"The Things of My Soul": Notes on the Book of Mormon and Psychology

John Gee

Follow this and additional works at: https://scholarsarchive.byu.edu/irp

Recommended Citation
Available at: https://scholarsarchive.byu.edu/irp/vol36/iss1/5
I am honored to provide a response to the important work of Gantt, Wages, and Thayne. As a specialist in scripture and its ancient historical setting I use work and insights from the social sciences as required, but I am not primarily a social scientist and will not be looking at their work through a social scientist’s eyes. I find very little to disagree with in the article. It is refreshing to see that the authors have not taken that “comforting, not to say professionally advantageous” path “to imagine that no paradigm or assumptions frame our approach to psychology or sociology or political science or literary criticism, or at least that it is not our job to exhibit or to question those assumptions” (Hancock, 2014, p. 49). I would like to add to some of the arguments from an outside perspective.

Potential Positives and Potential Pitfalls

I applaud Gantt, Wages, and Thayne for addressing the “hesitancy among some LDS scholars to seriously engage the Book of Mormon for the possible intellectual contributions it might have for our work as professional scholars and researchers.” They rightfully decry those who “see the Book of Mormon as primarily, if not solely, a religious document meant to ground religious practice and belief, a work of scripture whose purpose is only to provide spiritual comfort and understanding to those in emotional or spiritual need, and not as a legitimate resource for shaping and guiding academic research, professional practice, or scholarly thinking in our various disciplines.” The Book of Mormon is a rich resource. Latter-day Saints who take seriously the commandment to worship God with all their mind (Matthew 22:37; Mark 12:30; Luke 10:27; Mosiah 2:11; 7:33; Moroni 10:32; D&C 4:2; 20:31; 59:5) and who take seriously the inspired nature of their scriptures ought to consider seriously what those scriptures might say about their subjects of study.

The Book of Mormon is both a scriptural record that forms part of the canon of the Church of Jesus Christ of Latter-day Saints and an ancient Mesoamerican document. Basing a social scientific theory on the Book of Mormon has a number of advantages as well as some potential pitfalls. Among the advantages the following are instructive. As a canonical text, the Book of Mormon has the advantage of being widely read and widely believed among members of the Church of Jesus Christ of Latter-day Saints. It thus serves as both a common point of reference among those accepting its canonical status, and is considered true, authoritative, and binding. As a historical account covering a thousand years that pays particular attention to how the gospel (as it defines it) interacts with the lives of individuals, it provides a thousand years’ worth of data. As has been argued (Hamblin, 1994) accepting the antiquity of the Book of Mormon requires an acceptance of its inspiration. As an inspired text, the Book of Mormon’s value for presenting truth is increased even though it admits on multiple occasions that it might contain mistakes (Title Page, 1 Nephi 19:6; 3 Nephi 8:1-2; Mormon 8:12; 9:31-33).

These advantages have a reverse side. Those who wrote the Book of Mormon wrote what they were
interested in, and not necessarily the things we might be interested in (e.g. 1 Nephi 1:16-17; 6:1; 19:5-7). The record, furthermore, was abbreviated and not complete (e.g. Words of Mormon 1:5; Helaman 3:14; 3 Nephi 5:8-9). Thus our thousand years’ of data are incomplete, and we might potentially be missing significant information that might change the theories we develop from the data or provide important nuances.

