Estimation of evapotranspiration in heterogeneous landscape using simplified surface energy balance Operational

T. Alemayehu
Vrije Universiteit Brussel (VUB), tabitew@vub.ac.be

A. van Griensven
Vrije Universiteit Brussel (VUB), UNESCO-IHE

G. Senay
U.S. Geological Survey (USGS) Earth Resource Observation and Science (EROS) center

Willy Bauwens
Vrije Universiteit Brussel (VUB)

Follow this and additional works at: https://scholarsarchive.byu.edu/iemssconference

Part of the Civil Engineering Commons, Data Storage Systems Commons, Environmental Engineering Commons, Hydraulic Engineering Commons, and the Other Civil and Environmental Engineering Commons

https://scholarsarchive.byu.edu/iemssconference/2016/Stream-A/98

This Event is brought to you for free and open access by the Civil and Environmental Engineering at BYU ScholarsArchive. It has been accepted for inclusion in International Congress on Environmental Modelling and Software by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
Estimation of evapotranspiration in heterogeneous landscape using simplified surface energy balance Operational

Alemayehu Ta, van Griensven Aa,b, Senay Gc and Willy Bauwensa

aVrije Universiteit Brussel (VUB), Department of Hydrology and Hydraulic Engineering, Brussel, Belgium (tabitew@vub.ac.be)
bUNESCO-IHE, Department of Water Science and Engineering, Delft, The Netherlands
cU.S. Geological Survey (USGS) Earth Resource Observation and Science (EROS) center, Fort Collins, USA.

Abstract: Evapotranspiration (ET) has important practical significance in water resources planning and management, irrigation scheduling and environmental issues as well as hydrological model parameterization. The objective of this study is to map ET using thermal-based Simplified Surface Energy Balance Operational (SSEBop) model across a heterogeneous landscape in the Mara basin. We used level three clear sky Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature at 1km spatial scale. Since the study area has poor weather monitoring network, the weather parameter required to derive the reference evapotranspiration and evaporative fraction is retrieved from Global Land Data Assimilation System (GLDAS) dataset. The analyses have been carried out from 2002-2010. As it turns out from the analysis, on average ET accounts about 66% of the annual rainfall in the basin, indicating a higher green water flux from the hydrologic cycle. Given the heterogeneity in the land cover, the estimated ET shows a higher spatial variability. Higher ET fluxes are noted for water body, wetland and forested surfaces while sparsely vegetated areas show lower estimates. The estimated ET reveals a pronounced temporal dynamics with relatively higher fluxes peaks in March and October. This result is consistent with seasonal rainfall distribution in the region, indicating the physical consistency of the ET estimates. Furthermore, the SSEBop ET estimates compare fairly well with MOD16 Nile Basin estimates and show a good correlation with the Normalized Vegetation Index (NDVI). The promising results from this study also highlight the potential of globally available, public domain reanalysis climate products for ET mapping in data poor regions.

Keywords: Mara basin; evapotranspiration; MODIS; GLDAS; SSEBop