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INTERIOR BLOWUP IN A CONVECTION-DIFFUSION EQUATION∗

CHRISTOPHER P. GRANT†

SIAM J. MATH. ANAL. c© 1998 Society for Industrial and Applied Mathematics
Vol. 29, No. 6, pp. 1447–1458, November 1998 008

Abstract. This paper addresses the qualitative behavior of a nonlinear convection-diffusion
equation on a smooth bounded domain in Rn, in which the strength of the convection grows super-
linearly as the density increases. While the initial-boundary value problem is guaranteed to have
a local-in-time solution for smooth initial data, it is possible for this solution to be extinguished in
finite time. We demonstrate that the way this may occur is through finite-time “blow up,” i.e., the
unboundedness of the solution in arbitrarily small neighborhoods of one or more points in the closure
of the spatial domain. In special circumstances, such as the presence of radial symmetry, the set of
blowup points can be identified; these points may be either on the boundary or on the interior of the
domain. Furthermore, criteria can be established that guarantee that blowup occurs. In this paper,
such criteria are presented, involving the dimension of the space, the growth rate of the nonlinearity,
the strength of the imposed convection field, the diameter of the domain, and the mass of the initial
data. Furthermore, the temporal rate of blowup is estimated.
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1. Introduction. Let Ω ⊂ Rn be a bounded domain with smooth boundary,
and consider the initial-boundary value problem

ut = div(∇u− uq~a), (x, t) ∈ Ω× (0, T ),

uν = uq~a · ~ν, (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x), x ∈ Ω,

(1.1)

where ~ν is the unit outward normal on ∂Ω and uν is the corresponding directional
derivative, and (for simplicity) the initial data u0 are assumed to be extendable to a
smooth, positive function on Ω that satisfies the boundary conditions.

The unknown quantity u = u(x, t) represents the local density of some material
that is evolving in response to diffusion and the effects of an imposed convection field
~a : Ω→ Rn. The exponent q (which we shall call the exponent of the nonlinearity) is
assumed to be greater than 1, so the magnitude of the convection term is superlinear
in u.

Although (1.1) is similar in many respects to equations appearing in the scientific
literature (see, e.g., [6] and [10]), the motivation for studying it has less to do with its
applicability to any specific physical problem than with its role as an archetype for
interacting diffusion and nonlinear convection. In this sense, it plays a role similar to
the one that the nonlinear heat equation of Fujita [5],

ut = ∆u+ up,(1.2)

has come to play for the study of the interaction between diffusion and nonlinear
reaction. (For a survey of (1.2) and related equations, see [8].)
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The Cauchy problem corresponding to (1.1) in the special case that the convection
field is constant has been studied in a series of papers [3], [4], [12]. In that context,
solutions decay to zero as t→∞, with the asymptotic profile of the decaying solution
depending on the particular value of the exponent q.

The one-dimensional version of (1.1) with constant convection
ut = (ux + uq)x, (x, t) ∈ (0, 1)× (0, T ),

ux + uq = 0, (x, t) ∈ {0, 1} × (0, T ),

u(x, 0) = u0(x), x ∈ (0, 1),

(1.3)

was studied in [1] and [2]. While solutions to (1.3) stabilize as t→∞ if q < 2, if q > 2
the convection is strong enough that its concentrating force, in combination with the
obstacle posed by the boundary, can overwhelm the diffusion’s homogenizing force on
the boundary, and solutions can blow up in finite time. By this it is meant that there
is a time T such that (1.3) has a classical solution for t ∈ (0, T ), but

lim sup
t→T

‖u(·, t)‖∞ = +∞.(1.4)

(Here and throughout this paper ‖ψ‖p will represent the Lp norm on the domain
of ψ.) The value of T for which (1.4) holds, if it exists, is called the blowup time of
the solution.

The purpose of this paper is to address questions about the qualitative behavior
of solutions to (1.1): Do solutions exist globally (i.e., for T = +∞)? Can solutions
blow up in finite time? At what points in Ω does blowup occur? What can be said
about the asymptotic form of u as the blowup time is approached?

Throughout the remainder of this paper, we will confine our attention to the case
that ~a is conservative. More precisely, we shall assume the existence of a continuous
function f : Ω → R such that ∇f = ~a. Note that this case includes the case of
constant convection.