Furthermore, although the Book of Mormon seems particularly interested in showing how obedience or rejection of the gospel message in the lives of ancient individuals, these were individuals who lived in a particular ancient American context and this context occasionally appears in the story (Sorenson, 1985, 2013; Clark, 2005a, 2005b). Using the Book of Mormon as a basis potentially risks importing cultural norms that may not be appropriate for another culture. An example of such practices might be seen in courtship practices in the Book of Mormon. The account of Nephi and his brothers courting their wives is as follows: “we went up unto the house of Ishmael, and we did gain favor in the sight of Ishmael, insomuch that we did speak unto him the words of the Lord. And it came to pass that the Lord did soften the heart of Ishmael, and also his household” (1 Nephi 7:4–5). So the obtaining wives consisted of speaking the word of the Lord to the women’s father. This is a cultural feature that might work well in some cultures but not others. A different version of courtship appears among the Jaredites: “Now the daughter of Jared was exceedingly fair. And it came to pass that she did talk with her father, and said unto him: Whereby hath my father so much sorrow? Hath he not read the record which our fathers brought across the great deep? Behold, is there not an account concerning them of old, that they by their secret plans did obtain kingdoms and great glory? And now, therefore, let my father send for Akish, the son of Kimnor; and behold, I am fair, and I will dance before him, and I will please him, that he will desire me to wife; wherefore if he shall desire of thee that ye shall give unto him me to wife, then shall ye say: I will give her if ye will bring unto me the head of my father, the king. And now Omer was a friend to Akish; wherefore, when Jared had sent for Akish, the daughter of Jared danced before him that she pleased him, insomuch that he desired her to wife. And it came to pass that he said unto Jared: Give her unto me to wife. And Jared said unto him: I will give her unto you, if ye will bring unto me the head of my father, the king.” (Ether 8:9–12). So this courtship is initiated by the daughter who proposes to seduce the man who will bargain with the father and be required to murder someone as a bride price. The Book of Mormon actually condemns this particular episode. These are the only examples of courtship given in the Book of Mormon and may not have even been common among their respective societies, and it would probably be culturally inappropriate to build a universal theory of proper courtship based on these isolated examples.

Similar problems can beset the use of the Bible and, in fact, are more prevalent among certain Christians. These Christians believe that “the Bible represents the totality of God’s communication to and will for humanity,” and that “the divine will about all of the issues relevant to Christian belief and life are contained in the Bible.” Consequently, they believe that “the Bible teaches doctrine and morals with every affirmation that it makes, so that together those affirmations comprise something like a handbook or textbook for Christian belief and living, a compendium of divine and therefore inerrant teachings on a full array of subjects—including science, economics, health, politics, and romance” (Smith, 2011, p. 4-5; cf. Noll, 2011, p. 127-130).“Masses of American Christians are bibli- licsists who expect the Bible to be able to speak with authority on a nearly limitless range of topics” (Smith, 2011, p. 10) even though “on important matters the Bible apparently is not clear, consistent, and univocal enough to enable the best-intentioned, most highly skilled, believing readers to come to agreement as to what it teaches” (Smith, 2011, p. 25).

A similar problem has found its way into Islam. J. al-Khalili (2010, p. 126) notes the problems that come from “the literalists’ view that the text of the Qur’an and Hadith (the recorded conversations of the Prophet) gave Muslims everything they would ever need to know about their faith, and so the sort of philosophical debate and reasoning as practised by the Mu’tazilites and the scholars of kalām was not only unnecessary, but un-Islamic. This view has since broadened in some quarters to the erroneous belief that all knowledge is contained in the Qur’an; that anything God felt it was worth mankind knowing, including the laws of nature
and our place in the universe, can be found written in the Qur’an, so there is no point in scientific enquiry.”

Gantt, Wages and Thayne, however, seem to have avoided the potential pitfalls in their study. The terms psychology and psychotherapy both come from the Greek term ψυχή meaning soul. The soul is a concern of the Book of Mormon. Nephi may have decided not to write many things on the plates that might interest one, but he did say of the plates, “upon these I write the things of my soul” (2 Nephi 4:15). We might, therefore, expect the Book of Mormon to have some important things to say on the topic, particularly when the authors say that they “have none other object save it be the everlasting welfare of your souls” (2 Nephi 2:30). It would be surprising if the Book of Mormon, with its concern for the soul, did not have anything to say that would be of use in the study of the soul.

Gantt, Wages and Thayne specifically target three presuppositions of modern psychology that they correctly see as running counter to the Book of Mormon—naturalism, determinism, and relativism—and address each of them in turn. I will add some comments to each of these subjects in the same order.

Naturalism

I think Gantt, Wages and Thayne are correct when they observe, “Oddly, despite the high value that most academics place on skepticism and critical reflection, many seem to experience something akin to an allergic reaction when critical examination is offered from a serious and believing religious perspective.”

