independently by Swenson [27]. We apply Zorn’s
Lemma to collections of the form

{(D(Ri, n), D(Ri, n+ 16δ))},
where D(Ri, n+16δ)∩D(Rj , n+16δ) = ∅ for i 6= j. By (3.23), a maximal element
will be a pair-cover of ∂Γ.

Proof of Theorem 4.2.3. We need to compare nearest point projections in H3 and
in Γ. The key to this comparison is that H3 and Γ are quasi-isometric spaces of neg-
ative curvature (see [2], [5], [6], [10] for fundamental facts about quasi-isometries).
Functions f : X → Y and g : Y → X between metric spaces X and Y are said to
be approximately-inverse quasi-isometries (α, β) if

1. for each x1, x2 ∈ X , y1, y2 ∈ Y ,

d(f(x1), f(x2)) ≤ α · d(x1, x2) + β,

d(g(y1), g(y2)) ≤ α · d(y1, y2) + β;

and

2. for each x ∈ X , y ∈ Y ,

d(g ◦ f(x), x) ≤ β and d(f ◦ g(y), y) ≤ β.

By definition, X and Y are quasi-isometric if they admit approximately-inverse
quasi-isometries (α, β) for some positive numbers α and β. By [10, 2.2] the quasi-
isometries induce homeomorphisms of the boundary in the case where X and Y are
negatively curved. The following lemma supplies the key fact needed in the proof
of Theorem 4.2.3.
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4.2.3.1. Lemma. Suppose X and Y are quasi-isometric spaces of negative curva-
ture, that f : X → Y and g : Y → X are approximately-inverse quasi-isometries
(α, β), and that δ is a thinness constant for both X and Y . Then there is a constant
M > 0 depending only on α, β, and δ such that nearest-point projections p in X and
q in Y differ by at most M . That is, let R : [0,∞) → X and S : [0,∞) → Y denote
rays such that f ◦R(0) = S(0) and f ◦R(∞) = S(∞). Let p : X → R and q : Y → S
denote nearest point projections. Let x ∈ X. Then d(f ◦ p(x), q ◦ f(x)) ≤M .

Proof of Lemma 4.2.3.1. Construct the following diagram.

.
.
.

.

. .
. .

.

.

. .

S(0) = f  R(0)o

f(y).
f   Ro

f(x)

f(z)

f  p(x)o

q   f(x)o

S(∞) = f  R(∞)o

R(0)

p(x)

z

R(∞)

yx

X Y

Figure 4.2.3.1

Solid lines denote geodesics. Dotted lines denote images of geodesics under f .
Points y and z are chosen so that f(y) and f(z) are nearest point projections (or
nearly so, since f is not necessarily continuous so that the image of a compact set
need not be closed) from q ◦ f(x) into f([x, p(x)]) and f(R), respectively.

We verify in turn that

1. d(q ◦ f(x), f(y)) and d(q ◦ f(x), f(z)) are small;
2. d(y, z) is small;
3. d(y, p(x)) is small;
4. d(f(y), f ◦ p(x)) is small;
5. d(q ◦ f(x), f ◦ p(x)) is small, which is the conclusion of the lemma.

The one nonobvious fact used in these verifications is a property of quasi-isometries
between negatively curved spaces which appears in [2], [5], [6], [10]: There is a
constant M ′ depending only on α, β, and δ such that the two sets f([a, b]) and
[f(a), f(b)] are everywhere within M ′ of one another. It follows immediately that
d(q ◦ f(x), f(z)) ≤ M ′, which is one half of (1). To estimate d(q ◦ f(x), f(y)), we
consider the quadrilateral P [f(x), f ◦ p(x), q ◦ f ◦ p(x), q ◦ f(x)]. By our nonobvious
fact, d(f ◦ p(x), q ◦ f ◦ p(x)) ≤M ′. By distance-from-projection,

d(q ◦ f(x), [f(x), f ◦ p(x)] ∪ [f ◦ p(x), q ◦ f ◦ p(x)]) ≤ 4δ.

Hence

d(q ◦ f(x), [f(x), f ◦ p(x)]) ≤ 4δ +M ′,
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and

d(q ◦ f(x), f(y)) = d(q ◦ f(x), f([x, p(x)])) ≤ 4δ + 2M ′.

These estimates complete the proof of (1).
Property (1) implies (2) since f is a quasi-isometry, and property (2) implies

property (3) since d(y, p(x)) ≤ d(y, z). Property (3) implies property (4) since f is
a quasi-isometry. Properties (1) and (4) when coupled by the triangle inequality
imply property (5), and the proof of Lemma 4.2.3.1 is complete.

Proof of Theorem 4.2.3, continued. Let f : Γ → H3 and g : H3 → Γ be approxi-
mately-inverse quasi-isometries (α, β). Let δ be a common thinness constant for
Γ and H3. Let R : [0,∞) → Γ be a ray. Let S : [0,∞) → H3 be a hyperbolic
ray joining f ◦ R(0) to f ◦ R(∞). Let p : Γ → R and q : H3 → S denote nearest
point projections. The function q ◦ f : R→ S is a quasi-isometry (see, for example,
[2] or [10]), with constants depending only on α, β, and δ. The function f ◦ p
approximates q ◦ f by Lemma 4.2.3.1. It follows easily from properties of quasi-
isometries that, if the nearest point projections p(x) lie in the interval R([n, n+k]),
then the projections q ◦f(x) lie in an interval S([m,m+ l]) with l bounded in terms
of k (and α, β, and δ).

