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Abstract: Smart metering technologies allow for gathering high resolution water demand
data in the residential sector, opening up new opportunities for the development of mod-
els describing water consumers’ behaviors. Yet, gathering such accurate water demand
data at the end-use level is limited by metering intrusiveness, costs, and privacy issues.
In this paper, we contribute a stochastic simulation model for synthetically generating
high-resolution time series of water use at the end-use level. Each water end-use fix-
ture in our model is characterized by its signature (i.e., its typical single-use pattern), as
well as frequency distributions of its number of uses per day, single use duration, time
of use during the day, and contribution to the total household water demand. The model
relies on statistical data from a real-world metering campaign across 9 cities in the US.
Showcasing our model outputs, we demonstrate the potential usability of this model for
characterizing the water end-use demands of different communities, as well as for ana-
lyzing the major components of peak demand and performing scenario analysis.

Keywords: end-use water demand; synthetic data; smart metering; water demand man-
agement

1 INTRODUCTION

The design of demand-side management strategies for securing reliable water supply
and reducing water utilities’ costs in urban contexts has been recently acquiring more
and more importance as residential water demand contributes a large share of the total
urban freshwater demand, with projections foreseeing a substantial increase in the next
decades (UNDESA, 2014; Cosgrove and Cosgrove, 2012). The advent of smart meter-
ing technologies in the late 1990s (Mayer and DeOreo, 1999) prompted the collection of
high spatial (household) and temporal (up to few seconds) resolution water consumption
data, opening up new opportunities for the development of models describing water con-
sumers’ behaviors and ultimately contributing to the design of customized water demand
management strategies (Rizzoli et al., 2014). First, smart-metered data advanced the
development of water end-use characterization algorithms (e.g., Nguyen et al., 2013),
finalized to breaking down total consumption data detected at the household level into
the different end-use categories. In addition, these data allow improving the accuracy of
residential water demand models, which support both users’ segmentation by analysis
of observed water consumption patterns and historical trends, and prediction of the ex-
pected water demand, under social, climate or management scenarios (for a review see
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Cominola et al., 2015a, and references therein).

Yet, assimilating accurate ground-truth water demand data at the end-use level for large
household samples is currently limited by intrusiveness issues and costs, which become
more constraining when time and resource intensive human activities (e.g., surveys, au-
dits, and water diaries) are put in place (Cordell et al., 2003; Stewart et al., 2010). For this
reason, the implementation, calibration, and validation of most end-use water demand
models have been, so far, relying on end-use data collected with ad-hoc experimental
trials and research projects, involving a limited number of households, usually lower than
100 (e.g., Mayer et al., 2004; Froehlich et al., 2009; Suero et al., 2012). In addition, the
data collected within these initiatives are hardly shared or made public available because
of privacy and data access issues.

In this paper, we contribute an open-source, stochastic simulation model for synthetically
generating high-resolution time series of water use at the end-use level. Each water
end-use fixture in our model is characterized by its signature (i.e., its typical single-usage
pattern (Cardell-Oliver, 2013)), along with the frequency distributions of its number of
uses per day, single use duration, time of use during the day, and contribution to the total
water demand. Such statistics, aggregated from high-efficiency water demand data gath-
ered in 2005-2006 from over 300 single family homes located in 9 cities across the USA,
are conditioned to the number of occupants of the household, the presence of water con-
suming fixtures, and appliance efficiency levels, which represent the only inputs required
to run the model for a single household. At the best of authors knowledge, only few works
provide tools for synthetically generating end-use water demand data through stochastic
generation and Monte Carlo sampling (e.g, Blokker et al. (2010); Rosenberg et al. (2007);
Abdallah and Rosenberg (2014); Escriva-Bou et al. (2015), or the online tool Waterville
- http://waterville.hrwallingford.com/waterville/). Our model advances these tools as (i)
it is built upon a dataset of high-resolution, smart-metered water demands, consistently
related to a set of appliance statistics from the same household sample, (ii) it generates
end-use time series of water use preserving the typical usage pattern of each fixture,
thus end-use events do not consists of simple demand pulses, and (iii) it allows simu-
lating household water demands under diverse social and technological scenarios, as
well as sampling resolutions and sample size, thus allowing the generation of scenarios
different form the one represented by a direct analysis of end-use calibration data.

