Brigham Young University

BYU ScholarsArchive

Faculty Publications

2003-02-26

Neutral-Plasma Oscillations at Zero Temperature

Scott D. Bergeson
scott.bergeson@byu.edu

Ross L. Spencer
ross_spencer@byu.edu

Follow this and additional works at: https://scholarsarchive.byu.edu/facpub

b Part of the Astrophysics and Astronomy Commons, and the Physics Commons

Original Publication Citation

S. D. Bergeson and R. L. Spencer, “Neutral plasma oscillations at zero temperature,” Physical
Review E 67, 26414, pp. 1-5, (23). The original publication of this article can be found at
http://link.aps.org/doi/1.113/PhysRevE.67.26414

BYU ScholarsArchive Citation

Bergeson, Scott D. and Spencer, Ross L., "Neutral-Plasma Oscillations at Zero Temperature" (2003).
Faculty Publications. 513.

https://scholarsarchive.byu.edu/facpub/513

This Peer-Reviewed Article is brought to you for free and open access by BYU ScholarsArchive. It has been
accepted for inclusion in Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more
information, please contact ellen_amatangelo@byu.edu.


http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/facpub
https://scholarsarchive.byu.edu/facpub?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F513&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/123?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F513&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/193?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F513&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/facpub/513?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F513&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ellen_amatangelo@byu.edu

PHYSICAL REVIEW E 67, 026414 (2003)

Neutral-plasma oscillations at zero temperature

S. D. Bergeson and R. L. Spencer
Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602
(Received 29 April 2002; revised manuscript received 16 October 2002; published 26 February 2003)

Cold plasma theory is used to calculate the response of an ultracold neutral plasma to an applied rf field. The
free oscillation of the system has a continuous spectrum and an associated damped quasimode. This quasimode
dominates the driven response and is resonant in the tail of the density distribution. Recent experiments used
the plasma response to an applied rf field to determine the plasma density in an expanding ultracold plasma.
The comparison between experiment and theory indicates that this method accurately determines the expansion
velocity and underestimates the initial plasma density by a factor of 3 in weakly collisional plasmas.

DOI: 10.1103/PhysRevE.67.026414

I. INTRODUCTION

Ultracold plasmas are a relatively new extension to the
field of laser cooling [1]. These plasmas are created either by
directly photoionizing laser-cooled atoms [2—4], or by excit-
ing laser-cooled atoms to high-lying Rydberg states that are
subsequently ionized [5,6]. By choosing the initial electron
and ion (or Rydberg atom) temperatures and densities, it is
possible to precisely control the initial conditions of a very
strongly interacting system.

A recently published paper describes the expansion of an
ultracold neutral plasma [3]. Xenon atoms were initially
cooled to ~10 uK and then ionized by a dye laser pulse. A
small charge imbalance in the plasma produced an electric
field that drove a slow ion expansion. The expanding plasma
was probed with a spatially uniform radio-frequency (rf)
electric field. By making some simple assumptions about
how the plasma reacted to the field, it was possible to deter-
mine an average plasma density, and to see how that density
changed with time.

In this paper we analyze in more detail how an ultracold
plasma responds to an rf field. We first derive the mode re-
sponse of the system predicted by cold plasma theory. We
then choose an expansion model and ask whether or not the
known expansion can be determined from the plasma’s re-
sponse to the rf field.

Surprisingly, this system has no normal modes. Instead, it
has a continuous spectrum with an associated damped quasi-
mode that is resonant in the tail of the density distribution,
shifting the response to lower densities than expected. This
means that the average densities determined in this way un-
derestimate the actual density.

II. THE PLASMA RESPONSE TO A RF FIELD

The greatest response of a plasma to an rf field occurs
when the rf frequency is on the order of the plasma fre-
quency. Because the plasma frequency is proportional to the
square root of density, determining the plasma response to an
applied rf field requires first knowing the plasma density.