By the nonobvious fact of (4.2.3.1), any two rays T ⊂ Γ and T ′ ⊂ H3 with
f(T (0)) = T ′(0) and f(T (∞)) = T ′(∞) have the property that f(T ) and T ′ are
everywhere within M ′ + δ, as are g(T ′) and T . Now, using (3.16) and (3.24),

D(S,m + l + L) ⊂ D(R, n+ k) ⊂ D(R, n) ⊂ D(S,m− L)

for some L depending only on α, β, δ, and the constants from (3.16) and (3.24).
Since the pair (D(S,m − L), D(S,m + l + L)) is geometrically almost round

(K) (whenever m − L ≥ 0) as discussed in the opening paragraphs of 4.2, so also
is the combinatorial pair (D(R, n), D(R, n + k)) whenever n is sufficiently large
(independent of R).

4.3. Collections with bounded overlap. Two collections D and D′ of sets
are said to have bounded overlap (K) if no element of D intersects more than K
elements of D′, and no element of D′ intersects more than K elements of D.

4.3.1. Theorem. Covers with bounded overlap define comparable combinatorial
moduli. Suppose D and D′ are finite covers of a ring R such that D and D′ have
bounded overlap (K). Then there is a constant L depending only on K such that
the moduli M and m of R defined by D and D′ satisfy the inequalities

M(R,D′) ≤ L ·M(R,D) and m(R,D′) ≤ L ·m(R,D).

In fact, we may take L = K3.

4.3.2. Theorem. Restricted bounded overlap theorem. (A more general theorem
appears in Section 5, Theorem 5.2.2.) Given Γ, a locally finite Cayley graph of
a negatively curved group, there is a constant K such that, for each n, D(n) has
bounded overlap (K) with itself.

Proof of Theorem 4.3.1. Let σ′ and τ ′ be weight functions for the covering D′ of
the ring R which realize the two moduli, M and m, so that

M(R,D′) =
H2(R, σ′)
A(R, σ′)
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and

m(R,D′) =
A(R, τ ′)
C2(R, τ ′) .

Define weight functions σ and τ on D as follows. If d ∈ D, then

σ(d) = max{σ′(d′) | d′ ∈ D′, d′ ∩ d 6= ∅}
and

τ(d) = max{τ ′(d′) | d′ ∈ D′, d′ ∩ d 6= ∅}.
It is convenient to assign choice functions f, g : D → D′ such that

σ(d) = σ′(f(d)) and d ∩ f(d) 6= ∅,
and

τ(d) = τ ′(g(d)) and d ∩ g(d) 6= ∅.
We can then bound σ-areas as follows:

A(R, σ) =
∑
d∈D

(σ(d))2 =
∑
d∈D

σ′(f(d))2 ≤
∑
d′∈D′

K · σ′(d′)2 = K · A(R, σ′).

Similarly, A(R, τ) ≤ K · A(R, τ ′).
Let α be a path joining the ends of R such that the height H(R, σ) is equal to

Lσ(α). We then have the following estimate.

H(R, σ) = Lσ(α) =
∑

{σ(d) | d ∈ D, d ∩ α 6= ∅}

=
∑

{σ′(f(d)) | d ∈ D, d ∩ α 6= ∅}

≥ 1

K

∑
{σ′(d′) | d′ ∈ D′, d′ ∩ α 6= ∅}

=
1

K
Lσ′(α) ≥ 1

K
·H(R, σ′).

Similarly, C(R, τ) ≥ (1/K)C(R, τ ′).
Hence we have

M(R,D′) =
H2(R, σ′)
A(R, σ′) ≤ K2H2(R, σ)

(1/K)A(R, σ)
≤ K3 ·M(R,D)

and

m(R,D′) =
A(R, τ ′)
C2(R, τ ′) ≥ (1/K)

A(R, τ)
K2C2(R, τ) ≥ (1/K3)m(R,D).

Since the relationship between D and D′ is symmetric, the theorem follows.

Proof of Theorem 4.3.2. By (3.25), if D(S, n) intersects D(R, n), then we have
d(S(n), R(n)) ≤ 12δ. By (3.21), the disk D(S, n) is determined by a radial seg-
ment of length ≤ 8δ. There are a bounded, finite number of radial segments of
length ≤ 8δ within 12δ of R(n). Theorem 4.3.2 follows.

Proof of Theorem 4.1. Since {D(R, n) : n = 1, 2, . . . } is a basis at the pointR(∞) ∈
∂Γ (see [27]), it follows by the compactness of ∂Γ, (3.20), and (3.21) that the di-
ameters of elements of D(n) go to zero uniformly as n → ∞. By Theorems 4.2.2
and 4.2.3, for n sufficently large, the cover D(n) can be reduced to a collection
D′(n) consisting of the large disks (outer disks) of an almost-round pair-cover of
S2. Since Theorem 4.3.2 implies that D(n) has uniformly bounded overlap with
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itself, D(n) and D′(n) also satisfy the same overlap condition with respect to each
other. Hence, by Theorem 4.3.1, D(n) and D′(n) define uniformly comparable com-
binatorial moduli on the rings of S2. But for n sufficiently large, by Theorem 4.2.1,
D′(n) defines combinatorial moduli comparable with the analytic moduli of S2.
Hence, for n sufficiently large, D(n) defines moduli comparable with the analytic
moduli of S2. Theorem 4.1 follows easily.

5. If the combinatorial-disk sequence is conformal,
the group has constant curvature

In this section we prove Theorem 5.1, which forms the second half of the main
theorem.