The paper is organized as follows: we first describe the features of our model (section
2); numerical results are reported in section 3; final remarks about the model and its
potential applications are presented in the last section.

2 MATERIALS AND METHODS

Our stochastic simulation algorithm operates according to the phases detailed below. In
short, given a sample of houses with associated number of occupants, available water
consuming fixtures, and fixture efficiency, the model simulates both the end-use time se-
ries of water use and their aggregation as total household water demand, with a time
resolution (i.e., the simulation time step) up to 1 second, for the defined simulation hori-
zon.

ASSUMPTIONS Considering a single house, in our stochastic model we assume that
the time series of water use of a generic j-th water consuming fixture (e.g., toilet, faucet,
shower, etc...) during a given d-th day can be characterized by the following elements: (i)
number of times the j-th fixture is used during the day (each time it is used will be later
referred as consumption event); (ii) starting time of use during the day for each consump-
tion event; (iii) duration of each consumption event, in seconds; and (iv) volume of water
required by each consumption event, in liters. In addition, we assume that each end-use
consumption event can be shaped according to the specific signature of its fixture, i.e.,
the characteristic water use series over time for a single consumption event of a spe-
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cific end-use, such as the ones represented in Figure 1, properly stretched according to
consumption event duration and water volume. A number of stretched signatures equal
to the number of daily consumption events of each fixture are then assembled to form
the end-use daily time series of water use. Finally, we assume that each fixture can be
operated at most only once during each simulation time step.
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Figure 1. Sample signatures for standard-efficiency toilet and shower fixtures.

MODEL INPUTS Our stochastic model requires the specification of the following inputs:

e sample size N, i.e., number of households for which the model will simulate water
demands;

e house size H = {hqy,ha, ..., An}, h; > 0Vi € [1, N, i.e., number of occupants for each
house in the sample;

o fixture presence K; = {ki,ko,...,kn}, k; € {0,1}Vj € [1,M], i.e., a binary index
specifying the presence (absence) of the j-th fixture in the i-th household;

o fixture efficiency level E; = {e1,ea,...,en},e; € {0,1}Vj € [1, M], i.e., a binary index
specifying the efficiency level (standard or high) of each fixture in each household.
Standard and high efficient fixtures are assumed to differ as for the water demand and
duration required by their usage, as well as their signature. All other features (e.g.,
time of use) are assumed to be commonly shared by normal and efficient fixtures.

¢ length of the simulation horizon T', in days.
e time sampling resolution r,r > 0 for the output demand trajectories, in seconds.

END-USE WATER DEMAND TRACES GENERATION Given the input listed in the pre-
vious paragraph, let’s consider the i-th house, characterized by h; occupants, fixture
presence K; and fixture efficiencies E;. Our stochastic model relies on a database con-
taining M signatures (one for each fixture) and a database containing frequency distri-
butions of the number of uses per day, event durations, water volumes, and time of use
during the day for each fixture. Each distribution is conditioned to the number of house
occupants (h;) and fixture efficiencies (e; ;). From this information, the model generates
time series of water use according to the following phases:

1. Number of consumption events. The model samples the number of consumption
events for each fixture j and each day d of the simulation horizon T"as NCE, 4 ; ~
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F(NCE,|h;,e; ;), where F(NCEj|h;,e; ;) is the frequency distribution of the number
of usages per day for appliance j, conditioned to the number of house occupants (h;)
and fixture efficiencies (e; ;).

2. Consumption event statistics. For each water consumption event ! € [1, NCE, 4 ],
the model then samples the event duration D; q; ~ F(D;|hi,e;;), water volume
Vi,d,j ~ F(‘/}|hi,€i7]‘), and time of use TOUi,dJ‘ ~ F(TOUj|hi,€i7j). F(Dj|hi,€,‘7j),
F(Vj|hi,e; ), and F(TOU;|h;,e; ;) are, respectively, the frequency distribution of con-
sumption event duration, water volume, and daily time of use for the j-th fixtures,
conditioned to h; and e; ;. In the current version of the model, the frequency distribu-
tions for event duration, water volume, and time of use are assumed to be mutually
independent.