Naturalism—the idea that everything in the natural world can be explained by the natural world, and no supernatural forces are necessary or desirable in explanations—has long been an axiom of science. One need only recall Pierre-Simon de Laplace’s declaration that he had no need of the hypothesis of God to explain the universe to see that “aggressive atheism” has been with science a long time (Bell, 1965, p. 181, 173). “The most fundamental statement we can make about science stretches directly from Newton to Popper: that science involves building a wall around the physical universe, or the natural world, and shielding it as far as possible from the universes of values, morals, and spirits.” (Marks, 2009, p. 61). “The bedrock upon which modern science was built consists of some highly culture-bound assumptions about the nature of the material universe, its relation to the nonmaterial universe, and the value of studying it” (Marks, 2009, p. 36-37).

Naturalism started off in science, more or less, as a necessity. Since we cannot force God into the laboratory perhaps we might be safer assuming he is not there. “This bracketing off of nature from supernature became the signature of science.” (Marks, 2009, p. 5). The bracketing assumptions, however, become a self-fulfilling, circular argument and thus logically fallacious.

The Book of Mormon, however, argues against naturalism: “Believe in God; believe that he is, and that he created all things, both in heaven and in earth; believe that he has all wisdom, and all power, both in heaven and in earth; believe that man doth not comprehend all the things which the Lord can comprehend” (Mosiah 4:9). The Book of Mormon explicitly claims that its purpose is the “convincing of the Jew and Gentile that Jesus is the Christ, the Eternal God” (Book of Mormon Title Page). Not only does the Book of Mormon argue that God does exist but it also argues that from time to time he interferes in the natural world. “he ceaseth not to be God, and is a God of miracles. And the reason why he ceaseth to do miracles among the children of men is because that they dwindle in unbelief, and depart from the right way, and know not the God in whom they should trust.” (Mormon 9:19–20). While most of the time, God lets the universe go its own way, from time to time, he will do “whatsoever thing is expedient in [him]” (Moroni 7:33).

Determinism

Historically there has been a tendency among people to want to absolve themselves for responsibility for their actions. Thus one finds that Western Christianity after Augustine adopted theological positions that made God responsible for all their actions. As Augustine put it: “Who will be so foolish and blasphemous as to say that God cannot change the evil wills of men, whichever, whenever, and wheresoever he chooses?” (Augustine, Enchiridion 98, in Schaff, 1887, p. 3:268). “Behind all of this was a particular conception of God’s sovereignty, a conception which in the case of Augustine owed something to Manicheanism, and fatalism” (Witherington, 2005, p. 87). Islam too,
after the decline of the Muʿtazilites, took the position that man’s power (qadar) to decide for themselves was subordinate to God’s omnipotence (jabr). “Since God is omnipotent,” the standard Muslim argument runs, “everything must be pre-ordained and directed by God, and humans can logically therefore have no free will.” (al-Khalili, 2010, p. 126). So much of the Muslim world “still sees the universe running its predestined course, determined by the will of Allah, who not only guides the world at large, but also predestines the fate of each and every man individually” (Patai, 1967, p. 157). Large proportions of the religious world consider determinism a sacred dogma.

Of course, determinism is older than either Christianity or Islam. One ancient Egyptian text puts it succinctly: "Nothing ever happens on earth except that which God has ordained on the horizon" (de Cenival, 1988, pl. 14; Spiegelberg, 1917, Tafel XIII; Hoffmann and Quack, 2007, p. 218). Another ancient Egyptian text advises the constant refrain: “God is the one who brings the future and fortune that come.” (Lexa, 1926; Hoffmann and Quack, 2007, p. 239-73). Not all Egyptians, however, believed that. Some considered determinism as a philosophy so dangerous that when one defendant in a trial before the king sought to defend his actions by saying, “When it pleased [the god] Re to command me he put the well-being of Pharaoh in my heart, but when it displeased Re to command me, he put the misfortune of Pharaoh in my heart.” The Pharaoh, however, did not accept the man’s attempt to avoid responsibility and had him executed (Glanville, 1955, pl. 3-4; Hoffmann and Quack, 2007, p. 278). The reason for the extreme punishment is that determinism is incompatible with accountability. If your actions are determined then you cannot be held accountable for them. Ancient society demanded accountability for one’s actions. Modern society is double-minded on the matter. On the one hand, the individual does not want to be held accountable for his own actions but on the other hand he wants other individuals held accountable for theirs. We see some of this in the tendency to absolve individuals from the consequences of their actions and blame other individuals, society, culture, or the system. Some go as far as wanting to hold other individuals accountable for the consequences of their own actions.