We make the standard assumptions: G is a negatively curved group with locally-
finite negatively-curved Cayley graph Γ, having thinness constant δ and space ∂Γ
at infinity equal to the 2-sphere S2. We fix a base point O for rays and determine
thereby a sequence of sets D(n) of combinatorial disks D(R, n) for R a ray based
at O and n a positive integer.

5.1. Theorem. Let G denote a negatively curved group which has as its space at
infinity the 2-sphere S2. The group G has constant curvature if the sequence D(n)
is conformal. That is, if the sequence D(n) is conformal, then G acts isometrically,
properly discontinuously, and cocompactly on H3.

The proof of Theorem 5.1 will appear in Subsection 5.3, after preparation. It is
perhaps reasonable to conjecture even more.

5.1. Conjecture. If G is a negatively curved group which has as its space at in-
finity the 2-sphere S2, then the group G has constant curvature. That is, G acts
isometrically, properly discontinuously, and cocompactly on H3.

However, there are nontrivial difficulties involved in extending the theorem to
the conjecture, as shown by the example in Section 8.

5.2. Correlated geodesics and the general overlap theorem. We say that
rays R,R′ can be correlated if they are, at some point, no further than 4δ apart.
In that case, we choose nonnegative integers r, r′ such that d(R(r), R′(r′)) ≤ 4δ+1
and say that (R, r) and (R′, r′) are correlated pairs; r, r′ are called correlation pa-
rameters .

Every pair (S, s), where S is a ray and s a positive number, gives rise to an entire
family of correlated pairs, which we say are correlated by (S, s), as follows.

5.2.1. Correlation Lemma. If R,R′ are rays such that R(0), R′(0) ∈ Hc(S, s)
and R(∞), R′(∞) ∈ D(S, s + 8δ), then R and R′ can be correlated. In fact, corre-
lation parameters r, r′ can be chosen to be integers such that

d(R(r), S(s + 4δ)), d(R′(r′), S(s + 4δ)) ≤ 2δ + 1/2.

Proof of the Correlation Lemma. Since R(0) ∈ Hc(S, s) and R(∞) ∈ D(S, s+ 8δ),
R must come within 2δ of S(s+4δ) by (3.14), and similarly for R′. A further move
along R,R′ of distance ≤ 1/2 takes one to a vertex of R,R′. The correlation lemma
follows.
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5.2.2. General Overlap Theorem. Suppose the ray-point pair (S, s) correlates
pairs (R, r) and (R′, r′). If

D(R, r + t) ∩D(R′, r′ + t′) 6= ∅,

then, for t, t′ sufficiently large (depending only on δ) , d(R(r + t), R′(r′ + t′)) can
be bounded by a constant which depends only on |t− t′| and δ.

Proof of the General Overlap Theorem. We need t, t′ large with respect to δ and to
|t− t′|. Suppose

D(R, r + t) ∩D(R′, r′ + t′) 6= ∅

so that there exists x ∈ H(R, r+t)∩H(R′, r′+t′). Construct the following diagram.

.

.
...

. .

R(∞) R'(∞)

x

y

R(r+t)

R(r)

y''

R'(r')

w

R'(r' + t')

y'
z'

z

≤ 4δ + 1

≤ 6δ

≤ 4δ≤ 4δ

.

. .

Figure 5.2.2.1

Points y, y′, y′′ are nearest point projections from x into R, R′, and [R(r), R′(r′)],
respectively, with y ∈ [R(r + t), R(∞)), y′ ∈ [R′(r′ + t′), R′(∞)). Points z, z′ are
nearest point projections from y, y′ into [x, y′′], respectively. We lose no generality
in assuming z ∈ [y′′, z′]. The point w is the nearest point projection from z into
[R′(r′), y′].

Since y is far from [R(r), R′(r′)] (t and t′ are large), by distance-from-projection,
d(y, z) ≤ 4δ. Similarly, d(y′, z′) ≤ 4δ. Since z is far from [R(r), R′(r′)] (t and t′ are
large), z is within 2δ of [R′(r′), y′] ∪ [y′, z′], hence within 6δ of [R′(r′), y′]. Hence
d(y, w) ≤ 10δ. Since R(r + t) is far from [R(r), R′(r′)], R(r + t) is within 2δ of
[y, w,R′(r′)], hence within 12δ of [R′(r′), w]. Let w′ be a nearest point projection
of R(r + t) in [R′(r′), w]. We then have Figure 5.2.2.2.

It follows easily that w′ is within 16δ + 1 of R′(r′ + t). Hence R(r+ t) is within
12δ + (16δ + 1) + |t− t′| of R′(r′ + t′). The proof is therefore complete.
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R(r) R'(r')

R(r + t) w'
.

≤ 4δ + 1

≤ 12δ

. .

.
Figure 5.2.2.2

5.3. Proof of Theorem 5.1.

5.3.1. Theorem. Conformal sequences define analytic conformal structures. If
the sequence D(n) is conformal, then it defines a quasiconformal structure on the
2-sphere S2 quasiconformally equivalent with the standard analytic structure S on
S2.

Proof of Theorem 5.3.1. By Theorem 4.3.2 applied in conjunction with (3.26),
(3.27), and (3.28), the sequence D(n) has bounded overlap with a sequence S(n,m)
of shinglings of S2. By Theorem 4.3.1, the sequence S(n,m) is also conformal.
Hence, S(n,m) defines a quasiconformal structure on S2 by the Combinatorial
Riemann Mapping Theorem [7].

By Theorem 6.2, any quasiconformal structure on S2 is quasiconformally equiva-
lent with the standard analytic structure on S2. (We have enough extra conditions
in our situation that we could apply Theorem 6.3 instead.)