3. Consumption event trace creation. The time series of water use of each water
consumption event is generated by stretching the specific signature of the considered
fixture according to the sample values V; 4 ; and D; 4 ;. In order to do so, first randomly
chosen points of the signature are iteratively removed/replicated, in order to match the
desired event duration D; 4 ;. Then, the magnitude of each point of the signature is
scaled so that the integral over the signature matches the desired water volume V; 4 ;.
After a signature is stretched according to the above procedure, it is positioned over
the end-use time series of water use y; ; according to T0OU; 4 ;.

This procedure is iterated from step 1 to step 3 until the simulation is completed, for all
the M fixtures and the simulation period T

MODEL OUTPUT Our stochastic end-use model returns, as output, the end-use time
series of water use y; ; for each house ¢ and its fixtures j, as well as the total household

water demand Y; = Zj\il Yi,j-

ORIGINAL DATASET We retrieved the signatures of water consuming fixtures, as well
as their associated statistics from DeOreo (2011) and Abdallah and Rosenberg (2014).
In the aforementioned study, Aquacraft Inc. metered end-use data from 280 standard
houses and 25 high-efficiency houses across 9 U.S. cities, for a period of over 2 weeks
between 2005 and 2009 at 10 seconds resolution. Overall, Aquacraft metered 753,076
events during 4,036 days.

It is worth mentioning the following hypotheses we used in the implementation of our
stochastic model:

e We only considered indoor water uses, including the following fixtures: toilet, clothes
washer, shower, dishwasher, faucet. Toilet and clothes washer signatures and statis-
tics distinguish between standard and high-efficiency, while no distinctions based on
efficiency is present for the other appliances.

e We modeled houses with 1, 2, 3, 4, 5, > 5 occupants. Houses with more than 5
occupants are grouped together in the last category;

e Water fixtures signatures are directly extracted from Acquacraft’s report (DeOreo,
2011) using the Get Data Graph Digitizer software' and rescaled to 1 second reso-
lution, according to the procedure described in Gaiardelli (2015). Moreover, we com-
puted a median signature for each of those appliances that allowed the extraction of
multiple signatures.

o Water fixture statistics (i.e., frequency distributions of number of uses per day, con-
sumption event durations, water volume and time of use during the day) are derived,
for each appliance, number of house occupants, and level of efficiency, from the data
gathered in DeOreo (2011).

ISoftware available at http://getdata-graph-digitizer.com/, last visited on 30/03/2016.
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3 NUMERICAL RESULTS

In this section, we showcase some outputs of the stochastic end-use simulation model.
The direct output of the model consists of high-resolution end-use time series of water
use for each house, such as the ones represented in Figure 2. The generated traces
show the heterogeneity of the different fixtures’ signatures, with the toilet and the faucet
characterized by an almost instantaneous pulse, while shower and clothes washers cor-
respond to longer consumption events (2, left panel). Moreover, it is worth noting the dif-
ferences in peak flow, duration and pattern of the two faucet consumption events, which
are strongly dependent on the multipurpose manual usage of this fixture. The hourly
distribution of the consumption events during a sample day (2, right panel) shows a typ-
ical two-peaks pattern, with the shower and the dishwasher contributing to the morning
and evening peak, respectively. The use of toilet and faucet is more equally distributed
during the day, while the clothes washer is simulated overnight as this use was observed
to occur during off-peak times with positive frequencies.
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Figure 2. Samples of end-use trajectories output of the stochastic model for a single
household over few hours (left panel) and one day (right panel). For the sake of visu-
alization, the data are aggregated at one minute resolution (left panel) and one hour
resolution (right panel).

The stochastic model can be exploited to generate water end-use demand time series
to exploring how different aspects of water demand vary under diverse social and tech-
nological scenarios (defined in terms of sample size, households sizes, and fixture ef-
ficiency), together with their implications to water network design and water demand
management. For example, characterizing water demand during peak hours is essential
to inform system design, highlight opportunities for water conservation, and designing
water tariffs. The plot on the left in Figure 3 illustrates the empirical cumulative distri-
bution functions of hourly water demands, stochastically simulated for a sample of 1000
heterogeneous houses over 350 days (11% with 1 occupant, 45% with 2, 15% with 3,
19% with 4, and 10% with 5 or more occupants; 30 % of the houses with efficient de-
vices). It clearly shows how water demand distribution changes if all hourly demands
are considered or only demands during peak hours (meaning hours from 6 to 11 a.m.
after preliminary analysis), thus providing probabilistic information on the variability of
water demand for the defined sample, and its demographic and technological scenario.
Moreover, characterizing which end-uses contribute to peak demands (right plot in Fig-
ure 3) highlights opportunities for water conservation and peak demand reductions. In
the example, the largest contribution to peak demand is given by clothes washer use:
this suggests that demand management strategies aimed at promoting overall savings
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for this particular end-use (e.g., through more efficient devices), as well as demand shifts
from peak to off-peak hours (e.g., through feedbacks and pricing schemes) can be suit-
able for reducing peak demand.