Intellectual defenses of determinism tend to come from two sources: theology and physics. The theological defense of determinism tends to come from those who want to emphasize the power or sovereignty of God. Calvanism, for example, emphasizes “the total, absolute, meticulous sovereignty of God in providence by which God governs the entire course of human history down to the minutest details and renders everything certain so that no event is fortuitous or accidental but fits into God’s overall plan and purpose” (Olson, 2011, p. 40). This does not necessarily hold up biblically, since, “in the very texts where God’s sovereignty is stressed, there is also a stress on viable human choice when it comes to moral matters” (Witherington, 2005, p. 60). We have already seen a Muslim version of this argument that is essentially the same.

From the physics side of things, “In the Newtonian (or Hamiltonian, etc.) scheme, determinism means that initial data at one particular time completely fix the behaviour at all other times.” (Penrose, 1990, p. 214). More modern versions of physics alter the situation slightly. “Determinism, in special relativity, can be formulated as the fact that initial data on any given simultaneous space S fixes the behaviour in the whole of the space-time If we want to know what is going to happen at some event P lying somewhere to the future of S, then we only need the initial data in some bounded (finite) region of S, and not on the whole of S This is actually much more satisfactory than the situation that arises in the Newtonian case, where one would, in principle, need to know what was going on over the entire infinite ‘slice’ in order to make any prediction at all about what is going to happen at any point a moment later” (Penrose, 1990, p. 214-15).

Thus, in physics, “ontological determinism claims that the evolution equations which govern the time development of the ultimate constituents of the world are deterministic; that is, the state of these constituents at a given time in the future is determined uniquely by the state of these constituents now. All theories of physics which have ever been proposed as fundamental—Newtonian particle physics, the electromagnetic field equations of Maxwell, Einstein’s general relativity theory for gravity, and even quantum mechanics—all of these are ontologically deterministic theories. They differ only in the nature of the entities which
are claimed as fundamental To the extent that we believe the fundamental equations to be true, we are forced by the evidence to be ontological determinists” (Barrow and Tipler, 1986, p. 138-139). For physicists, “in most of our SUPERB theories there is a clear-cut determinism, in the sense that if the state of the system is known at any one time, then it is completely fixed at all later (or indeed earlier) times by the equations of the theory. In this way there seems to be no room for ‘free will’ since the future behaviour of a system seems to be totally determined by the physical laws.” (Penrose, 1989, p. 431). And yet, for all this, “Biologists can rarely predict the future states of the systems they study” (Marks, 2009, p. 62).

Starting with general relativity, things begin to get more complicated. “Determinism in general relativity is a good deal more complicated a matter than in special relativity In the first place, we must use a space-like surface S for the specification of initial data (rather than just a simultaneous surface). Then it turns out that the Einstein equations do give a locally deterministic behaviour for the gravitational field, assuming (as is usual) that the matter fields contributing to the tensor ENERGY behave deterministically. However, there are considerable complications. The very geometry of the space-time—including its light cone ‘causality’ structure—is now part of what is being actually determined. We do not know this light-cone structure ahead of time, so we cannot tell which parts of S will be needed to determine the behaviour at some future event P. In some extreme situations it can be the case that even all of S may be insufficient, and global determinism is consequently lost! It would seem to be highly unlikely that any possible such ‘failure of determinism’ that might occur with ‘extreme’ gravitational fields could have any direct bearing on matters at the human scale of things, but we see from this that the question of determinism in general relativity is not at all so clear-cut as one might wish” (Penrose, 1990, p. 215-16). So there are some potential problems with ontological determinism. That, however, is not the only form of determinism.