The first thing that we will show is that the only way solutions to (1.1) can cease
to exist is by blowing up.

Theorem 1.1. Given u0 and sufficiently smooth ~a, (1.1) has a (unique) positive
classical solution for some T > 0. Furthermore, if T ∗ is the supremum of all T > 0
for which (1.1) has a solution and T ∗ < +∞, then lim supt→T∗ ‖u(·, t)‖∞ = +∞.

In order to obtain more detailed information about the way that blowup can
occur, we will focus on the special case of radial symmetry. Consider the following
conditions:

(R1) Ω = B(0, R) := {x ∈ Rn : |x| < R}.
(R2) ~a(x) = −g(r)x/r for some function g : [0, R]→ [0,∞). (Here and through-

out this paper, r := |x|.)
(R3) ~a(x) = g(r)x/r for some function g : [0, R]→ [0,∞).
(R4) u0(x) = U0(r).
The following theorem limits the set of possible blowup points for (1.1). (We will

call a point x ∈ Ω a blowup point if there is not a neighborhood N of x in Ω such
that u remains bounded on N ∩ Ω.)

Theorem 1.2. Under conditions (R1), (R2), and (R4), the only possible blowup
point for (1.1) is the origin. Under conditions (R1), (R3), and (R4), all blowup points
lie on the sphere ∂Ω.



INTERIOR BLOWUP IN A CONVECTION-DIFFUSION EQUATION 1449

In keeping with our interpretation of u as a density, we define the mass M of u
by

M = M(u) =

∫
Ω

u dx.

Note that (1.1) conserves mass, since

Mt =

(∫
Ω

u dx

)
t

=

∫
Ω

ut dx =

∫
Ω

div(∇u− uq~a) dx

=

∫
∂Ω

(∇u− uq~a) · ~ν dσ = 0.

If, in addition to assuming that the convection is unidirectional and radially
oriented, we assume that the convection is inward at the origin and not too weak
and that the mass is not too small, we can show that finite-time blowup does occur.
More precisely, we have the following result.

Theorem 1.3. Suppose q > 2, (R1) and (R2) hold, and there exist constants
C > 0 and p < n(q−1)−1 such that g(r) ≥ Crp for all r ∈ [0, R]. Then there exists a
constant M0 = M0(C, p, q, n,R) such that if the mass M(u0) > M0, then the solution
u of (1.1) blows up in finite time.

Note that Theorem 1.3 makes no assumption about the radial symmetry of the
initial data (and, therefore, of the solution). If this assumption is added, then Theorem
1.2 identifies the point where the blowup takes place.

In situations where finite-time blowup does occur and the strength of the con-
vection field can be appropriately bounded, the rate at which blowup occurs can be
estimated.

Theorem 1.4. Suppose hypotheses (R1) and (R2) hold and the solution u of
(1.1) blows up at the origin at time T ∈ (0,∞). If g(r) ≤ Crp for some constants
C > 0 and p < n(q − 1) − 1 and all r ∈ [0, R], then there exists a constant K such
that, for all t < T ,

‖u(·, t)‖∞ ≥ K

(T − t)β ,(1.5)

where

β =
p+ 1

(n+ p+ 1)(q − 1)
.(1.6)

If, in addition, hypothesis (R4) holds, then (1.5) holds for

β =
p+ 1

n(q − 1)− (p+ 1)
.(1.7)

We will proceed as follows. In section 2 we will prove that a unique solution of
(1.1) exists locally for smooth initial data and that the only way this solution can fail
to be global is for it to blow up. In section 3 we will prove the specific results about
radially symmetric systems.
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2. Existence until blowup. For the proof of Theorem 1.1, as well as for other
reasons, it will be helpful to understand the set E of positive equilibrium solutions,
i.e., functions u0 : Ω→ (0,∞) for which u(x, t) ≡ u0(x) solves (1.1).

Suppose u = u(x) is a positive equilibrium solution, and let w = u(1−q)/(1−q)−f .
A calculation shows that

div(uq∇w) = 0(2.1)

in Ω and

uq
∂w

∂ν
= 0(2.2)

on ∂Ω. Multiplying (2.1) by w and using the generalized divergence theorem and the
boundary condition (2.2) yields ∫

Ω

uq|∇w|2dx = 0.