A number of ultracold plasma models have been pub-
lished [7—13]. The work of Robicheaux and Hanson [11]
deals particularly with the density profile of the expanding
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plasma. They write the density for the neutral plasma as
n(r,t)=N,[ B(t)/7]*?exp[ — B(t)*], where N; is the number
of ions. The function B(¢) is given by Eq. (2) in their paper,
and can be solved analytically. Using their boundary condi-
tions, we find B(¢)= 1/2((7% +v?%¢?), making the density pro-
file

7’!00’3

0_3

n(r,t)= exp[ — r?20%], (1)

where n, is the initial density at the center of the plasma, o,
is the initial width of the distribution, o= \/0'07-1—0212 is the
time-dependent width of the distribution, v =E,/kg is the
asymptotic expansion velocity, E, is the initial electron en-
ergy, kg is Boltzmann’s constant, and ¢ is time. Note that this
is the formula for a self-similar Gaussian expansion and is, in
fact, the profile assumed in the initial experimental work of
Ref. [3].

We therefore consider a spherically symmetric charge-
neutral Gaussian distribution of cold ions and electrons to
which an rf-electric field in the z direction is applied. The
ions are taken as fixed on the time scale of the rf oscillation.
The cold fluid equations describing the electrons are

M ¥ (n5)=0 2

Jt (nv)_ 5 ()
Vip=—q(n—n)l €, (3)
W . . . R

m E+U-Vv =qE—vmv. (4)

In these equations n=n(r,t) is the electron density, n;
=n,(r) is the ion density, v= J(;,t) is the electron velocity,
E=E (;,t) is the total electric field (the sum of the external
field and that generated by the plasma response), and v is a
damping rate that includes some effects of finite temperature,
such as electron-electron collisions and electron-ion colli-
sions. This theory is good for plasmas in which (\p/0)?
<1, where \p is the Debye length. In the experiments we
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are simulating, (\p/0)?>~10"3~10"", making cold plasma
theory a good way to model the collective response of the
system.

In the experiment by Kulin ef al. [3], the applied £ was

uniform in space and oscillating in the z direction. If the
applied field is small, the fluid equations can be linearized by
assuming that the density and the potential are of the form
n(r,0,0)=n'O(r)+ én(r)cos e, where n®(r) is the
equilibrium electron density and &(r,0,1)
= S8¢(r)cos fe” ' (spherical harmonics with /'=1). After
some algebra to linearize the fluid equations (2)—(4), the po-
tential produced by the electrons is given by the expression

Lam22 L],
Log- wz—w;(r)+iw1/: _wz—wf,(r)-i-iwv’ )
where the operator £ is defined as
=242 ©)
dr rdr r

and where ,(r)= Vg*nO(r)/m,e€, is the plasma fre-
quency, ¢ is the electron charge, m, is the electron mass, and
€, is the permittivity of free space. Note that because the
density varies with radius, the local plasma frequency varies
as well. The boundary conditions on the potential are that
0¢(0)=0 and that at infinity the field is that of a dipole,
Sp(r)y=1/r2.

Because this is a driven system, we might first look for
normal modes with which to resonate. Notice, however, that
with Eq=0 and v=0 (undamped free response) this mode
equation has a continuous spectrum instead of discrete
modes. This is similar to the diocotron mode equation in
non-neutral plasmas [14—19]. And, as with the diocotron
mode, this equation also has a damped quasimode. Follow-
ing Ref. [15], Eq. (5) can be solved along a contour in the
complex 7 plane to uncover this damped quasimode. Figure 1
shows the frequency and damping rate of this quasimode for
a sequence of density profiles of the form

n(r)=noe_rp/2‘7p. (7)

The real and imaginary parts of the quasimode frequency are
well approximated by the simple formulas w,,/w,(0)
=1/y3-0.668/p—0.102/p>  and v/ 0,(0)=1.077/p
—0.959/p>.

Note that the Gaussian (p=2) quasimode is heavily
damped and that as p becomes large (making the density
profile approach a step profile), the damping rate goes to zero
and the frequency approaches wm=wp(0)/\/§ . The factor
1/4/3 in the high-p limit is the well-known correction to the
plasma frequency for a finite plasma in spherical geometry.

