Jul 12th, 5:30 PM - 5:50 PM

Co-building a simulation model with various stakeholders to assess the sustainability of a regional agricultural system: How to articulate different types of knowledge to manage uncertainty?

Caroline Tardivo
INRA, UMR, CIRAD GREEN, TAC-47F, caroline.tardivo@supagro.inra.fr

Christophe Le Page
CIRAD GREEN, TAC-47F, christophe.le_page@cirad.fr

Jean-Marc Barbier
INRA, UMR, jean-marc.barbier@supagro.inra.fr

Laure Hossard
INRA, UMR, laure.hossard@supagro.inra.fr

Roberto Cittadini
LABINTEX INTA - UMR Innovation INRA, cittadini.roberto@inta.gob.ar

See next page for additional authors

Follow this and additional works at: https://scholarsarchive.byu.edu/iemssconference

Part of the Civil Engineering Commons, Data Storage Systems Commons, Environmental Engineering Commons, Hydraulic Engineering Commons, and the Other Civil and Environmental Engineering Commons

Tardivo, Caroline; Le Page, Christophe; Barbier, Jean-Marc; Hossard, Laure; Cittadini, Roberto; and Delmotte, Sylvestre, "Co-building a simulation model with various stakeholders to assess the sustainability of a regional agricultural system: How to articulate different types of knowledge to manage uncertainty?" (2016). International Congress on Environmental Modelling and Software. 141.
https://scholarsarchive.byu.edu/iemssconference/2016/Stream-D/141

This Event is brought to you for free and open access by the Civil and Environmental Engineering at BYU ScholarsArchive. It has been accepted for inclusion in International Congress on Environmental Modelling and Software by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
Co-building a simulation model with various stakeholders to assess the sustainability of a regional agricultural system: How to articulate different types of knowledge to manage uncertainty?

Caroline Tardivoab, Christophe Le Pageb, Jean-Marc Barbiera, Laure Hossarda, Roberto Cittadinic, Sylvestre Delmottea

a INRA, UMR Innovation 951, Montpellier, France
caroline.tardivo@supagro.inra.fr; jean-marc.barbier@supagro.inra.fr; laure.hossard@supagro.inra.fr; sylvestre.delmotte@supagro.inra.fr

b CIRAD GREEN, TAC-47F, Campus International de Bailleularguet, Montpellier, France
cristophe.le_page@cirad.fr

c LABINTEX INTA - UMR Innovation INRA, Montpellier, France
cittadini.roberto@inta.gob.ar

Abstract: To assess the sustainability of agricultural systems at a regional scale with regards to possible changes in land use and cropping systems, designing simulation models to explore scenarios with stakeholders is a relevant approach. It implies coping with uncertainties from different areas, originating at both levels of imperfect data sets and misunderstood dynamics (due to incompleteness of knowledge and unexpected systemic effects). Additionally, dealing with various types of knowledge to co-design the model generates ambiguity from the simultaneous presence of multiple frames of reference about the system to be represented. On top of that, specifying scenarios to be explored with the simulation tool requires drawing knowledge-based, coherent pictures of the inherently uncertain future. All these dimensions of uncertainty merged in the context of a co-modelling process that took place on a small French territory “Plateau de Valensole” in 2014-2016. About 30 participants (farmers, stakeholders, researchers) were involved during the process. For the design of a stylized spatial representation of the agro-ecological system, the construction of a farm typology, the specification of plausible scenarios of evolution and the choice of indicators for the assessment, different types of knowledge have been mobilized in different ways (collective workshops, individual interviews) and for different purposes (knowledge extracting or co-design). Other sources of information (regional databases and maps) were also used when knowledge was lacking or too uncertain. This methodological combination was found to be relevant to address the issue of tackling uncertainty in the modelling process. In this presentation, the simulation tool will also be presented, together with an example of the results obtained by simulating one scenario.

Keywords: Agricultural system; collaborative modelling; knowledge coproduction; uncertainty; agent-based simulation.