Thus, ∇w ≡ 0, which implies that

u(x) =
1

[(q − 1)(C − f(x))]1/(q−1)
(2.3)

for some constant C. It is easy to check that (2.3) defines an equilibrium solution of
(1.1) for every C > ‖f‖∞.

Among the facts about E that follow immediately from this explicit formula is
the one that we state without proof in the following lemma.

Lemma 2.1. If E is the set of positive equilibrium solutions of (1.1) and k ∈
(0,∞), then

#{u ∈ E : ‖u‖∞ = k} = 1.

We now proceed to prove that the only way that solutions can fail to be global is
for them to blow up in finite time.

Proof of Theorem 1.1. Let positive initial data u0 be given. Pick b, c > 0 such
that u0(x) ∈ (b, c) for every x ∈ Ω, and pick b′ ∈ (0, b) and c′ ∈ (c,∞). Now, choose
h : R→ R to be a C∞ function, such that h(σ) = σq for σ ∈ (b′, c′) and h(σ) = 0 if
σ < b′/2 or if σ > 2c′. Let (1.1′) be the initial-boundary value problem that results
when uq in (1.1) is replaced by h(u). From Theorem 7.4 in [7], we know (1.1′) has
a unique solution ũ and it exists globally. (In fact, for given θ > 0, existence of a
solution in C2+θ,1+θ/2 is guaranteed if ~a ∈ C1+θ and ∂Ω ∈ C2+θ.) Note that for some
T > 0, u = ũ is also a solution of (1.1) for t < T . This proves the first half of the
theorem.

Let T ∗ be as defined in the statement of the theorem, and suppose

lim sup
t→T∗

‖u(·, t)‖∞ < +∞.

Let b and c be as above. By Lemma 2.1, we can choose u1 ∈ E with ‖u1‖∞ < b. Pick
b′ > 0 small enough that u1(x) > b′ for every x ∈ Ω. Pick the value c′ > c large
enough that u(x, t) < c′ − 1 for all t < T ∗. Now, consider the solution ũ to (1.1′).
Note that u1 is an equilibrium solution for the modified equation as well, so by the
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strong maximum principle ũ > u1. Thus, ũ never leaves the interval (b′, c′) where
the cutoff function h agrees with u 7→ uq. Hence, u = ũ is a global solution to (1.1),
which implies that T ∗ = +∞. This proves the second half of the theorem.

Throughout the remainder of this paper we shall assume that ~a ∈ C1+θ for some
θ > 0.

3. Radially symmetric systems. The proof of Theorem 1.2 hinges on the
existence of quantities which remain bounded and which tie u to ur. Such quantities
are described in the following lemma.

Lemma 3.1. Suppose hypotheses (R1) and (R4) are satisfied. Suppose also that
initial data u0 are given and u is the corresponding solution to (1.1). Then

1. if hypothesis (R2) is satisfied, then u is radially symmetric and the quantity
Q(x, t) := rn−1(ur + uqg(r)) is bounded on Ω× (0, T );

2. if hypothesis (R3) is satisfied, then u is radially symmetric and the quantity
Q(x, t) := rn−1(ur − uqg(r)) is bounded on Ω× (0, T ).

Proof. The radial symmetry of u in either case is a consequence of the uniqueness
of solutions to (1.1) (which was established in Theorem 1.1).

Suppose hypotheses (R1), (R2), and (R4) are satisfied, and let

Q(x, t) = rn−1(ur + uqg(r)).

A calculation shows that Q satisfies the initial-boundary problem
Qt = ∆Q+ quq−1g(r)Qr, (x, t) ∈ Ω× (0, T ),

Q = 0, (x, t) ∈ ∂Ω× (0, T ),

Q(x, 0) = Q0(x, t) := rn−1(u0r + uq0g(r)), x ∈ Ω.

