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Vibrational modes of thin oblate clouds of charge
Thomas G. Jenkinsa) and Ross L. Spencer
Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602

�Received 15 February 2002; accepted 9 April 2002�

A numerical method is presented for finding the eigenfunctions �normal modes� and mode
frequencies of azimuthally symmetric non-neutral plasmas confined in a Penning trap whose axial
thickness is much smaller than their radial size. The plasma may be approximated as a charged disk
in this limit; the normal modes and frequencies can be found if the surface charge density profile
�(r) of the disk and the trap bounce frequency profile �z(r) are known. The dependence of the
eigenfunctions and equilibrium plasma shapes on nonideal components of the confining Penning
trap fields is discussed. The results of the calculation are compared with the experimental data of
Weimer et al. �Phys. Rev. A 49, 3842 �1994�� and it is shown that the plasma in this experiment was
probably hollow and had mode displacement functions that were concentrated near the center of the
plasma. © 2002 American Institute of Physics. �DOI: 10.1063/1.1482765�

I. INTRODUCTION

A Penning trap �see Fig. 1� uses a combination of elec-
tric and magnetic fields to confine particles of a single sign
of charge, and this versatile device has been used in a variety
of applications.1–12

These have included early laser cooling experiments,5 as
well as related experiments in single-ion spectroscopy6 and
metrology.7 These traps have also been used to study the
collective behavior of single-species �non-neutral� plasmas,
including phenomena such as rotational equilibria8 and phase
transitions in strongly coupled ion plasmas.9–12

In the ideal version of this trap, described using cylin-
drical coordinates, a strong magnetic field B in the
z-direction confines the particles radially and hyperbolic
electrodes produce an electrostatic potential,

��r ,z ��
�z
2mp
2q � z2� r2

2 ���0 , �1�

which confines particles axially. Here mp and q are, respec-
tively, the mass and charge �including the sign� of the con-
fined particles, �0 is the potential at the center of the trap
�hereafter assumed to be zero�, and �z is the ‘‘bounce fre-
quency’’ of particles oscillating in the z-direction. In an ideal
trap the bounce frequency is uniform in r .

An analytic theory describing the dynamics of fluid
modes in a non-neutral, zero-temperature plasma confined in
a Penning trap has been developed by Dubin.13 This theory
exploits the simple spheroidal shape of these plasmas14,15 to
carry out a novel boundary-value problem in spheroidal co-
ordinates. The mode frequencies of such a plasma are ex-
pressed as functions of the confining fields of the trap and the
plasma aspect ratio 	 �defined for a plasma with central axial

half-width zp and radius rp as 	�zp /rp�. Experimental
results8,16,17 have shown good agreement with these theoret-
ical predictions.

This theory was employed by Weimer et al.,18 who used
the observed mode frequencies in a plasma which had been
thinned by radial transport to deduce the plasma aspect ratio.
In Weimer’s experiment, a pure electron plasma consisting of
approximately 43,000 particles was confined in a Penning
trap and held at a temperature of about 4 K. After a time
sufficient for the plasma to come to global thermal equilib-
rium, modes were excited and observed in the plasma. For
each identifiable mode, the measured mode frequency was
used to calculate the plasma aspect ratio. Although the agree-
ment was fairly good, calculated values of 	 for different
modes using Dubin’s theory were found to disagree with
each other by as much as 20%.

It was shown through numerical simulations by Mason
et al.19 that thermal effects, as well as nonideal confining
fields in the Penning trap, might account for the discrepancy
between Dubin’s theory and this experiment. Paulson and
Spencer20 extended this work, and were able to calculate,
without the use of a simulation, the effects of finite plasma
temperatures and nonideal confinement fields on the plasma
equilibria. The basis for their calculation involved an ap-
proximation valid for small-aspect ratio plasmas. In this
limit, it becomes meaningful to think of the plasma as a
charged disk with a surface charge density profile �(r).

In this paper, the same surface-charge–density approxi-
mation is employed to derive an eigenvalue equation which
has, as its solutions, the eigenfrequencies and incompressible
eigenmodes of an azimuthally symmetric plasma of small
aspect ratio. �It should be noted that the effects of surface
charge induced on the conducting walls of the trap are ig-
nored in this paper, as they are in Dubin’s theory and in the
equilibrium calculations of Ref. 20.� The mathematical form
of this eigenvalue equation is a singular integral equation of
a type first studied analytically by Carleman;21,22 in this pa-
per it is solved numerically. In Sec. II of this paper we derive
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this equation. In Sec. III we present the numerical method
used to solve the equation, and demonstrate that this method
reproduces the ideal trap results of Dubin.13 In Sec. IV we
briefly review and generalize the equilibrium calculation of
Paulson et al. for nonideal �nonquadrupole� confining fields,
and use this generalization to find �(r) in global thermal
equilibrium for the trap used by Weimer.18 In Sec. V we
discuss the qualitative behavior of the normal modes of these
plasmas in ideal and nonideal confinement fields. The valid-
ity of these results at finite temperatures is discussed, and
commentary relating to Weimer’s experiment is also given.
In Sec. VI we conclude the paper.

II. DERIVATION OF THE MODE EQUATION

Consider a plasma in cylindrical coordinates whose ra-
dius is so much larger than its thickness in z that it can be
described by an equilibrium surface charge density profile
�(r). This is the natural end state of a cloud of charge in a
Penning trap because transport increases the radius, and as it
does so the axial electric field of the trap compresses the
cloud in z . We seek a mathematical theory of the drumhead-
like modes of such a plasma, restricting our attention in this
paper to modes with azimuthal symmetry. There are two im-
portant effects that determine the frequencies and eigenfunc-
tions of these modes. The first is that when the cloud is no
longer confined near the trap center, the higher-order multi-
pole moments of the trap produce a nonuniform axial bounce
frequency profile �z(r), so that particles at different radii
vibrate at different frequencies. The second is that the vibra-
tional motion of the cloud is also affected by mutual repul-
sion between different parts of the �(r) profile. Ignoring
modes with internal variation in z , we let the mode displace-

ment function be purely in the z-direction, i.e., 
z(r)
�
z(r) ẑ . Such a mode is indicated in Fig. 2, where it can be
seen that the displacement in z from equilibrium of different
parts of the profile is denoted by the function 
z(r).