5.3.2. Lemma. The group action is uniformly quasiconformal. With respect to the
analytic conformal structure on S2 whose existence is asserted by Theorem 5.3.1,
the action of G on S2 is uniformly quasiconformal.

Proof. Theorem 5.3.1 asserts the existence of an analytic structure S, which makes
∂Γ = S2 into a round 2-sphere, such that the combinatorial moduli defined by
the sequence D(n) are uniformly comparable to the analytic moduli defined by S.
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Our immediate goal is to show that the action of G on S2 = ∂Γ induced by left
multiplication is uniformly quasiconformal in the analytic sense with respect to the
structure S.

We prove analytic quasiconformality by proving combinatorial quasiconformality
in the small. The combinatorial effect of left multiplication by a group element of
G is change of base point from O to another vertex O′. This left multiplication
induces a homeomorphism f : Γ ∪ ∂Γ → Γ ∪ ∂Γ which takes the sequence D(n)
to the sequence D′(n). Consequently a ring Q of D(n)-modulus M is taken to a
ring R of D′(n)-modulus M . Combinatorial quasiconformality therefore requires
that the D′(n)-modulus of R be uniformly comparable with the D(n)-modulus of
R. For small rings R we shall establish this comparability by means of the general
overlap theorem, Theorem 5.2.2. Since combinatorial moduli and analytic moduli
are comparable, it follows that f preserves analytic moduli of small rings within a
constant multiple. But since analytic quasiconformality need only be checked for
small rings, we deduce that f is analytically quasiconformal as required, with the
coefficient of quasiconformality independent of the group element.

Here is the proof that, for small rings R, the D(n)-modulus and the D′(n)-
modulus are uniformly comparable. We define ‘small’ by means of pairs (S, s)
where S is a ray and s is a positive number such that O,O′ ∈ Hc(S, s). We say
that R is small if R ⊂ D(S, s + 8δ).

Using the fact that the diameters of elements of D(n), D′(n) go to zero uniformly
as n→∞, we may fix integers m and m′ so large that, if

D(R,m) ∩R 6= ∅, R(0) = O, D(R′,m′) ∩R 6= ∅, R′(0) = O′,

then R(∞), R′(∞) ∈ D(S, s + 8δ). We require further of m and m′ that m −
d(O, S(s+4δ)) andm′−d(O′, S(s+4δ)) differ by at most 1. We then let E(R,m) and
E ′(R,m′) denote the subcollections of D(m) and D′(m′) intersecting R. Suppose
D(R,m) ∈ E(R,m) and D(R′,m′) ∈ E ′(R,m′) intersect. Then R(0), R′(0) = O,O′
∈ Hc(S, s) and R(∞), R′(∞) ∈ D(S, s + 8δ), so that R and R′ are correlated by
(S, s), say with correlated pairs (R, r) and (R′, r′). Let m = r+t and m′ = r′+t′; we
require that m,m′ be large enough so that t, t′ satisfy the conditions of Theorem
5.2.2. Then it is easy to see that |t − t′| is uniformly bounded. By the general
overlap theorem, Theorem 5.2.2, there is a uniform bound on d(R(m), R′(m′)).
Consequently there is a uniform bound on the number of elements of E ′(R,m′)
intersecting a given element of E(R,m), and vice versa. By Theorem 4.3.1, E(R,m)
and E ′(R,m′) define comparable moduli on R. But these moduli are those defined
by D and D′. We conclude that left multiplication is uniformly quasiconformal.

Proof of Theorem 4.2. In view of Theorem 5.3.1 and Lemma 5.3.2, Theorem 7.1
applies, so that Theorem 7.1 will complete the proof.

6. Quasiconformal surfaces

6.1. Definition. A surface S is a connected metrizable 2-manifold without bound-
ary. A K-quasiconformal structure on S consists of an open cover U of S and, for
each element u ∈ U , a homeomorphism hu from u onto an open subset of the
complex plane C such that the transition functions

hvh
−1
u : hu(u ∩ v) → hv(u ∩ v)



RECOGNIZING CONSTANT CURVATURE DISCRETE GROUPS IN DIMENSION 3 839

are K-quasiconformal for each u, v ∈ U . The elements of the open cover U are
called charts .

6.2. Theorem. ([17]) A compact surface S with a quasiconformal structure is
quasiconformally equivalent to some Riemann surface. Consequently the univer-
sal cover of S is quasiconformally equivalent with one of the three standard simply
connected Riemann surfaces, namely, the Riemann sphere, the complex plane, or
the open unit disk.

Proof. The review of [17] states: “The author introduces the concept of quasicon-
formal manifold. His main result is that quasiconformal manifolds are essentially
the same as Riemann surfaces.”

We outline a proof on the basis of the information appearing in [19], but the proof
is rather long and will not be included here. The following are the main steps:
Step 1. The surface S is homeomorphic with a polyhedral surface S′ (standard
topological fact). The resulting topological triangulation of S may be chosen with
simplexes so small that each lies in a single chart u ∈ U defining the quasiconformal
structure on S. Step 2. The 1-skeleton may be modified so that the boundary of
each 2-simplex is a quasiconformal simple closed curve. Step 3. One may construct
a homeomorphism from the 1-skeleton of S′ to the 1-skeleton of S in such a way that,
restricted to the boundary of any 2-simplex, the homeomorphism is quasisymmetric.
Step 4. Since the map on the boundary of any 2-simplex is quasisymmetric, the
map may be extended to a quasiconformal homeomorphism on that 2-simplex. The
resulting homeomorphism f : S′ → S is quasiconformal. Step 5. By a standard
argument (see, for example, [24]), the polyhedron S′ is quasiconformally equivalent
to a Riemann surface S′′, and the proof is complete.