By the weak maximum principle for parabolic equations (see [9]),

−‖Q0‖∞ ≤ Q(x, t) ≤ ‖Q0‖∞(3.1)

for all x ∈ Ω and all t > 0. This completes the proof of part 1.
Now, suppose hypotheses (R1), (R3), and (R4) are satisfied, and let Q(x, t) =

rn−1(ur − uqg(r)). By an argument similar to the one before, we find, once again,
that (3.1) holds for all x ∈ Ω and all t > 0, where, now, Q0(x) = rn−1(u0r − uq0g(r)).
This completes the proof of part 2.

Proof of Theorem 1.2. Under hypotheses (R1), (R2), and (R4), part 1 of Lemma
3.1 states that the quantity Q := rn−1(ur + uqg(r)) is bounded, say, by C. Thus,

ur ≤ C

rn−1
− uqg(r)(3.2)

for all nonzero x ∈ Ω and all t > 0.
If u had a blowup point x0 6= 0, then (3.2) would imply the existence of ε > 0

and a sequence of times t1, t2, t3, . . . such that u(x, tn) > n for every x ∈ B(0, |x0|) \
B(0, |x0|−ε). Because of the nonnegativity of u, this would contradict the conservation
of mass. Hence, 0 is the only possible blowup point.

If hypothesis (R2) is replaced by (R3), part 2 of Lemma 3.1 states that the
quantity Q := rn−1(ur − uqg(r)) is bounded, say, by C. Thus,

− C

rn−1
+ uqg(r) ≤ ur(3.3)
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for all nonzero x ∈ Ω and all t > 0.
If u had a blowup point x0 with 0 < |x0| < R, then (3.2) would imply the

existence of ε > 0 and a sequence of times t1, t2, t3, . . . such that u(x, tn) > n for
every x ∈ B(0, |x0| + ε) \ B(0, |x0|). Because of the nonnegativity of u, this would
again contradict the conservation of mass.

Now, note that, from the definition of blowup point, if x0 ∈ Ω is not a blowup
point, then there exists δ > 0 such that if x1 ∈ Ω and |x1 − x0| < δ, then x1 is not
a blowup point either. Hence, the complement of the set of blowup points is open
(relative to Ω) and the set of blowup points is closed (relative to Ω). In combination
with the result of the previous paragraph, this implies that 0 is not a blowup point.
Thus, any blowup points must lie on ∂Ω.

The crucial idea in proving Theorem 1.3 is focusing on the amount of mass that
has accumulated in a neighborhood of a potential blowup point rather than focusing
on the density itself.

Proof of Theorem 1.3. Suppose hypotheses (R1) and (R2) hold and that p, q,
and C satisfy the conditions in the statement of the theorem. To prove blowup, we
measure the concentration of mass near the origin with the variable w : [0, Rn]×(0, T )
defined by

w(ρ, t) =

∫
B(0,ρ1/n)

u(x, t) dx.

Straightforward computations reveal that

wt =

∫
S(0,ρ1/n)

(ur + uqg(ρ1/n)) dσ(x),(3.4)

wρ =
ρ(1−n)/n

n

∫
S(0,ρ1/n)

u dσ(x),(3.5)

and

wρρ =
ρ(2−2n)/n

n2

∫
S(0,ρ1/n)

ur dσ(x).(3.6)

Since ξ 7→ ξq is convex on (0,∞), applying Jensen’s inequality [11] to (3.5) (after
scaling dσ(x) so that it is a probability measure) and combining it with (3.4) and
(3.6) yield

wt ≥ n2ρ2γwρρ + nqω1−q
n ργg(ρ1/n)wqρ(3.7)

for all ρ ∈ (0, Rn), where ωn is the area of the unit sphere in Rn and γ = (n− 1)/n.
Let p′ = max{p, n− 1}. Since, by hypothesis, g(r) ≥ Crp, we have

g(r) ≥ C ′rp′ ,(3.8)

for all r ∈ [0, R], where C ′ = CRp−p
′
> 0. Using (3.8) and the fact that, by definition,

wρ is nonnegative, (3.7) implies that

wt ≥ n2ρ2γwρρ + C ′nqω1−q
n ργ+p′/nwqρ.(3.9)
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Now, define

M0 = ωn

(
p′ + 1

C ′(q − 1)

)1/(q−1)
Rn−(p′+1)/(q−1)

n− p′+1
q−1

.