To find the normal mode shapes and the mode frequen-
cies of this plasma, we need to be able to calculate the axial
electric field E1z„r ,
z(r)… which the plasma creates at each
ring of charge composing �(r). This field can be obtained
from the cylindrical Green’s function H(r ,r�,z�z�) �ignor-
ing the effects of induced charge in the trap walls� which
gives the electrostatic potential at (r ,z), due to a ring of
surface charge �(r�) with width dr� located at (r�,z�), as

d��r ,z ��
1
�0
H�r ,r�,z�z����r��r�dr�. �2�

Hence, we may find the z-component of the electric field at
radius r and infinitesimal axial displacement z�
z(r) due to
the rest of the displaced charge in the mode as

E1z„r ,
z�r �…� �1
�0

�
0

� 
H„r ,r�,
z�r ��
z�r��…

z

���r��r�dr�. �3�

In this equation, �0 is the permittivity of free space and
the function H(r ,r�,z�z�) is given by

H�r ,r�,z ,z���
1
2�
� m
rr�
K�m �, �4�

where

m�
4rr�

�r�r��2��z�z��2
, �5�

and where K(m) is the complete elliptic integral of the first
kind.20 Carrying out the differentiation in Eq. �3� yields

FIG. 1. A Penning trap, which is used to confine charged particles. A voltage
difference applied between the endcaps �left and right� and the ring �middle�
produces an electrostatic field approximating Eq. �1�. This potential confines
the particles in z , while a uniform magnetic field provides radial confine-
ment.

FIG. 2. The surface shows the deformation of a thin plasma in an axisym-
metric vibrational mode. The origin is shifted upward along the z-axis to
better show r , r�, and the axial displacement functions 
z(r) and 
z(r�).
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H

z �

1
2�
� m
rr�
E�m �

�z��z �
��r��r �2��z��z �2� , �6�

where E(m) is the complete elliptic integral of the second
kind.

Expanding Eq. �6� in small z�z� to just first-order and
substituting the result in Eq. �3� yields, for the z-component
of the electric field at 
z(r) due to all of the other rings of
charge at 
z(r�),

E1z�r ��
�1
�0
P�

0

� 1
�

1
�r�r��

E�m �

�r��r �2

���r���
z�r���
z�r ��r�dr�, �7�

where P denotes a principal value integral. �Note that the
apparent quadratic singularity in the integral is actually a
first-order singularity because the factor in the numerator
containing 
z(r) vanishes when r��r .�

With a way of calculating the perturbed electric field
created by the plasma, we may now write down the
z-component of Newton’s second law at each radial position
r in the surface charge distribution:

mp
 z̈�r ��qEext(z)�r ,z ��qE1z�r ,z �. �8�

Requiring a normal mode so that 
z(r) is proportional to
e�i�t, using the known profile �z(r) of the axial bounce
frequency, and using Eq. �7� then leads to

�2
z�r ���z
2�r �
z�r �

�
q

�0mp�
P�

0

� 1
�r�r��

E�m �

�r��r �2 ��r��

��
z�r���
z�r ��r�dr�. �9�

This is a singular integral equation of a kind first studied
by Carleman, who had a simple kernel to deal with and was
able to proceed analytically. The presence in our problem of
the complete elliptic integral of the second kind with a com-
plicated argument almost certainly means that numerical
methods are required to solve it. Note, however, that the
small-aspect-ratio analytic results of Dubin must be repro-
duced by this equation, so perhaps an analysis is possible.

One simple result can be verified in Eq. �9�, and it is that
the center of mass mode in an ideal trap, for which 
z(r) and
�z(r) are both constant, has frequency ���z , as expected.
To obtain further results requires that we proceed numeri-
cally.

III. NUMERICAL METHOD

Beginning with our mode equation, Eq. �9�, we assume
that for the plasma and confining fields under consideration,
the surface charge density profile �(r) and the bounce fre-
quency profile �z(r) are known. Beyond the plasma radius
rp , the vanishing of �(r) makes the integrand in Eq. �9�
equal to zero, so we replace the upper limit of integration
with rp . The integrand has a principal-value singularity at
r��r . However, the singularity can be removed by subtract-

ing a carefully chosen term from the integrand �to make it
nonsingular at r�r�� and then adding this term back in as a
separate integral. Doing so, we obtain

�2
z�r ���z
2�r �
z�r ��

q
�0mp�

�
0

rp ��r��

�r�r��

E�m �

�r��r �2

��
z�r���
z�r ��
z��r ��r��r ��r�dr�

�
q
z��r �
�0mp�

P�
0

rp ��r��E�m �r�
�r�2�r2�

dr�, �10�

noting that 
z�(r) is the derivative of 
z(r) with respect to
r .

The second integrand in this expression also has a
principal-value singularity at r�r�, so we again add and
subtract appropriately to make a nonsingular integral and a
simple principal-value integral,

P�
0

rp dr�
�r��r � �ln� rp�rr � , �11�

which yields an integral equation that is equivalent to Eq. �9�
but which is in proper form to be approximated numerically:

�2
z�r ���z
2�r �
z�r ��

q
�0mp�

�
0

rp ��r��

�r�r��

E�m �

�r��r �2

��
z�r���
z�r ��
z��r ��r��r ��r�dr�

�
q
z��r �
�0mp�

�
0

rp���r��E�m �r�
�r�2�r2�

�
��r �

2�r��r ��dr��
q
z��r ���r �
2�0mp�

ln� rp�rr � .
�12�

We now discretize Eq. �12� by letting the variables
(r ,r�) correspond to the discrete variables (rm ,rn) and by
converting the integrals to discrete sums using the midpoint
method. For the discrete variables rm and rn we use a cell-
centered grid containing N grid points. On this grid, the grid
spacing is �r�rp /N , and the position of the kth grid point
is given by rk�(k�1/2)�r; k�1,2,.. . ,N . �Note that this
choice of grid eliminates the r�0 and r�rp singularities in
the logarithmic term.�We also assume hereafter that all sums
run from 1 to N , except as explicitly stated. We obtain