“Methodological determinism holds that in the study of complex phenomena, such as living beings, we should always look for deterministic laws governing the phenomena.” But as a practical matter, “this form of determinism is much too strong. It is often the case that complex phenomena are better described by statistical laws in which chance is fundamental” (Barrow and Tipler, 1986, p. 139). So when living beings are being discussed, the complexity renders determinism unusable.

Living beings are not the only example where determinism is impractical. “Behaviour that appears random to us—for example, fluid turbulence—is described by mathematical models that exhibit a very sensitive dependence on initial conditions. These mathematical models are deterministic in principle but not in practice: in order to know the state of the system precisely at any future time one must know its initial state exactly. In practice, there always exists some minute error in our knowledge of the initial state, and this error is amplified exponentially in the evolution time of the system, so that very soon we have no idea where the state of the system resides. Laplacian determinism is impossible” (Barrow and Tipler, 1986, p. 119).

Barrow and Tipler also provide an explanation of why determinism, from a psychological point of view is so impractical as to be impossible:

“It seems likely that such a purely causal, non-teleological and complete explanation of purposeful biological behaviour would be so complex that no such explanation will ever be achieved. That justification for this assertion is a simple numerical estimate of the complexity of living beings. The amount of information that can be stored in a human brain is estimated to be between 10^{10} and 10^{15} bits, with the lower number assuming there is one bit stored on the average for each of the brains 10^{10} cells. Now about 1% to 10% of the brain’s cells are firing at any one time, at a rate of about 100 hertz. This gives a computation rate of 10 to 1000 gigaflops (a gigaflop is 10^9 floating point computations per second. The lower bound of 10 gigaflops is about the rate at which the eye processes information before it is sent to the brain

“But only the information which a human being can process consciously, or hold in the forefront of the mind, can be used in forming a humanly acceptable explanation. We don’t know exactly how much this would be, but it is comparable in order of magnitude to the information coded in a single book, which is typically 1 to 10 million bits. No explanations humans have ever dealt with has been as complex as this
“This argument assumes of course that we require at least 1010 bits—the lower bound of the brains capacity of the human mind—in order to carry out a numerical simulation of a human being. If anything, this is a wild underestimate, because it ignores round-off errors. Even more important, in fact the essential point in estimating the difficulty of carrying out at numerical simulation of a living creature, is that the actions of living creatures are unstable from the causal (numerical simulation) point of view: a tiny change in the initial input or stored information can lead to a drastic change in the macroscopic behaviour. For this reason it is not possible to reduce substantially the amount of data required in a simulation much below 10^{10} bits.” (Barrow and Tipler, 1986, p. 136-137).

Barrow and Tipler argue that complex systems cannot be completely understood or explained by causal arguments, but “we will find teleological explanations of its actions more useful than causal ones, at least in understanding its most complex behaviour.” (Barrow and Tipler, 1986, 137). Thus, Schwartz, Stapp, and Beauregard maintain, “Until recently, virtually all attempts to understand the functional activity of the brain have been based, at least implicitly, on some principles of classic physics that have been known to be fundamentally false for three-quarters of a century.” (2005, p. 1310).

Determinism also runs into problems from quantum mechanics. “Even the U part of quantum mechanics [the evolution process described by Schrödinger’s equations] has this completely deterministic character. However, the R ‘quantum-jump’ part [formed by the squared moduli of quantum amplitudes to obtain classical probabilities] is not deterministic, and it introduces a completely random element into the time-evolution.” (Penrose, 1989, p. 431).

“Epistemological determinism” holds that it is possible, using the deterministic fundamental evolution equations (which are assumed to exist), to compute and hence predict the future behaviour of complex systems, in particular the future behaviour of living organisms. This form of determinism we also deny. The theory of quantum mechanics itself tells us that it is impossible to get the necessary information to predict the future wave function, even though the future wave function is in fact determined. We have argued at length above that the behaviour of living organisms like ourselves is too complex to be predictable by beings of similar complexity” (Barrow and Tipler, 1986, p. 139).