By hypothesis, p < n(q−1)−1 and q > 2. The first implies that n−(p+1)/(q−1) > 0
and the second implies that n − ((n − 1) + 1)/(q − 1) > 0. Since either p′ = p or
p′ = n − 1, we can conclude that n − (p′ + 1)/(q − 1) > 0, so M0 is well defined,
positive, and finite.

Suppose that M = M(u0) > M0, and set

z(ρ, t) =


0 if ρ ∈ [0, α(t)),

M

(
ρ− α(t)

Rn

)λ
if ρ ∈ [α(t), Rn],

where

λ = 1− p′ + 1

n(q − 1)

and α(t) is a continuous, decreasing function of t yet to be determined. Note that,
from the discussion in the previous paragraph, λ ∈ (0, 1). Thus, in particular, z is
continuous.

If possible, we want to choose α so that z can serve as a comparison function
with which we can estimate w and, thereby, u. In particular, we want z to satisfy the
opposite inequality to (3.9); i.e., we want z to satisfy

zt ≤ n2ρ2γzρρ + C ′nqω1−q
n ργ+p′/nzqρ(3.10)

whenever ρ 6= α(t). Clearly, (3.10) is satisfied whenever ρ < α(t). A straightforward
calculation reveals that (3.10) is satisfied for ρ > α(t) if and only if

−α′(t) ≤ (ρ− α(t))−µρ2γ(Aρµ−1 −B(ρ− α(t))µ−1),(3.11)

where µ = (p′ + 1)/n,

A = C ′
(
Mλ

ωn

)q−1

nqRn(µ−q+1),

and B = n2(1−λ). Another calculation reveals that, because M > M0, A > B. Since
ρ > α(t), ρ > ρ− α(t), and µ− 1 ≥ 0, this means that (3.11) will be satisfied if

−α′(t) ≤ (A−B)(α(t))1−2/n.(3.12)

If we take α(t) to be the solution of the initial value problem{
α′(t) = −(A−B)(α(t))1−2/n,

α(0) = Rn,

then (3.12) will be satisfied, and furthermore, there will be some finite T ∗ such that
α(t)→ 0 as t→ T ∗.

Now, suppose that the solution u to (1.1) does not blow up by time T ∗. Then, by
Theorem 1.1, u is defined for t ∈ [0, T ∗]. Consider the function y : [0, Rn]×[0, T ∗]→ R
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defined by y(ρ, t) = e−t(z(ρ, t)−w(ρ, t)). We claim that y ≤ 0 on its domain D. If it
is not, then since y is continuous, it must achieve a positive maximum on D.

Note that

y(ρ, 0) = z(ρ, 0)− w(ρ, 0) = −
∫
B(0,ρ1/n)

u0(x) dx ≤ 0,

y(0, t) = e−t(z(0, t)− w(0, t)) = 0, and

y(Rn, t) = e−t(z(Rn, t)− w(Rn, t)) = e−t
(
M

(
Rn − α(t)

Rn

)λ
−M

)
≤ 0,

so y does not achieve a positive maximum on

{(ρ, 0) : ρ ∈ [0, Rn]} ∪ {(0, t) : t ∈ [0, T ∗]} ∪ {(Rn, t) : t ∈ [0, T ∗]}.
Also, because λ < 1,

lim
ρ→α(t)+

zρ(ρ, t) = −∞,

so y cannot achieve a positive maximum at a point where ρ = α(t). This implies that
at a positive maximum, y must satisfy yρ = 0, yρρ ≤ 0, and yt ≥ 0. But, using (3.9)
and (3.10), that would mean that at such a point

yt = −y + e−t(zt − wt)
≤ −y + e−t(n2ρ2γ(z − w)ρρ + C ′nqω1−q

n ργ+p′/n(zqρ − wqρ))
= −y + n2ρ2γyρρ < 0,

which is a contradiction.
This contradiction verifies the nonnegativity of y, which means that w ≥ z on all

of D. But it is not hard to see that sup{z(ρ, t)/ρ : ρ ∈ (0, Rn)} becomes unbounded
as t → T ∗, so sup{w(ρ, t)/ρ : ρ ∈ (0, Rn)} must also become unbounded. From the
definition of w and the mean value theorem for integrals, this, in turn, implies that
‖u(·, t)‖∞ becomes unbounded as t → T ∗, contradicting the assumption that u does
not blow up by time T ∗. This completes the proof.