�2
z�rm���z
2�rm�
z�rm�

�
q�r

�0mp� �
n

��rn�
�rm�rn�

Emn
�rn�rm�2

��
z�rn��
z�rm��
z��rm��rn�rm��rn

�
q
z��rm��r

�0mp� �
n

���rn�Emnrn
�rn
2�rm

2 �
�

��rm�

2�rn�rm��
�
q
z��rm���rm�

2�0mp�
ln� rp�rmrm

� , �13�

where
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Emn�E� 4rmrn
�rn�rm�2� , �14�

and where E(m) is the complete elliptic integral of the sec-

ond kind. These summations are indeterminate at rn�rm , so
we separate out these terms explicitly using the Kronecker
delta 
mn . Using L’Hospital’s rule and Emn
mn�E(1)
mn
�
mn �since E(1)�1� we obtain

�2
z�rm���0�z
2�rm�
z�rm���1

q�r
�0mp� �

n�m

��rn�rn
�rm�rn�

Emn
�rn�rm�2


z�rn���2
q�r
z�rm�

�0mp� �
n�m

��rn�rn
�rm�rn�

Emn
�rn�rm�2

��3
q�r
z��rm�

�0mp� �
n�m

��rn�rn
Emn

�rn
2�rm

2 �
��4

q�r
4�0mp�

��rm�
z��rm���5
q
z��rm��r

�0mp�

� �
n�m

���rn�Emnrn
�rn
2�rm

2 �
�

��rm�

2�rn�rm����6
q
z��rm��r

�0mp�
����rm�

2 �
��rm�

4rm
�

��7
q
z��rm���rm�

2�0mp�
ln� rp�rmrm

� , �15�

in which we have introduced the factors � i�1,(i�0,.. . ,7)
simply as a means of keeping track of terms in what follows.

The left-hand side of Eq. �15� may be interpreted as a
matrix operator if we write 
z(rm)�
mn
z(rn). Similarly
converting the right-hand side of Eq. �15� to a matrix, as
discussed in the Appendix, this equation may be written as

Omn
z�rn���2
mn
z�rn�, �16�

where

Omn��
i�0

7

Gmn
(i) �17�

�see the Appendix for the definitions of the matrices Gmn
(i) �.

The procedure outlined in the Appendix does not work,
however, on the top and bottom rows of Omn because the
derivatives in Eq. �15� are difficult to represent at the first
and last grid points. To handle these two troublesome rows
we choose to apply boundary conditions. The symmetry of
the modes requires 
z�(r)�0 at r�0, and this condition can
be represented on our grid by the relation

�2
z�r1��3
z�r2��
z�r3��0. �18�

There is no corresponding natural boundary condition at
r�rp , but we can at least be neutral there, and avoid having

to compute too close to the square-root singularity at r
�rp , by requiring that 
z(rN) be equal to the quadratic
extrapolation of the three previous points, i.e.,


z�rN��3
z�rN�1��3
z�rN�2��
z�rN�3�. �19�

�We experimented with several conditions like this and this
one is adequate.�

These conditions are implemented in the matrix equation
by replacing the top and bottom rows of the identity matrix

mn on the right side of Eq. �16� with zeros, calling this new
matrix Rmn . Additionally, we replace the top row of the Omn
matrix with the row ��2s ,3s ,�s ,0,0,0, . . . ,0� and replace
its bottom row with �0, . . . ,0,�s ,3s ,�3s ,s� . The quantity s
is the largest element of the matrix Omn , and serves as a
factor to scale the matrix elements in the top and bottom
rows of Omn to be approximately the same order of magni-
tude as the elements in the other rows. This rescaling keeps
the condition number of Omn sufficiently low that numerical
solutions of Eq. �16� are possible, and is of no consequence
otherwise �since the right-hand side of the equation corre-
sponding to these rows is zero, that is, the first and Nth rows
of Rmn are full of zeros�. We obtain

Omn��
�2s 3s �s ¯ 0 0 0
O21 O22 O23 ¯ O2,N�2 O2,N�1 O2,N
O31 O32 O33 ¯ O3,N�2 O3,N�1 O3,N
] ] ] � ¯ ¯ ¯

ON�1,1 ON�1,2 ON�1,3 ¯ ON�1,N�2 ON�1,N�1 ON�1,N

0 ¯ 0 �s 3s �3s s

� , �20�

s�max„max�Omn�…. �21�
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This leads to the generalized eigenvalue equation,

Omn
z�rn���2Rmn
z�rn�, �22�

which we solve using Matlab 6.
A good way to test the accuracy of our numerical

method is to check that it agrees with Dubin’s theory,13
which gives the eigenmodes and eigenfrequencies for a cold
spheroid in a Penning trap with constant �z(r)��z0 . As-
suming that the plasma is a spheroid of constant density, as
required by Dubin’s theory, we obtain

��r ��2qncoldzp�1�� rrp�
2

�2qncold	rp�1�� rrp�
2

, �23�

where

ncold�
�p
2�0mp
q2 , �24�

and �p is the plasma frequency.
Bollinger et al.16 showed that for cold spheroids of small

aspect ratio, �z0 and �p are related �to second order in 	� by

�z0
2 �� 1�

�

2 	�2	2��p
2. �25�

This means that Eqs. �23�–�25� can be combined to give

��r ��
2�z0

2 �0mp	rp
q �1�� rrp�

2

, �26�

to first order in 	. Putting this form for �(r), together with
its derivative, into Eq. �15�, we obtain a numerical method
for a cold spheroid of small aspect ratio.

The constancy of �z(r) allows us to move the �0-term
in Eq. �15� to the other side of the equation. Dividing by �z0

2

then turns Eq. �22� into an eigenvalue equation of the form

Ōmn
z�rn����	Rmn
z�rn�, �27�

where

�	�� 1�
�2

�z0
2 � , �28�

Ōmn��Omn�z0
2 �Imn� , �29�

and Imn is the identity matrix. �Note that Ōmn is proportional
to � and thus to 	, so the small aspect ratio cancels out of
Eq. �27�.� Dubin’s calculation �to first order in 	� gives the
first 4 eigenvalues of this equation as

�1,0�0; �3,0�
5
8 �; �5,0�

161
128�; �7,0�

969
512� .

