Faraway, so close: an agent based model for climate, energy and macroeconomic policy

Francesco Lamperti
Institute of Economics, Scuola Superiore Sant’Anna, f.lamperti@sssup.it

Giovanni Dosi
Institute of Economics, Scuola Superiore Sant’Anna, g.dosi@sssup.it

Mauro Napoletano
OFCE, mauro.napoletano@sciencespo.fr

Andrea Roventini
Institute of Economics, Scuola Superiore Sant’Anna, a.roventini@sssup.it

Alessandro Sapio
Università Parthenope di Napoli, alessandro.sapio@uniparthenope.it

Follow this and additional works at: https://scholarsarchive.byu.edu/iemssconference
Part of the [Civil Engineering Commons](https://scholarsarchive.byu.edu/civilengineeringcommons), [Data Storage Systems Commons](https://scholarsarchive.byu.edu/datasystemscourons), [Environmental Engineering Commons](https://scholarsarchive.byu.edu/environmentalengineeringcommons), [Hydraulic Engineering Commons](https://scholarsarchive.byu.edu/hydraulicsengineeringcommons), and the [Other Civil and Environmental Engineering Commons](https://scholarsarchive.byu.edu/othercivilandenvironmentalengineeringcommons)

Lamperti, Francesco; Dosi, Giovanni; Napoletano, Mauro; Roventini, Andrea; and Sapio, Alessandro, "Faraway, so close: an agent based model for climate, energy and macroeconomic policy" (2016). *International Congress on Environmental Modelling and Software*. 76.
https://scholarsarchive.byu.edu/iemssconference/2016/Stream-A/76

This Event is brought to you for free and open access by the Civil and Environmental Engineering at BYU ScholarsArchive. It has been accepted for inclusion in International Congress on Environmental Modelling and Software by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
Faraway, so close: an agent based model for climate, energy and macroeconomic policy

Francesco Lampertia, Giovanni Dosib, Mauro Napoletanoc, Andrea Roventinid and Alessandro Sapioe

aInstitute of Economics, Scuola Superiore Sant’Anna (Pisa, Italy) – f.lamperti@sssup.it
bInstitute of Economics, Scuola Superiore Sant’Anna (Pisa, Italy) – g.dosi@sssup.it
cOFCE (Nice, France) - mauro.napoletano@sciencespo.fr
dInstitute of Economics, Scuola Superiore Sant’Anna (Pisa, Italy) – a.roventini@sssup.it
eUniversità Parthenope di Napoli (Napoli, Italy) – alessandro.sapio@uniparthenope.it

Abstract: This paper presents an agent based model for the study of coupled economic and climate dynamics that endogenously co-evolve across a range of different scenarios. The model offers a flexible laboratory to test various combinations of macroeconomic, industrial and climate policies both in the context of long run economic growth and medium run transition towards a greener economy. Furthermore, we propose a stochastic description of the feedbacks stemming from a warming and more volatile climate and study how such negative shocks propagate through the economy. For this reason, the model is particularly well suited for the study of extreme climate events, which are usually forgotten by standard integrated assessment models.

Keywords: climate change; agent based modeling; growth; technological change; transitions.