In order to prove the estimates on the temporal blowup rate, it will be helpful to
have the following technical lemma, which estimates the degree to which equilibrium
solutions concentrate mass near the origin.

Lemma 3.2. Suppose that (R1) and (R2) hold and that g(r) ≤ Crp for some
p < n(q − 1)− 1 and all r ∈ [0, R], and let

wc(ρ) =

∫
B(0,ρ1/n)

uc(x) dx,

where

uc(x) = sup{u(x) : u ∈ E}.
Then

ρ 7→ −
∫
B(0,ρ1/n)

u(x) dx
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is convex for any u ∈ E, and so is −wc. Furthermore, there exists a positive constant
K ′ such that

sup{wc(ρ)− λρ : ρ ∈ [0, Rn]} ≥ K ′λµ(3.13)

for every λ sufficiently large, where

µ = 1− n(q − 1)

p+ 1
.(3.14)

Proof. It is not hard to see (e.g., by examining (2.3)) that uc is radially symmetric
and satisfies the same equation as the members of E but has a singularity at the origin.
Furthermore, its radial symmetry implies that equality holds in (3.7) for w = wc
(because Jensen’s inequality is an equality in that case). Hence,

w′′c = −K ′ρ−(n−1)/ng(ρ1/n)(w′c)
q(3.15)

for some positive constant K ′. (Throughout this proof, K ′ will represent a positive
constant whose value may change from line to line.) Note that (3.15) implies the
convexity of −wc, and since

ρ 7→ −
∫
B(0,ρ1/n)

u(x) dx

satisfies a similar equation for any u ∈ E , it is convex also.
Integrating (3.15) and using the fact that w′c(ρ)→ +∞ as ρ approaches zero from

the right yield

w′c(ρ) = K ′
(∫ ρ

0

σ(1−n)/ng(σ1/n) dσ

)−1/(q−1)

.(3.16)

Applying the fact that wc(0) = 0 and the assumption that g(r) ≤ Crp in (3.16) yields

wc(ρ) ≥ K ′ρµ,(3.17)

where µ is as in (3.14). Using (3.17), it is a straightforward calculus exercise to verify
that (3.13) holds for all λ sufficiently large.

Lemma 3.2 provides a crucial estimate for constructing a type of supersolution
that will provide an estimate of the blowup rate.

Proof of Theorem 1.4. Assume that the hypotheses (R1) and (R2) hold and that
g(r) ≤ Crp for some constants C > 0 and p < n(q − 1) − 1 and for all r ∈ [0, R].
Assume also that the solution u of (1.1) blows up at the origin at time T ∈ (0,∞).
Fix t0 ∈ (0, T ), and let λ = (ωn/n)‖u(·, t0)‖∞.

Pick ũ ∈ E such that ‖ũ‖∞ > ‖u(·, t0)‖∞, and let

w̃(ρ) =

∫
B(0,ρ1/n)

ũ(x) dx.

For y between 0 and

G[w̃] := sup{w̃(ρ)− λρ : ρ ∈ [0, Rn]},
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let %(y) be the leftmost zero of w̃(ρ)− λρ− y. For t ≥ t0 consider the function

z(ρ, t) =

{
w̃(ρ) if ρ ∈ [0, %(v(t− t0))],
λρ+ v(t− t0) if ρ ∈ [%(v(t− t0)), Rn],

where v is a positive constant to be specified later. The intention is that by picking
v appropriately, z(ρ, t) will serve as an upper bound for

w(ρ, t) :=

∫
B(0,ρ1/n)

u(x, t) dx,(3.18)

and therefore, ‖ũ‖∞ will bound u in a neighborhood of the origin.
Under the assumptions made above, let v = CRpnqω1−q

n λq. We claim that w ≤ z
as long as z is well defined (i.e., until w̃(ρ) − λρ − v(t − t0) has no zeros). By the
strong maximum principle, it suffices to prove that W ≤ z, where

W (ρ, t) :=

∫
B(0,ρ1/n)

U(x, t) dx,

and U is a radially symmetric solution of (1.1) for t ≥ t0 that satisfies u(x, t0) ≤
U(x, t0) ≤ ‖u(·, t0)‖∞.

