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Computer simulations of branched alkanes: The effect of side chain
and its position on rheological behavior

Maija Lahtela, Mikko Linnolahti, and Tapani A. Pakkanen
Department of Chemistry, University of Joensuu, P.O. Box 111, FIN-80101 Joensuu, Finland

Richard L. Rowley
Brigham Young University, Provo, Utah 84602

~Received 14 August 1997; accepted 30 October 1997!

Nonequilibrium molecular dynamics simulations have been performed on model fluids representing
eicosane isomers in order to investigate the effect of branching and side chain position on fluid
rheology. A heterogeneous, united-atom model with 20 Lennard-Jones interaction sites located at
carbon centers was used to model the fluids. Vibrations and bond rotations were frozen, but torsional
rotation was included. It was found that viscosity increases significantly from then-alkane structure
to a branch on carbon 2, but the movement of the branch along the carbon backbone has a smaller
increasing than decreasing effect. The size of the group in a branched position has a more substantial
effect upon the viscosity. ©1998 American Institute of Physics.@S0021-9606~98!50306-6#

I. INTRODUCTION

Computer simulations have become an important tool
for chemists and engineers. Simulations provide a rigorous
link between molecular models of intermolecular interac-
tions and observed macroscopic or system properties. A
comparison of experimental data to simulation values there-
fore serves as an indirect probe of the microscopic interac-
tions, i.e., better agreement between experimental and simu-
lated values provides more assurance that the model
accurately represents the interactions occurring in the real
system. This method of examining the effectiveness of mo-
lecular models in property prediction is not only of scientific
interest, but is also of engineering and industrial interest, as
it offers the possibility of selecting fluids for processes based
on simulation of their properties from only a knowledge of
their molecular structure geometry, and interactions. A spe-
cific area of interest in which this method seems promising is
the development of so-called ‘‘synthetic’’ lubricants from
simulations of fluid viscosity for molecular models repre-
senting candidate fluids.1 The idea is that simulations of the
viscosity can be used to identify the particular chemical and
geometrical structure of molecules that produce optimum lu-
bricant properties on the macroscopic level. For example, it
has been shown experimentally that branching in a hydrocar-
bon has a large influence on the fluid’s rheological proper-
ties, and that multiple branching has an even more pro-
nounced effect.2–7 However, the sheer number of possible
permutations of side chain types, their location, and their
chemical constituency precludes optimization of structure by
experimental trials. Computer simulation, on the other hand,
permits independent investigation of the effects of molecular
structure, chain geometry, molecular dispersion forces, polar
effects, and chemical constituency. It is in this vein that we
present this study: the models used are not expected to be the
most accurate available, but by using a simple united-atom
~UA! model with no angle bending or vibrations, the focus of
the results is on the branching effects independent of other

factors. Moreover, simulations can yield information at high
temperatures where experimental data are most desirable, but
expensive and difficult to obtain.

Several research groups have used molecular dynamics
~MD! simulations to study the relationship between micro-
scopic models and fluid viscosity. Generally, nonequilibrium
molecular dynamics~NEMD!8–11 simulations have been
used because the application of a shear stress induces a re-
sponse that is statistically less noisy than the viscosity ob-
tained from equilibrium molecular dynamics~EMD!.11,12

Nevertheless, both methods have been used, and agreement
between the two methods has been firmly established.12,13

This agreement between NEMD and EMD often used to
validate new methodologies instituted into one or the other
of the methods.14,15 Numerous studies have been made on
n-alkanes16–28 of varying branch length. Many of these
studies were used to develop NEMD methods and to refine
the intermolecular potentials used to represent the fluid.
Recently, the focus of simulations has been on
branched-alkane14,18,20,23,27,29–32viscosity. However, the ef-
fect on viscosity of different types of side chains and their
relative positions along the carbon backbone has not been
studied. In this paper, we report results of NEMD simula-
tions performed on molecular models designed to represent
the essential features of several isomers of eicosane includ-
ing changes in the type and position of branch.

II. MODELS AND DETAILS OF THE SIMULATIONS

Models were used to representn-eicosane, 2-
methylnonadecane, 6-methyl-nonadecane, 10-methylnona-
decane, 8-t-butylhexadecane, and 8-cyclopentylpentadecane
as shown in Fig. 1. We chose these models because a com-
parison of the relative viscosities of then-eicosane, 2-
methylnonadecane, 6-methylnonadecane, and 10-
methylnonadecane model fluids at similar densities should
elucidate side-chain positional effects, while the simulated
viscosities of 10-methylnonadecane, 8-t-butylhexadecane,
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and 8-cyclopentylpentadecane should help identify qualita-
tive effects that occur when the kind of side chain at the
center position of the carbon backbone is changed. All simu-
lations were performed at a density 387.8 kg m23 and 310,
290, and 270 K. A heterogeneous, UA, Lennard-Jones~LJ!
site–site model33,34was used to represent intermolecular van
der Waals or dispersion interactions. In this model, LJ inter-
action sites are located at each carbon center to represent
CHx groups, but the LJ parameters are different for each CHx