�30�

Table I shows the comparison between the eigenvalues
computed with Matlab 6 and these first-order analytic ones.
Since the calculation presented here is accurate to first order
in 	 we might hope to reproduce these results exactly. The
limitations of our simple midpoint integration rule and the

presence of a singular �(r) profile at r�rp seem to limit this
calculation to a relative accuracy of about 10�4. Fortunately
this is sufficiently accurate for this calculation to be of physi-
cal significance.

IV. COLD PLASMA EQUILIBRIA IN NONIDEAL
CONFINING FIELDS

The methods of the preceding section may be used to
numerically find the normal modes and mode frequencies of
a cold plasma in a nonideal �not strictly quadrupole� confin-
ing field, provided that the plasma aspect ratio is small
enough that a description in terms of �(r) is valid. But to
proceed we need a way of calculating the surface charge
density profile. Such a calculation is presented in the Appen-
dix of Paulson and Spencer.20 It should be noted that in gen-
eral it is not possible to calculate �(r) because an experi-
menter can load almost any desired charge distribution. But
under the conditions of Weimer’s experiment, where the
plasma was slowly expanding due to collisions, we expect
the system to be close to a state of global thermal equilib-
rium. So it makes sense to follow the thermal equilibrium
calculation of Paulson and Spencer, which will be briefly
reviewed here.

A. Equilibrium conditions

It is traditional in the Penning trap literature to describe
the electrostatic field of the trap in terms of vacuum harmon-
ics. This has the advantage that a single set of coefficients
can describe both the midplane potential �e(r ,0) and the
particle bounce frequency �z(r). But the disadvantage of
this description is that the harmonic expansion does not con-
verge for spherical radii larger than the distance to the near-
est singularity in the induced surface charge density on the
electrodes �see, for example, Jackson23�, and in Weimer’s
experiment this distance is 3.5 mm, the distance from the
center of the trap to the conical end cap. Since the ring elec-
trode had a radius of 5 mm, plasmas that approach this elec-
trode can extend into the nonconvergent region, invalidating
the standard expansion. To circumvent this difficulty, we nu-
merically compute �e(r ,z) using a grid and Weimer’s geom-
etry, then make separate least-squares polynomial fits to the
midplane potential �e(r ,0) and to the axial bounce fre-
quency �z(r) in the form

TABLE I. The difference between the numerically obtained eigenvalues
�see Eqs. �27�–�28�� for a thin spheroid and those predicted by Dubin’s
theory �taken to first order in 	�. The number of grid points in the numerical
calculation is N , the numerical eigenvalue is � and the first-order eigenvalue
from Dubin’s theory is �*. The subscripts on the eigenvalues are Dubin’s
notation for the axisymmetric modes. The computation was carried out us-
ing the eigenvalue routine in Matlab 6.

N �10��10* �30��30* �50��50* �70��70*

10 �10�15 2.3�10�3 9.2�10�2 4.4�10�1

20 �4�10�15 2.0�10�4 1.4�10�2 9.3�10�2

40 4�10�15 �2.9�10�4 1.4�10�3 1.5�10�2

80 �1.5�10�14 �2.4�10�4 �2.4�10�4 1.5�10�3

160 �1.3�10�13 �1.3�10�4 �3.1�10�4 2.8�10�4
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�e�r ,z�0 �� �
n�1

�

a2nr2n �31�

and

�z
2�r �� �

n�1

�

b2nr2(n�1). �32�

In passing we note that if the usual description of the
potential in terms of vacuum harmonics with spherical radius
R and polar angle �,

�e�R ,��� �
n�1

�

C2nR2nP2n�cos �� �33�

does converge; then we have

a2n�C2nBn ; b2n��
4q
mp
C2nBnn2, �34�

where

Bn�P2n�0 ��
��1 �n�2n �!

�n!�24n . �35�

In Appendix B of Paulson and Spencer the surface
charge density functions that produce polynomial potentials
are found:

��r ��Vn
r2n

rp
2n is produced by

��r ��
4�0Vn
�rp

sn�r/rp�, �36�

where the function sn(x) is given by

sn�x �� �
m�0

n�1
��1 �m�1

	BnBm�1	
� n
m�1 � �1�x2�m�1/2, �37�

where (m�1
n ) is the binomial coefficient. These relations and

the condition of global thermal equilibrium then lead to the
following two equations that determine �(r), given the ex-
ternal field coefficients a2n and the number of particles N in
the cloud:

��r ��
4�0
�rp

� V̄s1�r/rp�� �
n�2

�

a2nrp
2nsn�r/rp�� , �38�

N�
8rp�0
q

� �
4
3 V̄� �

n�2

�

�
m�0

n�1

a2nrp
2n

�

��1 �m� n
m�1 �

	BnBm�1	�2m�3 �
� . �39�

Note that Eq. �39� determines the voltage V̄ which is needed
to make �(r) in Eq. �38� determinate.

In a trap where only C2 and C4 are important, the equi-
librium plasma surface charge distribution is given by

��r ��
3Nq
2�rp

2 �1�
64C4rp

5�0
9Nq �2/5�r2/rp

2���1�r2/rp
2.

�40�

As discussed in Paulson and Spencer, there are limits on the
values C4 may have if the surface charge distribution is to all
of one sign, as it must be in a Penning trap. These limits are

�
15
64�

C4rp
5�0

Nq �
45
128 , �41�

where at the upper limit �(0)�0; for C4 beyond this limit
the center of the plasma would be oppositely charged. At the
lower limit the outside edge of the plasma makes the transi-
tion to being oppositely charged. Exceeding the upper limit
probably means that the plasma becomes hollow, with a
space near the center that has no charge. Dropping below the
lower limit is rather problematic in the case of a cold plasma,
but with finite temperature Paulson and Spencer show that
the state of global thermal equilibrium in this case would be
for the plasma to condense on the ring electrode, so perhaps
this negative limit gives the radius beyond which a plasma
with C4 and q of opposite sign can no longer be confined in
thermal equilibrium.

We also note �see Ref. �20�� that for plasmas cold
enough that the Debye length is small compared to the axial
plasma thickness, the surface charge density �(r) is the
same as the plasma thickness.