Suppose that W (ρ, t) > z(ρ, t) for some ρ ∈ [0, Rn] and some t ≥ t0. Note that
by the choice of λ, W (ρ, t0) ≤ z(ρ, t0). Also, W (0, t) = z(0, t) = 0 and W (Rn, t) =
W (Rn, t0) ≤ z(Rn, t0) ≤ z(Rn, t) for every t ≥ t0. Thus, there must be some t1 > t0
and ρ1 ∈ (0, Rn) for which ζ := (W−z)e−t satisfies ζ(ρ1, t1) > 0 and ζ(ρ1, t1) ≥ ζ(ρ, t)
for every t ∈ [t0, t1] and every ρ ∈ [0, Rn]. Note that (ρ1, t1) cannot be a point
(%(v(t1 − t0)), t1) at which ζ is not smooth because W is continuously differentiable
and the limit of zρ(ρ, t1) as ρ approaches %(v(t1− t0)) from the left is higher than the
corresponding right-hand limit. Hence, it must be the case that

ζρ(ρ1, t1) = 0,(3.19)

ζρρ(ρ1, t1) ≤ 0,(3.20)

and

ζt(ρ1, t1) ≥ 0.(3.21)

Equation (3.19) implies that

Wρ(ρ1, t1) = zρ(ρ1, t1),(3.22)

and (3.20) implies that

Wρρ(ρ1, t1) ≤ zρρ(ρ1, t1).(3.23)

But, because z = w̃ for ρ < %(v(t1 − t0)), and because of the choice of v,

zt ≥ n2ρ2γzρρ + nqω1−q
n ργg(ρ1/n)zqρ(3.24)

at (ρ1, t1). Also, the radial symmetry of W implies that

Wt = n2ρ2γWρρ + nqω1−q
n ργg(ρ1/n)W q

ρ .(3.25)
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Using (3.22)−(3.25) we find that at (ρ1, t1)

ζt = −ζ + (Wt − zt)e−t ≤ −ζ < 0,

which contradicts (3.21), so w(ρ, t) ≤ z(ρ, t) for all ρ ∈ [0, Rn] and all t ≥ t0 for which
z is defined. As was mentioned above, this implies that u does not blow up in this
time interval.

Note that the length of this time interval past t0 on which u is guaranteed not
to blow up is proportional to G[w̃] (because of the convexity of −w̃) and inversely
proportional to v. Letting ũ → uc (and, therefore, w̃ → wc) and using Lemma 3.2
(which estimates G[wc]), we find that

T − t0 ≥ C̃‖u(·, t0)‖µ−q∞ ,(3.26)

for some constant C̃ (independent of t0), if ‖u(·, t0)‖∞ is sufficiently large. It is not
hard to see that (by possibly decreasing C̃) we can get (3.26) to hold for t0 bounded
away from T as well, so (3.26) holds for all t0 ≥ 0. Replacing t0 by t and rewriting
(3.26) we get (1.5) and (1.6).

Now, suppose that the hypothesis of radial symmetry for u is added. Let w be
defined as in (3.18). By part 1 of Lemma 3.1, Q := rn−1(ur+uqg(r)) is bounded by a
constant v, and a calculation shows that wt = Q. Using this fact, an improved lower
bound on the size of the remaining interval existence until blowup can be obtained
in much the same way as the previous bound. In particular, we can define z as
previously but pick v in the definition of z to be equal to the constant that bounds Q.
An argument similar to the one used before implies that w ≤ z as long as z is defined;
the only difference is that for ρ > %(v(t1 − t0)), the inequality (3.24) no longer holds,
so we use the fact that the constant v bounds wt in place of the combination of (3.24)
and (3.25) to conclude directly that zt ≥ wt for such ρ. Since v is now independent
of λ, we obtain

T − t0 ≥ C̃‖u(·, t0)‖µ∞
in place of (3.26). The estimate (1.5) with (1.7) is an immediate consequence.
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