constituent group. In this sense, the site–site model is very
similar to popular group-contribution models that form the
basis of popular free energy expressions. Bond lengths be-
tween carbon nuclei were fixed at their equilibrium values,
as were the bond angles. Intramolecular LJ interactions were
permitted for interaction sites separated by more than three
carbons. Jorgensen’s35 optimized LJ parameters were used
for different sites; the values used are given in Table I. The
UA model has been used successfully in the past for predict-
ing thermodynamic properties and viscosity of small
n-alkanes. One of us~R.L.R.!30 recently showed that all-
atom models better represent the viscosity of branched mol-
ecules at higher densities, but that UA models work reason-
ably well at the densities considered here. As the focus of
this paper is branching effects ofmodel moleculesrather than
identifying the best possible potential for real fluids, the UA
model was selected for this study. Torsional potentials were
included for all groups of four sites and were modeled with a
truncated power series in the cosine of the dihedral angle,36

f, given by

Fdihedral~f!/k5(
i 50

5

ai cosi~f!,

wherek is Boltzmann’s constant, andai are expansion coef-
ficients. The coefficients for this equation are also listed in
Table I.

The simulations reported here were performed using a
modification of Edberg and Evan’s~NEMD! algorithm,11,37

which uses Gauss’s principle of least constraint38 to obtain
the constrained equations of motion that include bond-
length, bond-angle, isothermal, and couette flow constraints.
Additionally, the molecular SLLOD algorithm in conjunc-
tion with the ‘‘sliding brick’’ periodic boundary conditions39

were used to model couette flow in the canonical ensemble.
The isothermal constraint was imposed with a molecular
Gaussian thermostat. Simulations were performed on sys-
tems containing 64 or 125 molecules in a cubic box of vol-
umeV. System equilibration runs of 50 000 time steps were
performed prior to collecting any data for property averages.
The simulations included 150 000–200 000 time steps for
each shear rate from which the pressure tensor was calcu-
lated. The dimensionless time step was 0.000 75 correspond-
ing to 1.3 fs in real time. The LJ site potential was truncated
at r 52.5s, and standard long-range potential cutoff correc-
tions were included.

The shear viscosity at each shear rate was obtained from
an average of the two off-diagonal elements of the pressure
tensor driven by the couette flow equations. Simulations
were performed on each fluid at five shear rates in the range
531010 s21,g,1431010 s21. The zero-shear limit was
then obtained by extrapolation of theh~g! values versusg0.5.
While there is yet some controversy over the best way to
obtain the zero-shear limit fromh~g! data, we have shown in
the past that values obtained in this manner agree within the
simulation error ~generally within about 8%! with EMD
simulations. They are also in approximate agreement with
‘‘plateau’’ or Newtonian values obtained from careful and
extensive simulations at very low shear rates to within the
combined uncertainties of the method.18,19,21,30Particularly,
in this work, the extrapolation method is a nonissue because

FIG. 1. Structure of the simulated models.

TABLE I. Model parameters.

Parameter

Site mass~kg! CH3 2.4966310226

CH2 2.385310226

CH 2.1619310226

Lennard-Jones energy parameterb e/k CH3 88.06
~K! CH2 59.38

CH 40.58

Lennard-Jones distance parameterb s CH3 392.3a

~pm! CH2 390.5
CH 385.0

Ryckaert–Bellemans coefficientsc a1 1116
a2 1462
a3 21578
a4 2368
a5 3156
a6 23788

aFor isomers of methyl-nonadecane were useds5391.0 pm.
bReference 35.
cReference 36.
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we are concerned with the effects of branching onmodel
fluids, not the absolute agreement of the model viscosity with
the real fluid. Nevertheless, we conducted simulations for
these molecules down to shear rates of 0.631010 s21 and
found no plateau region for these particular molecules.

III. RESULTS AND DISCUSSION

The results of our simulations for model fluids represent-
ing n-eicosane, 2-methyl-nonadecane, 6-methylnonadecane,
10-methylnonadecane, 8-t-butylhexadecane, and 8-cyclo-
pentylpentadecane are given in Table II. Both the linear and
branched alkane fluids display strong shear thinning in the
range of shear strain studied here. The simulated viscosities
as a function of shear rate for the temperatures 310, 290, and
270 K are shown in Figs. 2, 3, and 4, respectively. The
linearity of the simulated data versusg0.5 is apparent in these
figures.

The effect that the location of the side methyl group has
on the viscosity of the model molecules is shown in Fig. 5.

N-eicosane can be viewed as the limit of the side methyl
group branched from the first carbon. Figure 5 shows that the
viscosity decreases significantly as the branch is moved from
the end carbon to the next carbon. Moving the branch further
down the carbon backbone has a smaller effect on the vis-
cosity, but appears to slightly increase at each temperature
and then decrease again as the side group is moved toward
the middle of the chain. The initial increase in viscosity with
movement of the branch from carbon 1 to 2 is relatively
substantial. Subsegment movement of the branch produces
changes in viscosity on the order of a pessimistic estimate of
the uncertainty in the data. However, the same trend is seen
at different temperatures, which suggests that the trend is
real. Experiments suggest that moving the side chain from
the end toward the center of a paraffin chain decreases the
viscosity.1–6 As was seen from Fig. 5 the simulations show
that if the branch is close to the end of a paraffin chain the
viscosity is less than in the center of a paraffin chain. This

TABLE II. The viscositiesh~mPa s! of the isomers at different shear rates.