Roger Penrose (1990) has provided an argument for the impossibility of determinism in the human brain from quantum mechanics. Penrose (1990, p. 400) notes that “there is, in fact, at least one clear place where action at the single quantum level can have importance for neural activity, and this is in the retina. (Recall that the retina is technically part of the brain!) Experiments with toads have shown that under suitable conditions, a single photon impinging on the dark-adapted retina can be sufficient to trigger a macroscopic nerve signal. The same appears to be true of man.” Penrose (1990, p. 400) then goes on to ask, “Since there are neurons in the human body that can be triggered by single quantum events, is it not reasonable to ask whether cells of this kind might be found somewhere in the main part of the human brain?” Since single quantum events (which are not deterministic) can trigger macroscopic nerve signals in the brain, we cannot say that the brain behaves in a deterministic fashion (cf. Gardner, 2013, p. 23-24). More recent work argues that “certain structural features of ion conductance channels critical to synaptic function entail that the classic approximation fails in principle to cover the dynamics of a human brain. Quantum dynamics must be used in principle.” Thus non-deterministic quantum mechanics definitely plays a role in “the conscious choices by human agents” (Schwartz, Stapp, and Beauregard, 2005, p. 1310).

Other arguments have been made from neuroscience against determinism (Balaguer, 2009; Schwartz, Stapp and Beauregard, 2005).

Using quantum mechanics as an example provides a way to talk about probable outcomes. We can see a range of possible reactions and even chart probable outcomes given initial constraints but that does not determine the decisions of any particular individual. Quantum mechanics can determine the probabilities that certain outcomes will occur given the way the experiment is constructed and these probabilities match the aggregate data of many particles but they cannot predict the behavior of a particular particle. In the same way, one might construct correlations and probabilities for outcomes given initial constraints and predict the aggregate results for large numbers of individuals but still be unable to predict the result for any
given individual. The individual still has agency and still chooses. This is not a Book of Mormon model *per se*, but it is a model that is compatible with Book of Mormon hypotheses.

The Book of Mormon, of course, repudiates determinism. According to the Book of Mormon, "men are free according to the flesh; and all things are given them which are expedient unto man. And they are free to choose liberty and eternal life, through the great Mediator of all men, or to choose captivity and death, according to the captivity and power of the devil" (2 Nephi 2:27). They are thus not forced to choose but allowed to choose. Along with that comes the accountability for the choices made. Men "have become free forever, knowing good from evil; to act for themselves and not to be acted upon, save it be by the punishment of the law at the great and last day" (2 Nephi 2:26; cf. 2 Nephi 10:23; Alma 13:3; 30:8-9; Helaman 13:29; 14:31).

Finally, data does not necessarily support determinism. For example, the typical pattern for adolescent sexuality in the United States is that the first sexual experience occurs about the age of sixteen (Regnerus, 2007, p. 127-128). "Teens are likely to either not have sex at all until late adolescence—the most common pattern—or to have it more often and with more than one partner. One-timers and steadies are not the norm. Once sexual activity has commenced, it usually continues, and with age the sexual network branches out" (Regnerus, 2007, p. 134). This is the general pattern, and under determinism we would expect that pattern to hold regardless of situation. And yet, "Mormon youths are unlikely to have sex before age 18 in the first place, but if they do have sex, they're more likely to try it once and then refrain from further sexual activity." (Regnerus, 2007, p. 132-33). Of those who have sex before marriage only 44% of Latter-day Saint youth follow the general pattern whereas at least 82.7% to 100% of other groups do. Although the author of the study did not explore the reasons for the difference, it is clear that some thing or combination of things in Latter-day Saint teaching or practice made a significant difference in the behavioral patterns. This both defies determinism and provides an area where further research might shed light on what is likely to make a difference. Other religious groups may behave deterministically (and many of them believe in determinism) but Latter-day Saints (who do not believe in determinism) do not.