Here is an alternative theorem which proves a special case sufficient for the
purposes of the main theorem.

6.3. Theorem. Suppose S is a topological 2-sphere with a quasiconformal atlas
(U , f), where U has just two elements u and v, each an open disk. Then there is

a quasiconformal homeomorphism from S onto the extended complex plane Ĉ =
C ∪ {∞} with its standard (quasi) conformal structure.

Proof. By standard topological arguments, there is a simple closed curve J in u∩v
such that the two disks D1 and D2 in S bounded by J lie in u and in v, respectively.
We may adjust J slightly so that the image Ju of J under fu is a polygonal curve
in fu(u) ⊂ C.

Recall [19, II.8.2, p. 97] that an arc or simple closed curve A in C is quasicon-
formal if there exists a quasiconformal mapping of a domain G ⊃ A which carries
A into a line or circle in C. The property of being quasiconformal is a local prop-
erty [19, II.8.9], and this local property is obviously invariant under quasiconformal
homeomorphisms. Consequently, since Ju, as a polygonal curve in fu(u) ⊂ C, is
obviously locally quasiconformal (one bend can be straightened by a single quasi-
conformal map), both Ju and Jv = fv(J) are quasiconformal curves in C.

By [19, II.8.2, p. 97], there are quasiconformal homeomorphisms of the entire

extended complex plane Ĉ taking Ju and Jv to round circles in C. Composing these
mappings with the original mappings fu and fv, we abandon the original mappings
fu and fv and curves for the composites and new images so that the new Ju and

Jv are round circles in Ĉ.



840 J. W. CANNON AND E. L. SWENSON

There is a circle J ′u concentric with the circle Ju in the disk Du = fu(D1) such
that the annulus or ring R bounded by Ju and J ′u in Du lies in fu(u ∩ v). The
transition function fv ◦ f−1

u takes R to a topological ring R′ which, except for the
curve Jv = fv ◦f−1

u (Ju), lies outside the circle Jv in C. By [19, II.8.3, Theorem 8.3]
this map on R can be extended to take Du quasiconformally onto the disk in the
extended complex plane Ĉ formed by adding the point at infinity to the domain
outside the circle Jv. Let f ′ : Du → Ĉ be the resulting embedding.

Finally, we define h : S → Ĉ piecewise by the formulas

h(x) = f ′ ◦ fu(x) if x ∈ D1

and

h(x) = fv(x) if x ∈ D2.

As a composite of quasiconformal mappings, h is clearly quasiconformal on int D1

and int D2. On a neighborhood of J , h coincides with fv. Hence h is everywhere
quasiconformal.

7. Quasiconformal groups acting on S2

Theorem 7.1 was used in Section 5 to complete the proof of the main theorem.

7.1. Theorem. Suppose G is a negatively curved group with locally-finite Cayley
graph Γ. If ∂Γ = S2, and if the action of G on S2 is uniformly quasiconformal with
respect to the standard conformal structure on S2, then

1. the action is quasiconformally conjugate to a conformal action on S2; and
2. the conformal action on S2 induces an action on hyperbolic 3-space H3 which

is isometric, properly discontinuous, and cocompact.

The conclusions of the proof will be dealt with one at a time in the subsections
of Section 7.

7.2. The action is conjugate to a conformal action. Conclusion (1) is one
of the main conclusions of both [26] and [30]. Therefore we may assume that the
action of G on S2 is conformal.

7.3. Isometry. For standard properties of hyperbolic space and its relationship
with the Riemann sphere and conformal mappings, see, for example, [3], [18], [21],
[25]. The only conformal homeomorphisms of the Riemann sphere S2 are the linear
or conjugate linear fractional transformations. These transformations are precisely
the isometries of H3. Hence the induced action of G on H3 is isometric.

7.4. Proper discontinuity. Proper discontinuity of G on H3 is equivalent to the
discreteness of the action of G on S2 (see, for example, [18] for precise references
to the proof).

7.4.1. Lemma [30]. A sufficient condition that G acting on S2 be discrete in the
compact open topology on Homeo(S2) is that G act properly discontinuously on the
triple space T (definition recalled below) of S2.

Definition. Consider the action

(Σ3)× (S2 × S2 × S2) → (S2 × S2 × S2),
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where Σ3 is the symmetric group on three letters which acts by permutation of
coordinates. The triple space T is the subspace of the orbit space consisting of
those orbits represented by triples

(x1, x2, x3) ∈ S2 × S2 × S2

with x1, x2, and x3 distinct. We denote the orbit by [x1, x2, x3]. A basic open set
is the orbit of a product open set U1 × U2 × U3, with U1, U2, U3 pairwise disjoint,
x1 ∈ U1, x2 ∈ U2, x3 ∈ U3.

Proof of Lemma 7.4.1. The compact open topology on the space Homeo(S2) makes
this space separable metric. Therefore, if G is not discrete in this topology, there
exist elements g1, g2, . . . converging to g ∈ G. Thus h1 = g1g

−1, h2 = g2g
−1, . . .

converge to 1 ∈ G. Let [x1, x2, x3] ∈ T . Let C1, C2, C3 denote pairwise disjoint
compact neighborhoods of x1, x2, x3 in S2. Then the orbit [C1 × C2 × C3] of
C1 × C2 × C3 under σ3 is a compact neighborhood of [x1, x2, x3] in T . But, for i
sufficiently large, hi([x1, x2, x3]) ∈ [C1 × C2 × C3]. Thus G does not act properly
discontinuously on T .

