Analysing Urban Development with Decision Tree Based Cellular Automata. Toward an automatic Transition rules creation process

V. Judge
ThéMA UMR 6049 Université de Franche-Comté, LISER 11 Porte des Sciences, valentine.judge@univ-fcomte.fr

O. Klein
LISER 11 Porte des Sciences, olivier.klein@liser.lu

J. P. Antoni
ThéMA UMR 6049 Université de Franche-Comté, jean-philippe.antoni@u-bourgogne.fr

Follow this and additional works at: https://scholarsarchive.byu.edu/iemssconference

Part of the Civil Engineering Commons, Data Storage Systems Commons, Environmental Engineering Commons, Hydraulic Engineering Commons, and the Other Civil and Environmental Engineering Commons

https://scholarsarchive.byu.edu/iemssconference/2016/Stream-C/52

This Event is brought to you for free and open access by the Civil and Environmental Engineering at BYU ScholarsArchive. It has been accepted for inclusion in International Congress on Environmental Modelling and Software by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
Analysing Urban Development with Decision Tree Based Cellular Automata. Toward an automatic Transition rules creation process.

V. Judgea,b, O. Kleinb, J.P. Antonia
aThéMA UMR 6049 Université de Franche-Comté 32 rue Mégevand 25030 Besançon FRANCE
bLISER 11 Porte des Sciences L-4363 Esch-sur-Alzette LUXEMBOURG
valentine.judge@univ-fcomte.fr; olivier.klein@liser.lu; jean-philippe.antoni@u-bourgogne.fr

Abstract: Land use evolution study has become a major stake in urban planning. One of the main challenge is to understand processes behind. Various studies highlight the usefulness of simulation tools in research focusing on land use change. Among simulation tools, Cellular Automata (CA) are well adapted with their geometric properties and potential to identify emerging spatial structures and processes. The transition rules definition is a key step of these CA-based simulations. Indeed, “in the context of urban systems, we often have no idea what the ‘right’ rules are” (Torrens, 2011). In our approach “right rules” should be thematically interpretable rules reproducing observed changes.
This communication tackles the issue of CA rules creation and proposes to use Decision Tree (DT) to automatically design and calibrate them. The assumption lying behind the process is that land use composition of the neighbourhood has an influence on the transition of a cell.
The methodology is developed and tested on Strasbourg-Kehl cross border area with a CorineLandCover dataset. Each cell is characterized by variables representing its neighbourhood and geographical location features. The main focus is on cells that underwent a transition from a non-urban to an urban land use in order to address the urban development issue. Results obtained using the decision tree help to create a set of transition rules based on information about the type of neighbourhoods that lead to urban transitions. The efficiency of the DT transition rules sets is evaluated comparing observed land use cover evolution from CorineLandCover database and CA based simulated data.

Keywords: Cellular Automata; Decision Tree; Spatial simulation; Urban planning