Relativism

Albert Einstein published the special theory of relativity in 1905. By 1930 Squires could already talk about "a new movement in psychology with the principle of relativity made current and popular by the great physicist Einstein" (Squires, 1930, p. 156). This was explained as follows: Because "For Einstein, these [space and time] values depend directly on the position of the observer" (Squires, 1930, p. 162) so in Gestalt psychology "every perception, whether of a person's face or of anything else, exists in its own right, is itself" (Squires, 1930, p. 162). "Just as Einstein gave an impetus to physics by expounding the relative nature of space and time, so the champions of the configuration psychology have been assiduously engaged in the attempt to demonstrate the relative character of our mental life" (Squires, 1930, p. 156). Whereas "the traditional psychology taught that a color possesses a more or less absolute, unchanging character . . . [the newer psychology] would seem to show conclusively that color quality is a matter relative to the meaning borne by the quality" (Squires, 1930, p. 157). The relativism imported into psychology was explicitly anti-religious: "Primitive man saw in human purpose the expression of the will of good and evil spirits. In nature, the lightning and the whirlwind voiced the wrath of a god. The coming of modern science has enabled us to understand the events of physical nature in terms of natural causes, but the struggle to interpret human action without reference to supernatural agencies has been long drawn out and severe" (Squires, 1930, p. 160-161). Relativism was brought into psychology explicitly to support naturalism. This is yet another example of how "from its very inception modern science was used to underpin political ideologies" (Marks, 2009, p. 47).

Relativism thus denies that there are absolute truths. Under relativism there is only truth from a certain point of view, and a change in that point of view changes truth. One of the results of this philosophy, taken to its logical conclusion is that science is not a way of discovering truth. "Through a lens of cultural relativism, [science] becomes another way
of producing knowledge While this should not seem terribly threatening, it nevertheless proved to be surprisingly threatening to one segment of the scientific community—the segment that had grown accustomed to having its authority on virtually all matters stand without scrutiny. Presumably this was because such relativistic approaches to knowledge contain an implicitly repudiation of science as a source of unquestioned truth about the world. They certainly highlight the role of science as a cultural authority." (Marks, 2009, p. 63). Not only does relativism undermine science, it undermines itself. If there are no privileged points of view, there is no particular reason to privilege relativism. Relativism cannot be used to say that a religious point of view is wrong. If all points of view are valid, certainly any particular religious point of view must be valid as well.

Most individual practitioners of a discipline are happy to work within the confines of a discipline without questioning the basic presuppositions of the discipline. This is true in the social sciences as well as elsewhere. It is unusual to find critiques of relativism in disciplines like psychology. The humanities seem to have produced more of them. Social scientists who wish to provide a robust critique of relativism might need to look outside their discipline.

The Book of Mormon does provide critiques of relativism. It asserts that the Spirit “speaketh of things as they really are, and of things as they really will be; wherefore, these things are manifested unto us plainly, for the salvation of our souls. But behold, we are not witnesses alone in these things; for God also spake them unto prophets of old” (Jacob 4:13). In spite of various competing claims, the Book of Mormon asserts that some things are real (cf. Alma 32:35) and that we can learn of them through the Spirit and through various witnesses provided by God, including prophets of old. Through these means we can come to know of the truth ourselves (Alma 5:45-46; 48; 34:8; 36:4-6; Helaman 7:29; 15:7-8). These assertions of the existence of an absolute truth contradict the assertions of relativism that no such truth exists.

Conclusions

Much more can and will be said about these topics. Gantt, Wages, and Thayne have done a great service pointing out some problematic presuppositions in psychology that contradict the Book of Mormon. It is a healthy thing to be aware of conflicts and potential conflicts between our academic disciplines and the Gospel. If we really believe that we must serve God with all our heart and mind (Deuteronomy 6:5; 1 Chronicles 28:9; Matthew 22:37; Mark 12:29-30; Luke 10:27; Mosiah 7:33; D&C 4:2; 59:5) then we need to use our whole minds, not just a fragmented or compartmentalized portion of them, and all our knowledge and learning, not just the part pertaining to our discipline, to determine how best to serve him. While there may be disciplines where this is not possible or appropriate, if we do not fashion a distinctively Latter-day Saint approach to our disciplines we risk exposure to every wind of doctrine in our academic disciplines. We will then not be able to see when our academic disciplines bring us in conflict with the Gospel and be instruments in leading ourselves and others “carefully down to hell” (2 Nephi 28:21-31).

Gantt, Wages, and Thayne have done a great service in calling attention to the issue.

References