We now prove that G does indeed act properly discontinuously on the triple
space of S2. First we need the following lemma.

7.4.2. Lemma. Let R, S, and T denote inequivalent rays in the Cayley graph Γ.
Then there exist half-spaces H(R, r), H(S, s), H(T, t) such that, if α, β, γ are
geodesic arcs joining these half-spaces in pairs, then there is a point b near to all
three. If α′, β′, γ′ also join the half spaces and b′ is near all three, then b and b′

are near one another. We call b an approximate barycenter for R(∞), S(∞),
T (∞).

Proof. We construct the following diagram.

H(R,r)

H(R,r´)

S

R(r´) R
T

T(t).
... ...

T(t´)

H(T,t)

H(T,t´)

H(S,s´)

S(s´).
.

...S(s)

H(S,s)

a 2 b1

a1

c2 1c

2b
R(r)

γ

α β

Figure 7.4.2.1
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We have buffered H(R, r) by H(R, r′), H(S, s) by H(S, s′), H(T, t) by H(T, t′).
Using (3.17), we assume r′, s′, t′ so large that no α can penetrate into H(T, t′), no
β into H(R, r′), no γ into H(S, s′); in fact, by (3.16), so large that H(R, r′) must be
far from β, H(S, s′) from γ, and H(T, t′) from α. We assume r−r′, s−s′, and t− t′
also large. These choices implicitly restrict the half-spaces H(R, r), H(S, s), and
H(T, t), and there certainly exist such half-spaces. We show that such half-spaces
satisfy the requirements of the lemma.

Let α, β, γ be given. The arcs α and γ can be joined by a small arc [c2, a1] near
R(r) by (3.14), α and β by a small arc [a2, b1] near S(s), β and γ by a small arc
[b2, c1] near T (t). The hexagon P [a1, a2, b1, b2, c1, c2] is 4δ-thin. Let α0 be a subarc
of α joining H(R, r′) to H(S, s′) irreducibly. Since r− r′, s− s′, t− t′ are all large,
no point of α0 can be near any one of [c2, a1], [a2, b1], [b2, c1]. Hence every point
of α0 must lie within 4δ of one of [b1, b2] and [c1, c2]. Points of α0 near R(r′) are
far from β. Points of α0 near S(s′) are far from γ. Hence some points of α0 are
within 4δ of [b1, b2], some within 4δ of [c1, c2]. We conclude that some point b of
α0 is within 4δ of both [b1, b2] and [c1, c2]. Note that since H(R, r′) is far from γ, b
must be well outside H(R, r′). Similarly, b must be far from H(S, s′) and H(T, t′).

Now let other arcs α′, β′, γ′, with associated point b′, be given. We need to show
that b and b′ are near one another. Since α and α′ both come near R(r) and near
S(s), long portions of α and α′ must have nearby endpoints so that those entire
portions are near one another by (3.5). It follows that b′ is near α as well as near
α′. Similarly, b′ is near β and γ. Thus we have the following diagram.

H(S,s´)

H(S,s)

H(R,r)

H(R,r´) . .
H(T,t)

H(T,t´)

. .a 2
b1

a1

c2 1c

2b

γ

α
β

. .. .

. .

.

z(b) z(b´)

x(b)

x(b´)
y(b)

y(b´)

y´

b b´

.
.

.
.

Figure 7.4.2.2
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The arcs [b, x(b)], [b, y(b)], [b, z(b)], [b′, x(b′)], [b′, y(b′)], [b′, z(b′)] are all assumed
small and, as noted before, must be far from H(R, r′), H(S, s′), H(T, t′). Simple
enumeration of cases shows that we lose no generality in assuming x(b), x(b′), y(b),
y(b′) ordered as shown on α and β; that is, we may assume x(b′) between x(b)
and a2, y(b) between y(b′) and b1 (we may have to permute R, S, T to attain this
condition).

We are now ready to show that d(b, b′) is small by showing d(y(b), y(b′)) is small.
The two arcs [x(b), a2] and [y(b), b1] have their endpoints near one another; hence
they are everywhere near by (3.5). Hence x(b′) is near some y′ in [y(b), b1]. Thus
y(b′) is near b′, which is near x(b′), which is near y′. But d(y(b), y(b′)) ≤ d(y′, y(b′)),
and we are done.

7.4.3. Theorem (Freden). Let G be a negatively curved group, Γ a locally-finite
Cayley graph for G, ∂Γ the space at infinity, and T the triple space associated with
∂Γ. Then G acts properly discontinuously on T .

Proof. Suppose G does not act properly discontinuously on T . Let C be a compact
subset of T and g1, g2, . . . ∈ G be such that gi(C) ∩ C 6= ∅ for each i. Let
xi = [xi1, xi2, xi3] be an element of C such that

gi(xi) = yi = [yi1, yi2, yi3] ∈ C.

Without loss of generality, xi converges to X = [X1, X2, X3] ∈ T and yi converges
to Y = [Y1, Y2, Y3] ∈ T . Let R1, R2, R3 be rays from the base point O to X1, X2,
X3. Let S1, S2, S3 be rays from O to Y1, Y2, Y3. Pick t so large that if α, β, γ
are geodesic arcs joining the half-spaces H(R1, t), H(R2, t), H(R3, t) in pairs, the
conclusions of Lemma 7.4.2 are satisfied, and similarly for arcs α′, β′, γ′ joining
half-spaces H(S1, t), H(S2, t), H(S3, t) in pairs. Hence using (3.12) there exist
approximate barycenters bi for all the triples xi, i sufficiently large, with bi near an
approximate barycenter b for X . Similarly, gi(bi) is an approximate barycenter for
yi which, for large i, is near a barycenter b′ for Y . Hence gi(b) must also be near b′

since

d(gi(b), gi(bi)) = d(b, bi).