B. Equilibria in Weimer’s experiment

We now apply this equilibrium theory to the plasmas in
Weimer’s experiment. But Eq. �38� is the surface charge den-
sity of a zero-temperature plasma in thermal equilibrium, so
the question now arises as to whether it makes sense to use it
to describe experiments on thin plasmas with finite tempera-
ture. Paulson and Spencer show that the cold formula for
�(r) is a good approximation to warm distributions provided
that

	D	�
�

8
zprp
�D0
2 �40, �42�

where

�D0
2 �

kT
mp�z

2 �43�

and where rp and zp are the plasma radius and half thickness
of a cold spheroid with density given by Eqs. �24� and �25�.
Since the total number of particles in such a spheroid is
given by

N�
4
3 �rp

2zpncold , �44�

we may convert the condition in Eq. �42� into a condition on
the plasma radius:

rp�
3Nq2

1280kBT�0
. �45�
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In the experiment N�43000 and T�4 K, giving the condi-
tion

rp�5.3 mm. �46�

The ring electrode in the experiment had a radius of 5 mm,
so we expect this calculation of � to work for the plasmas in
the experiment.

But applying this equilibrium theory to Weimer’s experi-
ment requires more than just the extra C4 coefficient. The
plasma radii in this experiment were so large that a full ex-
pansion is necessary, and, indeed, the expansion in vacuum
harmonics does not even converge for plasma radii beyond
about 3.5 mm. But least-squares fitting a polynomial to the
midplane potential �e(r ,0) and to �z

2(r) to obtain a2n and
b2n does work, and was accomplished by representing the
electrodes in the experiment on a grid and doing an electro-
static solve to calculate �(r ,z). �The non-neutral plasma
equilibrium code of Spencer et al.24 was used for this calcu-
lation. It has the ability to specify potentials on arbitrary line
segments in the r ,z plane and hence can handle complex
electrode structures like those used in Weimer’s experiment.�
The midplane potential �e(r ,0) and �z(r) were then passed
into Matlab 6, which was used to make the least-squares fit.
With the guard ring voltage set to 2.9 V, as was done in the
published experiments, the coefficients a2n and b2n in Eqs.
�31� and �32� were found to be the values given in Table II.
Using these a2n coefficients in Eq. �38� allows us to calculate
the surface charge density profile in Weimer’s experiment as
a function of plasma radius. The results of this calculation
are shown in Fig. 3 together with two profiles of �(r) com-
puted with a global thermal equilibrium code that uses a
grid.19,24 The agreement between the two is quite good ex-
cept at the outer edge of the plasma, where the lack of a
thermal tail in the cold equilibria causes disagreement. �Re-
call that this good agreement was predicted by Eqs. �42�–
�45�.�

V. GENERAL BEHAVIOR OF THE MODES

With a method for calculating plasma equilibria, we may
now use the methods described in Sec. III to calculate the
normal modes of these equilibria. To do so we need to know
the functions �(r) and �z(r), whose calculation is discussed
in Sec. IV. The calculations presented here will involve equi-
libria described by Eq. �38�, but the method will work on
other equilibria as well. We report, however, that when the
outer radius of the plasma is ill-defined, as it is for the pro-
files of � with thermal tails calculated by Paulson and

Spencer,20 the method of Sec. III gives poor results. But the
method seems to work well as long as �(r) goes to zero at a
finite radius and should work equally well for analytic pro-
files and fits to experimental profiles.

We now discuss briefly the mode labeling convention
used by Dubin and employed by Weimer in discussing the
results of his experiment.13,18 We then discuss the behavior
of the normal modes in simple nonideal confining fields �C2
and C4 only�, and finally discuss the normal modes for We-
imer’s experiment using the equilibrium sequence shown in
Fig. 3 and the values in Table II.

A. Mode labeling convention

In Dubin’s theory, the normal modes of a cold, uniform-
density plasma spheroid are labeled by the two integers
(l ,m), satisfying l�	m	 �because the associated Legendre
functions Pl

m(x) are involved�. The integer m belongs to the
familiar angular variation function eim�, while l describes
the radial variation of the eigenfunction along the surface of
the plasma. The modes discussed here all have m�0 and our
assumption of rigid displacement in z requires that l be
odd.18 The number of radial nodes in 
z(r) is given by (l
�1)/2. For the special case l�1, there are no radial nodes,
so the (1,0) mode �for constant �z(r)� is simply the axial
center-of-mass mode of the plasma, i.e., a rigid shift along
the ẑ-direction.

B. Behavior of the modes in nonideal fields

We first study the behavior of the �1,0� mode �fundamen-
tal mode� of a zero-temperature small aspect ratio plasma in
a nonideal confining field. For simplicity, we assume
throughout this subsection that only the C4 coefficient is im-

FIG. 3. A sequence of surface charge density profiles for increasing plasma
radius is shown by the solid curves. They are calculated from the coeffi-
cients a2n as described in the paper using the geometry of Weimer et al.
�Ref. 18�. The open circles give surface charge density profiles correspond-
ing to two of the cases in the paper of Mason et al. �Ref. 19�. They were
computed by running the grid equilibrium code of Spencer et al. �Ref. 24�
�which was also used by Mason�.

TABLE II. Fitting coefficients for the midplane potential and the axial
bounce frequency in Weimer’s experiment with the guard ring voltage set to
2.9 V.

n a2n b2n

1 2.04�105 1.43�1017

2 4.09�102 3.81�1020

3 1.38�107 �3.50�1025

4 �7.45�1012 �1.06�1031

5 2.61�1017 6.91�1035
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portant. Equation �40� gives the equilibrium surface charge
density of the plasma under these conditions, while Eq. �41�
gives the allowable range of values of C4 .