These numerical results represent valuable information about users’ consumption pat-
terns, which can be used for the development of demand models and for the design of
water demand management strategies. In particular, the heterogeneity of consumption
behaviors given by the end-use statistic frequencies allows running Monte Carlo simu-
lations by repeatedly sampling heterogeneous water consumers’ behaviors. The results
of these simulations constitute representative users community, which can be used to
explore the effect of different scenarios and water demand management strategies by
including the response of users to changing scenarios in the model. This represents a
strength of adopting a stochastic simulation approach, as it allows generating a num-
ber of scenarios that could not be represented through a direct analysis of the end-use
calibration data. Moreover, the model outputs can be exploited to develop agent-based
models embedding users interactive behaviors and social mechanisms.
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Figure 3. Empirical cumulative distribution function of all hourly demands and peak-hour
demands (left plot) and relative contribution of end-uses on peak demand, for different
number of house occupants (right plot). Statistics refer to data generated for a sample of
1000 houses, for a period of 350 days.

4 DISCUSSION AND CONCLUSIONS

In this paper, we propose a stochastic simulation model for synthetically generating high-
resolution time series of residential water use at the end-use level. Our model is based
on the assumption that each water end-use fixture can be characterized by its signature
(i.e., its typical usage pattern), as well as frequency distributions of its number of uses
per day, single use duration, water demand contribution and time of use during the day.
In our model, such statistics are conditioned to the number of house occupants, as well
as the level of efficiency of some water consuming fixtures. The end-use statistics and
signatures of our model were calibrated on real-world data collected by Aquacraft Inc.
at the end-use level, with 10 seconds sampling resolution, from over 300 houses across
9 U.S. cities. Simple model applications showcase the potentialities of our model to be
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considered for a number of uses related to residential water demand modeling, spanning
from community testing of end-use characterization models to modeling water demand
via Monte Carlo simulations and scenario analysis.

In addition, the generated data are potentially suitable as numerical benchmarks for train-
ing and comparatively testing end-use disaggregation algorithms, as they provide both
total household time series of water use, as well as end-use time series, required as
ground-truth for supervised disaggregation (for instance, see some recent works in the
energy sector (Batra et al., 2014; Piga et al., 2015). Indeed, being synthetically gen-
erated, such data overcome problems related to intrusiveness for ground-truth end-use
data gathering, metering costs, and data privacy.

The current version of the model offers many opportunities for improvement and further
development. Firstly, the inclusion of outdoor end-uses would increase model repre-
sentativeness in locations such as the arid western U.S. where outdoor water use is
significant. Secondly, the heterogeneity of the users’ behaviors that can be simulated
would improve if the statistics of each end use could be differentiated on the basis time
variability (e.g., weekend and weekdays, season), exogenous variables (e.g., tempera-
ture, precipitation), psychographic users characteristics (e.g., user age, economic level,
water consumption attitudes) or responses to demand management interventions. This
would support detailed water users’ segmentation (e.g., Cominola et al., 2015b), provid-
ing potentially interesting water users’ profiles for targeting for water demand manage-
ment strategies. Such information would allow for better evaluation of water demands
during peak or off-peak hours, as well as better understanding of the effect of water de-
mand management strategies on targeted categories of users. In addition, an interesting
development would be to calibrate the end-use statistics and signatures of the model and
apply it on end-use datasets gathered in different real-world contexts, in order to allow for
geo-spatial water demands analysis and comparison of the simulated demand patterns
across different countries. Finally, as a further development, the model is going to be
offered as a web service with GUI, in order to foster its usability and accessibility.
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