Thus the points gi(b) stay in a compact set of Γ. But G acts properly discontinu-
ously on Γ, a contradiction.

From Lemma 7.4.1 and Theorem 7.4.3 we see that the action of G on H3 is
properly discontinuous.

7.5. Cocompactness. Eric Freden has proved that every point of S2 is a point
of approximation of G:

7.5.1. Theorem (Freden). Let G be a negatively curved group, Γ a locally-finite
Cayley graph for G, ∂Γ the space at infinity. Then every point of ∂Γ is a point of
approximation (definition reviewed below) for the action of G on ∂Γ.

7.5.2. Definition. A point p of ∂Γ is a point of approximation for the action of
G on ∂Γ if there is a sequence g1, g2, . . . of distinct elements of G and a positive
number α so that, for each compact subset C ⊂ ∂Γ \ {p} and for all sufficiently
large i, d(gi(p), gi(C)) ≥ α. (See [21, VI.B.1].)

Proof of Theorem 7.5.1. Choose a ray R : [0,∞) → Γ such that R(0) = id ∈ G
and R(∞) = p. Let gn be the element of G which by left multiplication on Γ takes
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R(n) to id ∈ G. Choose a subsequence gn1, gn2, . . . of g1, g2, . . . such that the
image rays gni ◦ R([0,∞)) converge setwise to a line L : (−∞,∞) → Γ, L(0) = id.
We can describe L very precisely. Let An : (−∞,∞) → (−∞,∞) be the shift
map, x 7→ x + n. The function fni = gni ◦ R ◦ Ani : [−ni, 0] → Γ is a segment
with fni(0) = id ∈ G. The segments fni converge to L|(−∞, 0]. The function
hni = gni ◦R ◦Ani : [0,∞) → Γ is a ray with hni(0) = id. The rays hni converge to
L|[0,∞). Now let i be very large. Then gni ◦R([0,∞)) and L((−∞,∞)) will share
a very large segment centered at id. Pick a large integer mi such that

0 � ni −mi < ni < ni +mi

and such that the points L(−mi) = gni ◦ R(ni − mi), id = L(0) = gni ◦ R(ni),
and L(mi) = gni ◦R(ni +mi) all lie well within the segment of intersection. Then
D(R, ni−mi) and D(R, ni +mi) will be very small neighborhoods of p in ∂Γ. The
image gni(D(R, ni + mi)) = D(L,mi) will be a very small neighborhood of L(∞),
showing that gni maps p very near to L(∞). The image gni(∂Γ \D(R, ni −mi)) =
∂Γ\D(L,−mi) will be a very small neighborhood of L(−∞), which shows that gni
maps almost all of ∂Γ \ {p} very near to L(−∞). We conclude that p is a point of
approximation, as claimed.

Since every point of S2 is a point of approximation, G is geometrically finite by
[21, VI.C.7] and has compact fundamental polyhedron by [21, VI.B.5]. Therefore
the action of G on H3 is cocompact.

8. A negatively curved space which is not conformal at infinity

All of the constructions of the paper can be carried out in a space of variable
negative curvature. However, unless that space is quasi-isometric with a space of
constant negative curvature, the corresponding covers at infinity defined by com-
binatorial disks need not form a conformal sequence. Somehow one must use the
group structure associated with an action in order to avoid nonconformality at in-
finity. We illustrate the difficulty with an explicit example. The space we describe
is homogeneous, with varying negative sectional curvature at each point.

Up to quasi-isometry, we have three alternatives for describing our space: as a
locally finite graph, as a Riemannian manifold of variable negative sectional curva-
ture, or as a space with a taxicab metric. The combinatorial disks or combinatorial
disk-pairs defined by the three methods will be nicely comparable with one another
by the methods studied in Section 4. Being comparable with one another, they
define comparable combinatorial moduli at infinity by Theorem 4.3.1. Hence con-
formality at infinity may be studied by means of any of the descriptions. We choose
the description by taxicab metric, since it requires the least background and has
the most easily discoverable half-spaces.

Consider the three line elements (1/za)dx, (1/zb)dy, and (1/z)dz, with a and b
positive, and use these to construct a taxicab metric ds on upper-half 3-space

H = {(x, y, z) | z > 0}.

Recall that, in a taxicab metric, one considers only paths that are piecewise parallel
to the axes and uses the appropriate line element to measure each component
segment.
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8.1. Theorem. The space H with metric ds is a negatively-curved proper metric
space whose space at infinity is the 2-sphere S2. If a 6= b, the space H is not quasi-
isometric with hyperbolic 3-space H3; indeed, the disk-pair covers of S2 induced by
ds do not form a conformal sequence.

The proof will appear in Subsection 8.3, after preparation.

Remarks. The metric ds is quasi-isometric with the complete, homogeneous Rie-
mannian metric

(1/z2a)dx2 + (1/z2b)dy2 + (1/z2)dz2.

