Jul 13th, 3:50 PM - 4:10 PM

Optimal land use?! – A review on optimization techniques used in multi-criteria decision analysis

Andrea Kaim
Helmholtz Centre for Environmental Research – UFZ, andrea.kaim@ufz.de

Anna Cord
Helmholtz Centre for Environmental Research – UFZ, anna.cord@ufz.de

Martin Volk
Helmholtz Centre for Environmental Research – UFZ, martin.volk@ufz.de

Follow this and additional works at: https://scholarsarchive.byu.edu/iemssconference

Part of the Civil Engineering Commons, Data Storage Systems Commons, Environmental Engineering Commons, Hydraulic Engineering Commons, and the Other Civil and Environmental Engineering Commons

Kaim, Andrea; Cord, Anna; and Volk, Martin, "Optimal land use?! – A review on optimization techniques used in multi-criteria decision analysis" (2016). International Congress on Environmental Modelling and Software. 37. https://scholarsarchive.byu.edu/iemssconference/2016/Stream-B/37

This Event is brought to you for free and open access by the Civil and Environmental Engineering at BYU ScholarsArchive. It has been accepted for inclusion in International Congress on Environmental Modelling and Software by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
Optimal land use?! – A review on optimization techniques used in multi-criteria decision analysis

Andrea Kaim¹, Anna Cord² and Martin Volk³

¹,²,³ Helmholtz Centre for Environmental Research – UFZ, Department of Computational Landscape Ecology, Leipzig, Germany, ¹andrea.kaim@ufz.de, ²anna.cord@ufz.de, ³martin.volk@ufz.de

Abstract: Agriculture, forest management, conservation planning and other related disciplines have specific land use demands, and thus different perspectives on how land should be used in an “optimal way”. One way to solve arising land use conflicts is employing the ecosystem services concept together with methods from the field of multi-criteria decision analysis (MCDA). Especially optimization techniques provide the possibility to include socio-economic and ecological aspects as well as the protection of biodiversity. In this study, we give an overview of these methods, focusing especially on their application in agricultural areas. We explore their abilities for the identification of ecosystem service trade-offs since land use planners are particularly interested in minimizing these. The aim of the research is to provide a guideline on which optimization methods can be used given different types of land use problems. For example, the problem’s size and structure determine whether a direct (e.g. Simplex, Branch & Bound) or heuristic algorithm (e.g. Simulated Annealing, Evolutionary Algorithm) should be applied. Furthermore, stakeholder opinions can be included either a priori (before), interactively (during) or a posteriori (after) the optimization process. Interactive approaches are seen as promising because the algorithm steers towards a solution close to the stakeholder’s aspirations which can be adjusted during the optimization process. However, a posteriori approaches are often recommended for trade-off analyses since their solutions provide the whole Pareto frontier – often referred to as “trade-off curve”. All methods are discussed and illustrated with examples of existing applications and case studies. Finally, we provide recommendations for their use in the different facets and perspectives of land and biodiversity management.

Keywords: land use; multi-criteria decision analysis (MCDA); optimization; ecosystem services; trade-offs