As previously noted, the fundamental mode of a low-
aspect ratio plasma in the ideal quadrupole fields of a Pen-
ning trap is a rigid shift; that is, 
z(r) is a constant. The
entire plasma oscillates axially as a rigid body in the trap,
with frequency �z . If the coefficient C4 is present, then if
C2C4�0, �z(r) decreases with radius, while if C2C4	0,
then �z(r) increases with radius. �See Fig. 4 and Eqs. �32�
and �34�.� Exploring these two cases by numerical experi-
mentation using the method described in Sec. III, we find
that the fundamental mode frequency moves similarly up or
down, having a value intermediate between the extremes of
�z(r) across the plasma �see the dashed lines in the upper
panel of Fig. 4�. In doing these calculations it became appar-
ent that the eigenfunctions were behaving like evanescent
wave functions. For instance, notice in the lower panel of
Fig. 4 that the displacement functions 
z(r) tend to decrease
as they extend into the radial interval where the mode fre-
quency is greater than �z(r). �More dramatic examples of
this effect appear later in the paper.� This behavior is back-
wards from the usual evanescent behavior of waves in a for-
bidden region where frequencies below some threshold are
cut off, but the same physics is actually involved �as dis-
cussed below in Sec. VD�. The reason that it works back-
wards is that the coupling between different parts of the me-
dium in this problem is repulsive instead of attractive.

Figures 5 and 6 show that attenuation is found for higher

modes as well. In both figures the upper frame displays Du-
bin’s eigenfunctions, which are given by the formulas


z�r �(1,0)�1, �47�


z�r �(3,0)�1�
5
2
r2

rp
2 , �48�


z�r �(5,0)�1�7
r2

rp
2 �

63
8
r4

rp
4 , �49�


z�r �(7,0)�1�
27
2
r2

rp
2 �

297
8
r4

rp
4 �

429
16

r6

rp
6 . �50�

FIG. 4. The properties of the fundamental �1,0� mode are displayed for two
different nonideal cases with only C2 and C4 nonzero. Both cases have
43,000 electrons: 75 grid points in the mode calculation, and rp�3 mm;
their surface charge density profiles �(r) are readily calculable from Eq.
�40�. The upper frame shows the profiles of �z(r) as solid curves and the
fundamental mode frequencies as dashed lines for two different choices of
C4 . Case �a� has C2��4.2511�105 and C4��5.63�108 �in SI units�
which is halfway from C4�0 to the upper �completely hollow� limit in Eq.
�41�. Case �b� has C2��4.2511�105 and C4�3.74�108 �in SI units�
which is halfway from C4�0 to the lower limit in Eq. �41�. The lower
frame shows the mode displacement function 
z(r) for both �a� and �b�.
Note that it decays in the region where ���z(r).

FIG. 5. The attenuation of the first four modes for the hollow plasma �case
�a�� in Fig. 4 is shown. The upper frame shows Dubin’s eigenfunctions
�distinguished from each other by their number of zeros� while the lower
frame shows the numerically computed eigenfunctions �also distinguished
by the number of zeros�. Note that they are substantially attenuated toward
the outside edge of the plasma compared to the ideal eigenfunctions.

FIG. 6. The attenuation of the first four modes for the plasma with C4C2
	0 �case �b�� in Fig. 4 is shown. The upper frame shows Dubin’s eigen-
functions while the lower frame shows the numerically computed eigenfunc-
tions. Note the substantial attenuation toward r�0.
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In the plots these functions have been normalized for conve-
nient comparison with the corresponding nonideal eigen-
functions.

Figure 7 shows that this attenuation behavior persists
right up to the extreme limits of Eq. �41�. In these limits, it is
interesting to note that the plasma surface-charge density
�(r) becomes very small in certain regions of the plasma �at
the plasma center or at the plasma edge, depending on the
sign of C2C4�, and that the modes are rapidly attenuated
outside the region of space where �(r) is small. This con-
centration of displacement toward the thinned-out center or
edges of the plasma probably affects the ability of these
modes to be detected by measurements of induced charge on
the Penning trap electrodes �as in Weimer’s experiment18�,
and judging by these extreme-case plots of 
z(r) one might
think that this would be an important effect. But the elec-
tronic signals depend not on the displacement itself, but on
the amount of displaced charge. A measure of this quantity is
the displaced charge per unit radius q�(r)�
z(r)�(r)r , and
this quantity is displayed for both of the cases of Fig. 7 in
Fig. 8. Notice that the concentration effect is greatly reduced,
though still present.

As seen in Fig. 3, the profiles in Weimer’s experiment
should have been hollow, so q�(r) should have been concen-
trated near the center of the plasma. Weimer reported that
when their trap was detuned so that C4 had the opposite sign,
they did not observe modes. In this case the charge displace-
ment should have been more peaked near the outside edge of
the plasma, but whether this effect has anything to do with
their inability to detect modes with this detuning requires
further study.

C. Radial attenuation of the modes

The physical process which causes the radial attenuation
of the modes can be better understood by careful examina-
tion of Eq. �8�, repeated here:

�2
z�r ���z
2�r �
z�r ��

q
mp
E1z�r ,0�. �51�

In this equation, the last term on the right represents the
repulsive coupling between all of the charged rings compos-
ing the plasma. The actual behavior of the coupling, as we
have seen from Eq. �9�, is quite complicated, and the origin
of the mode attenuation is not easily seen. However, if we
consider a similar system where only nearest-neighbor rings
are coupled by a force of form F�k�z �to give the correct
sign for repulsive coupling� and separated by an infinitesimal
distance �r , Eq. �51� becomes

�2
z�r ���z
2�r �
z�r ��

k
mp

�
z�r��r ��
z�r ��

�
k
mp

�
z�r ��
z�r��r �� . �52�

�Note: a system like this, consisting of hacksaw blades dy-
namically coupled by ring magnets, has recently been built
and studied25 and will be discussed in Sec. VD.� The second
term on the right is the repulsive force of the ring at r��r
acting on the ring at r , while the third term is the repulsive
force of the ring at r��r acting on the ring at r . This equa-
tion can be simplified to obtain

��2��z
2�r ��
z�r ��

k�r2

mp

�
�
z�r��r ��2
z�r ��
z�r��r ��

�r2 .

�53�

In this form, the last term in Eq. �53� is a numerical
approximation to the second derivative of 
z with respect to
r , and the equation can be put into the form

FIG. 7. The profiles of surface charge density � �dashed� and axial displace-
ment �solid� of the fundamental mode are shown for the two extreme cases
in Eq. �41�. The upper frame is for the upper limit and the lower frame is for
the lower limit.