If a = b = 2, the latter is the hyperbolic metric on H . The plane {y = 0}
under the transformation (x, 0, z) 7→ (ax, za) is isometric with scaled hyperbolic
space {(X,Z)|Z > 0} having metric (1/a2Z2)(dX2 + dZ2). Similarly, the plane
{x = 0} is isometric with a scaled hyperbolic space. That is, the Riemannian space
is negatively curved with varying negative curvature. That (H, ds) is negatively
curved with S2 at infinity follows easily. However, we shall give an independent
proof.

8.2. Geodesics in (H, ds). Let α ∈ H be any point, and let P = {P1, . . . , Pk}
denote any set of axis-parallel vectors. Then there is a path (α, P ) in E3 which
begins at α and follows, successively, the vectors P1, . . . , Pk. The terminal endpoint
of (α, P ) is the vector

β = α+ P1 + · · ·+ Pk.

If β ∈ H , then the set P can be permuted (by a function φ) so that the resulting
path (α, φ(P )) lies in H . Among all paths (α, φ(P )) in H , those of smallest ds-
length are characterized as follows: first list all vectors of P which are parallel to
the z-axis and rise, then those in the x and y directions (any order), and finally
those falling. If two parallel to the x-axis have opposite directions, they can be
replaced by their vector sum and the path can be shortened, and similarly for the
y-axis. We may therefore conclude the following.

8.2.1. Theorem. Any geodesic in H must consist of a rising arc, followed by an
(x, y)-monotone path, followed by a falling arc.

8.2.2. The length of an (x, y)-monotone path from (x1, y1, z) to (x2, y2, z) is

1

za
|x2 − x1|+

1

zb
|y2 − y1|.

8.2.3. If (x1, y1) 6= (x2, y2), then there exists a unique z ∈ (0,∞) such that

2 =
a

za
|x2 − x1|+

b

zb
|y2 − y1|.

We call this value of z, z∗ = z∗(x1, y1, x2, y2).

Proof of 8.2.3. The right-hand side decreases monotonically from ∞ to 0.
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8.2.4. If (x1, y1, z1), (x2, y2, z2) ∈ H and (x1, y1) 6= (x2, y2), then the maximal
height attained by a geodesic joining these points is max{z1, z2, z∗}, where z∗ =
z∗(x1, y1, x2, y2).

Proof of 8.2.4. We must minimize

f(z) = ln(z/z1) + (1/za)|x2 − x1|+ (1/zb)|y2 − y1|+ ln(z/z2)

subject to z ≥ z1, z2. We set the derivative of f equal to 0 and find that

0 = 2/z − (a/za+1)|x2 − x1| − (b/zb+1)|y2 − y1|,

which defines z∗. The derivative is negative for z < z∗ and positive for z > z∗, so
that the result follows.

8.2.5. If a < b, then

2

b
≤
(
|x2 − x1|

(z∗)a
+
|y2 − y1|

(z∗)b

)
≤ 2

a
.

Proof of 8.2.5. Replace the numerator a in the equality of (8.2.3) by b, or vice
versa. Result (8.2.5) follows.

Summary. A geodesic rises until

a

za
|x2 − x1|+

b

zb
|y2 − y1| ≤ 2,

then follows an (x, y)-monotone path, then falls to the terminal endpoint. Note
that the length of an (x, y)-monotone path has upper bound comparable to 2.

8.2.6. Corollary. All rays that are not vertically upward are eventually vertically
downward.

8.2.7. Corollary. The space H with metric ds is negatively curved.

Proof of 8.2.7. The typical triangle has the form of Figure 8.2.7.
This triangle is made up of three intervals:

[α, β] = [α, α′, β′′, β′, β],

[α, γ] = [α, α′, α′′, γ′′, γ′, γ],

[β, γ] = [β, β′, γ′, γ].

Sides [α′′, γ′′], [α′, β′′], and [β′, γ′] are all on the order of 2/a in length. Since
[α′, β′′] and [β′, γ′] are already small, [α′′, γ′′] cannot be much higher than [α′, β′′].
Hence the part of [α, γ] which is above the level of [α′, β′′] is small. Since [β′, γ′] is
small, [β′, β′′] and the portions of [γ′, γ′′] on the same levels are near one another.
It follows that the triangle P [α, β, γ] is thin.



RECOGNIZING CONSTANT CURVATURE DISCRETE GROUPS IN DIMENSION 3 847

α´´ γ´´

α´

γ´

γ

α

β

β´

β´´

.

. .
.

.
.

Figure 8.2.7

8.3. Half-spaces. Consider a ray R. We know by (8.2.6) that we may assume R
is vertically downward, say equal to the portion of the z-axis below (0, 0, 1). The
typical projection arc to R will travel vertically upward until the (x, y)-monotone
distance to R is on the order of 2 (see (8.2.5)), then it will travel horizontally to R.
Thus, in order to see the half space H(R, n), we need to see the 2-neighborhood of
R in the plane ln(1/z) = n. More precisely, we need the neighborhood defined by
the inequality

a · ena · |x|+ b · enb · |y| ≤ 2,

which defines a diamond shaped box in the (x, y)-plane. This box, in the first
quadrant, is bounded by the line

y =
2− a · ena · x

b · enb ,

which has slope

− a

b · en(b−a) .

Assuming b > a, we find that the box becomes flatter and flatter as n→∞.

Proof of Theorem 8.1. Since the combinatorial disks become relatively skinny (flat-
tened) as they become small, it is an easy matter to show that the combinatorial
modulus of a Euclidean rectangle defined by such combinatorial disks approaches
either 0 or ∞. This contradicts the axioms of conformal sequence. We conclude
that H with metric ds cannot be quasi-isometric with hyperbolic 3-space H3.
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