T
~K!

g514.3
1010 s21

~Stdev!

g511.3
1010 s21

~Stdev!

g59.3
1010 s21

~Stdev!

g56.3
1010 s21

~Stdev!

g55.3
1010 s21

~Stdev!
Expt. g50

h5h~0!1Ag1/2 ~mP s!

n-eicosane 310 122~2! 149 ~8! 187 ~11! 209 ~11! 260 ~22! 370
290 125 ~3! 158 ~8! 196 ~8! 227 ~13! 278 ~19! 404
270 131 ~7! 160 ~6! 213 ~10! 247 ~18! 285 ~20! 429

2-methyl-C19 310 156~5! 158 ~12! 179 ~11! 203 ~18! 252 ~14! 379
290 146 ~14! 172 ~4! 193 ~17! 208 ~9! 286 ~13! 453
270 160 ~16! 184 ~13! 181 ~15! 218 ~27! 302 ~19! 464

6-methyl-C19 310 151~3! 168 ~3! 178 ~10! 215 ~8! 242 ~2! 374
290 132 ~2! 185 ~3! 201 ~7! 236 ~12! 283 ~19! 490
270 132 ~5! 186 ~1! 212 ~8! 253 ~9! 287 ~9! 516

10-methyl-C19 310 153~12! 176 ~1! 190 ~3! 216 ~7! 247 ~18! 379
290 163 ~10! 176 ~5! 213 ~5! 230 ~14! 279 ~16! 441
270 160 ~3! 191 ~6! 213 ~14! 239 ~17! 299 ~6! 481

8-t-butyl-C16 310 166~2! 163a ~6! 215 ~7! 250 ~9! 294 ~10! 428
290 173 ~7! 163a ~4! 228 ~10! 263 ~10! 317 ~12! 516
270 188 ~8! 164a ~6! 249 ~9! 266 ~18! 341 ~16! 537

8-cyclo-pentyl-C15 310 194~7! 216 ~4! 259 ~16! 318 ~17! 382 ~13! 658
290 197 ~5! 233 ~2! 278 ~14! 332 ~20! 388 ~30! 672
270 196 ~6! 238 ~7! 269 ~12! 342 ~20! 421 ~21! 736

aThis value is not included in any extrapolation equations.

FIG. 2. Viscosity results for model eicosane isomers at 310 K. FIG. 3. Viscosity results for model eicosane isomers at 290 K.
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trend agrees with one study27 for n-butane and isobutane.
The same kind of trend was observed in the NEMD simula-
tions of larger molecules, 5-butyl-nonane andn-tridecane in-
teracting through Weeks–Chandler–Anderson~WCA!-type
potentials by Daivis and Evans,23 although an opposite trend
was reported in earlier studies.18,27 Our simulations indicate
the position in the middle part of the chain has very little
effect upon the viscosity.

The simulated viscosities forn-eicosane, 8-t- butylhexa-
decane, and 8-cyclopentylpentadecane show that increasing
the size of the branch at a fixed location has a large effect on
the viscosity. As can be seen from Table II, the viscosity
increases substantially by adding a carbon to the side chain.
Interestingly, the increase in viscosity is substantially larger
in going from at-butyl group to a cyclopental group than
going from a methyl group to at-butyl group. One cannot
attribute this large increase to a loss in flexibility by intro-
duction of a ring structure instead of a fully branched tertiary
group because the vibrations and bond angles were frozen at
their equilibrium values. It was precisely to eliminate these
other variables that these rigid models were selected. It
seems more likely that the effect is due to the geometry of
the side chain, in particular the area that is exposed to dif-
ferent shear planes in couette flow. Finally, we note that the
temperature dependence of the viscosity of all the model
fluids was about the same. The increase in viscosity with
decreasing temperature was fairly small because all of the
simulations were performed at the same density.

IV. CONCLUSIONS

In this work, we have presented the results of NEMD
viscosity simulations for model eicosane isomers as an at-
tempt to isolate branching effects on the viscosity. The het-
erogeneous UA model was used to model dispersion forces
and a torsional potential was used to model changes in the
dihedral angle, but bond lengths and angles were frozen at
their equilibrium values to focus entirely on structural effects
upon the viscosity. Simulations were performed at three tem-
peratures and over a range of shear rates from which the
zero-shear viscosity values were deduced. Our NEMD simu-
lations show that for the models studied, a branch at carbon
2 increases the viscosity significantly from then-alkane case.
As the branch is moved toward the center of the chain, the
viscosity first increases and then decreases. The size of the
chain itself has a more significant effect upon the simulated
viscosity. Particularly interesting was the fact that changing
the t-butyl side group to a cyclopental group increased the
viscosity substantially more than changing a methyl group to
a t-butyl group.
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