FIG. 8. For the same extreme cases shown in Fig. 7, the displaced charge
per unit radius q�(r)�
z(r)�(r)r is displayed as a solid curve while the
profile of � is displayed as a dashed curve. Note that the concentration
effects at r�0 and r�rp are greatly reduced.
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mp��2��z
2�r ��

k 
z�r ���r2
z��r �. �54�

This equation is analogous �except for a minus sign� to the
time-independent Schrödinger equation in one dimension for
a particle in a potential U(r)��z

2(r). The mode displace-
ment function 
z(r) corresponds to the particle’s wave func-
tion, and �2 corresponds to the particle’s energy E . In the
quantum mechanical system, the wave function of a particle
exhibits oscillatory behavior in regions of space where E
�U(r). Likewise, in the classically forbidden region where
E	U(r), the particle’s wave function in the quantum sys-
tem dies exponentially in most simple cases. In the plasma,
however, because of the extra minus sign, the mode displace-
ment function 
z(r) exhibits oscillatory behavior when �2

	�z
2(r), and attenuates exponentially when �2��z

2(r), as
seen in Figs. 4–6. The oscillatory behavior of the higher-
order normal modes of the plasma is exactly analogous to the
excited states of the quantum particle’s wave function.

Although the coupling in this example is somewhat con-
trived, the effect is analogous to the effect which arises from
the complicated coupling term in Eq. �9�—perturbations in
the trap fields cause the mode displacement function to at-
tenuate into regions where �2��z(r)2.

D. Comparison with the results of Weimer et al.

In Dubin’s theory,13 taken to first-order accuracy in as-
pect ratio 	, the frequencies of the first four odd, azimuthally
symmetric normal modes of cold plasma spheroids satisfy
the following:

�1,0
2 ��z

2, �55�

�3,0
2 ��z

2�1�
5
8 �	 � , �56�

�5,0
2 ��z

2�1�
161
128�	� , �57�

�7,0
2 ��z

2�1�
969
512�	� . �58�

In Weimer’s experiment,18 these results were used to esti-
mate the plasma aspect ratio after the frequencies corre-
sponding to the various modes had been identified. With �1,0
as an estimate for �z , as in Eq. �55�, Eqs. �56�–�58� can
each be solved for 	 using the measured values for �3,0 ,
�5,0 , and �7,0 . Weimer et al. found that the experimental
values of 	 obtained through this process always satisfied the
inequality

	3,0�	5,0�	7,0 �59�

�as in Fig. 5 in their paper�, with the difference between
these estimates on the order of 20%:

	3,0�	7,0
	3,0

�
�	

	3,0
�0.2. �60�

To compare our calculation with their experimental re-
sults we used the values of a2n in Table II to generate a
sequence of �(r) profiles for many different plasma radii in

the range 1 mm–3.94 mm. �At this largest radius the plasma
became completely hollow, i.e., �(0)�0. Notice that ac-
cording to the first two values in Table II, C2�a2�(�1/2)
and C4�a4�(3/8) should have opposite signs, which does
not make a hollow plasma according to the discussion of Eq.
�41�. This simple rule involving the sign of C2C4 , which
works if only C2 and C4 are important, does not work here
because the other terms are more important at large plasma
radius.� These profiles were then used to calculate the fre-
quencies �1,0 , �3,0 , �5,0 , and �7,0 , and these values were
used in Eqs. �55�–�58� to calculate 	3,0(rp), 	5,0(rp),
	7,0(rp). This theoretical simulation of the experiment is
shown in Fig. 9. The first thing to notice is that the computed
	 values are in the correct order of Eq. �59� and that the
computed relative range of 	 is about 13%, about the value
obtained in Mason’s simulations,19 and about a factor of 2
low compared to the experiment.

In the experiment the range of values of computed 	’s
when all four modes could be measured was only about
�0.001–0.004�. This range is shown in the inset in the upper
frame of Fig. 9 and is displayed in expanded form in the
lower frame. Notice that this calculation thus predicts that
the experimental plasma radius only varied between about
3.6 mm and 3.9 mm during the 25 minutes when all four
modes were measured in Fig. 5 of the experimental paper.18
Looking at this range of � profiles in Fig. 4 of this paper
shows that this calculation also predicts that the experimental
plasma was quite hollow during the measurable period of
time. This hollow behavior, when taken together with the
result of Paulson and Spencer20 that the plasma thickness
cannot be smaller than a distance on the order of �D0 �see
Eq. �43��, means that the quantity ‘‘	’’ measured in Weimer’s
experiment was not simply the ratio of the plasma half-
thickness at r�0 to the outer plasma radius.

FIG. 9. Computed values of 	3,0 , 	5,0 , and 	7,0 as a function of plasma
radius are shown for a finely-spaced sequence of equilibria following the
more coarse pattern of Fig. 3. The upper curve in each frame is 	3,0(r), the
middle curve is 	5,0(r), and the lower curve is 	7,0(r). This is the same
ordering as in the experiment, but the relative spread between the lower
curve and the upper curve is about a factor of 2 too small. The lower frame
is an expanded view of the curves in the inset box in the upper frame.
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Recent work by Spencer and Robertson25 indicates that
in systems comprised of weakly coupled oscillators it is hard
to find modes if the individual oscillators all have the same
frequency �as in an ideal trap�, but that detuning makes the
modes more well defined. They also show evidence that in
the presence of perturbations to the system �like error fields
due to stray patches of charge on electrodes or machining
errors in Penning traps�, detuning helps the modes retain
their integrity in spite of the perturbations. To test whether
this idea has relevance for the modes in the experiment, we
added random perturbations of various strengths to the �z(r)
profile in our mode calculations. We find that when errors are
added at a relative level of about 0.25%, the curves in Fig. 9
are changed substantially, as shown in Fig. 10. We were sur-
prised to find that this effect not only makes the curves of
computed 	’s be more like the jagged curves of the experi-
ment �which was expected�, but also that �	 went up. In
fact, by choosing the perturbation level properly it is easy to
get curves that look about like those of the experiment and
that have about the right value for �	/	3,0 of about 20%. In
the simulations of Mason et al., the factor of two discrepancy
in the spread could be accounted for by increasing the tem-
perature by a factor of 4, but this error field estimate provides
an alternative explanation for the increased spread. It is dif-
ficult to pursue this idea further without some knowledge of
the level of error fields in the experiment, but it does suggest
that error fields may have played a role in what was observed
in the experiment. �Note: we do not study image charge ef-
fects here, but their magnitude was estimated in Mason
et al., and it was found that their inclusion probably de-
creases the spread. This would require perturbation levels
even higher than 0.25% to account for the spread.�

VI. CONCLUSION

When a finite-temperature plasma is confined in a Pen-
ning trap, transport and radial expansion lead to a state of

global thermal equilibrium in which the plasma is very thin.
A mode equation for the azimuthally symmetric, incompress-
ible fluid modes of such a plasma has been derived and
solved numerically in the limit that the plasma can be de-
scribed as a thin layer of surface charge density �(r). When
the plasma temperature is zero and the trap fields are ideal,
near-perfect agreement with Dubin’s zero-temperature
theory13 is obtained to first order in 	. Our mode equation,
however, can be solved for arbitrary confining fields and
temperatures provided the functions �(r) and �z(r) �surface
charge density and axial bounce frequency profiles� are
known. Additionally, the computation time required by this
method is significantly less than that required for a particle
simulation.

We have also examined the dependence of the plasma
shape and the normal mode eigenfunctions on nonideal com-
ponents of the trap fields. We find that the amplitudes of the
normal modes tend to be large in regions of the plasma
where �(r) is small �equivalent to regions where �
	�z(r)� and that the amplitude is evanescent in regions
where ���z(r) �corresponding to larger values of �(r)�.
The equilibrium and mode calculations have also been ap-
plied to the experiments of Weimer et al.18 and we find that
their plasmas were probably hollow. We also reproduce the
ordering of the 	-values they calculated, but we cannot re-
produce the amount of spread in these values unless we add
random perturbations to the equilibrium fields in an ad hoc
manner.
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APPENDIX: THE MATRICES

The representation of Eq. �15� as a sum of matrix opera-
tors is discussed in this appendix. Each of the 8 terms corre-
sponding to � i for i�0,1,..,7 in this equation can be written
as a matrix, with the top and bottom rows full of zeros be-
cause boundary conditions will be applied in these rows,
corresponding to r�0 and r�rp . The matrices will be de-
noted by the symbols Gmn

(i) and each will be discussed in turn.
The matrix corresponding to �0 is, of course, simply

Gmn
(0)�
mn�z

2�rm� �A1�

�except for the top and bottom rows, which are full of zeros�.
The �1 term has a simple interpretation as a matrix mul-

tiplication Gmn
(1)
z(rn) with

Gmn
(1)�

q�r
�0mp�

��rn�
�rm�rn�

Emn
�rn�rm�2

rn ; m�n ,

�A2�Gmn
(1)�0; m�n ,

i.e., a full matrix �excepting the rows reserved for boundary
conditions� with zeros down the main diagonal.

Using the substitution 
z(rm)�
mn
z(rn), the �2 term
can be interpreted as a diagonal matrix Gmn

(2) multiplying

z(rn), where

FIG. 10. These curves are just like those of Fig. 10 except that �z(r) has
been randomly perturbed at the 0.25% level in an attempt to assess the effect
of electrostatic field errors. This effect makes the curves look more like
those of the experiment and also increases the relative spread, in this case to
a level about the same as the experiment.
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gm
(2)��

k
Gmk
(1) ,

Gmn
(2)��

0 0 0 0 ¯
0 g2

(2) 0 0 ¯
0 0 g3

(2) 0 ¯
0 0 0 g4

(2) ¯
] ] ] ] �
0 0 0 0 ¯

� . �A3�

Similarly, the �3 term is written as Gmn
(3)
z(rn), where

the substitution,


z��rm��

z�rm�1��
z�rm�1�

2�r , �A4�

leads to

gm
(3)��

k
�rk�rm�Gmk

(1)

and

Gmn
(3)�

1
2�r �

0 0 0 0 ¯
�g2

(3) 0 g2
(3) 0 ¯

0 �g3
(3) 0 g3

(3) ¯
0 0 �g4

(3) 0 ¯
] ] ] ] �
0 0 0 0 ¯

� . �A5�

In the �4 term we use


z��rm��

z�rm�1��2
z�rm��
z�rm�1�

�r2 , �A6�

to obtain

gm
(4)�

q�r��rm�

4�0mp�
,

�A7�

Gmn
(4)�

1
�r2 �

0 0 0 0 ¯
g2
(4) �2g2

(4) g2
(4) 0 ¯

0 g3
(4) �2g3

(4) g3
(4) ¯

0 0 g4
(4) �2g4

(4) ¯
] ] ] ] �
0 0 0 0 ¯

� .
Following similar procedures with the �5 , �6 , and �7

terms yields

gm
(5)�

q�r
�0mp� �

k�m
���rk�

Emkrk
�rk
2�rm

2 �
�

��rm�

2�rk�rm�� ,

Gmn
(5)�

1
2�r �

0 0 0 0 ¯
�g2

(5) 0 g2
(5) 0 ¯

0 �g3
(5) 0 g3

(5) ¯
0 0 �g4

(5) 0 ¯
] ] ] ] �
0 0 0 0 ¯

� , �A8�

gm
(6)�

q�r
�0mp�

����rm�

2 �
��rm�

4rm
� ,

�A9�

Gmn
(6)�

1
2�r �

0 0 0 0 ¯
�g2

(6) 0 g2
(6) 0 ¯

0 �g3
(6) 0 g3

(6) ¯
0 0 �g4

(6) 0 ¯
] ] ] ] �
0 0 0 0 ¯

� ,
gm
(7)�

q��rm�

2�0mp�
ln� rp�rmrm

� ,
�A10�

Gmn
(7)�

1
2�r �

0 0 0 0 ¯
�g2

(7) 0 g2
(7) 0 ¯

0 �g3
(7) 0 g3

(7) ¯
0 0 �g4

(7) 0 ¯
] ] ] ] �
0 0 0 0 ¯
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