The quasimode dominates the free response of a system
with a continuous spectrum [20,21]. Tt also strongly influ-
ences the driven response, as can be seen in Fig. 2. This
figure shows the rate at which a plasma absorbs power from
an applied rf field as a function of the frequency of that field.
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FIG. 1. Quasimode frequency w,, (O) and damping rate v,
(©), for density profiles given by Eq. (7). For p=2, the distribu-
tion is Gaussian. As p increases, the distribution approaches a ““top
hat,” the quasimode frequency increases, and the quasimode damp-
ing decreases (see text).

To calculate this power, we note that the total electric field
(the applied field plus the plasma response) is given by

E(r,1)=(zEcos 6—V 8p)e 1. (8)

By using the linearized Eq. (4) to compute the current den-

sity J= qm; in the plasma, the power density can be written
as

1 . € - 0 (r)v
P)==Re(E-J*)=—=|E|*5—.
(P) ) e(E-J*) ) | 02t 2 )
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FIG. 2. Power absorbed by the (nonexpanding) plasma as a
function of applied frequency. The solid line shows the absorbed
power for a Gaussian density profile, p=2 in Eq. (7). Also shown is
the absorbed power for super-Gaussian profiles, with p=4,6. The
mode damping decreases with increasing p. These plots are gener-
ated with v/0"=0.01. For larger values of v, these curves are
somewhat broader and shifted to slightly higher w.
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The influence of the quasimode on the absorbed power can
be seen by integrating this power density over all space for
various values of the driving frequency w. Although strongly
damped, the quasimode still influences how the plasma re-
sponds to the rf field. Figure 2 shows the calculated power
absorbed by the plasma as a function of the applied rf fre-
quency for a nonexpanding plasma with weak damping. In
each case the peak of the absorbed power occurs near the
frequency of the quasimode. Notice that these resonances
occur at quite small values of the density, rather than in the
body of the density distribution as assumed by Kulin ef al.
The experiment used w/w,(0)=0.6.

In the following section, we will interpret the experiments
of Ref. [3] in terms of this theory. Among other things, it will
be seen that the quasimode resonance shifts the plasma re-
sponse to lower densities than might otherwise be expected.

III. THE RELATIONSHIP BETWEEN TEMPERATURE
AND DENSITY

To apply this theory to experiments, we need to know
how v varies in the expansion. This requires an understand-
ing of how density and temperature are related.

Without going into the details of heating (three-body re-
combination, electron-Rydberg scattering, etc.) or cooling
(electron evaporation, electron-ion collisions, expansion,
etc.), we will assume that the electron temperature scales
with density as Tocn®. This choice is motivated in part by
the recent work of Ref. [11]. Note that the coefficient «
could have time or density dependence to include heating
and/or cooling effects. In this work, we will take it to be a
constant. However we find that for the weakly collisional
plasmas we are simulating, there is essentially no depen-
dence on a over the most physically plausible range.

The damping rate v is probably dominated by the electron
collision frequency, v,;. Defining the electron collision im-
pact parameter to be b=g%/4mweykyT, the electron collision
frequency can be written as

A
Ve,:nﬂ'bz)\prln(—D>, (10)

b

where In(\p/b) is the Coulomb logarithm.
By assuming T«n“, the density dependence of the colli-
sion term can be made more explicit:

0 n 1-3al2 3a—1
Vei= Vi 0 1+ 3

In this equation, v°,, A}, and 5° are the values of the col-

lision frequency, the Debye length, and impact parameter in
the center of the plasma at the beginning of the expansion.
For an ideal gas undergoing adiabatic expansion, «
=2/3. However the expanding ultracold plasma is probably
not expanding adiabatically. The three-body recombination
rate in weakly coupled plasmas scales as x3~n’T~ %2
~n@ 992 If the plasma expanded as an ideal gas, the

In(n/n°)

In(A/b%)

. (11
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three-body recombination rate would be xk;~#"'. So even if
the plasma is created in a density and temperature regime
where recombination is ignorable, it quickly cools to the
point where recombination turns on, making the expansion
nonadiabatic [11]. Note that any value of @<<4/9 avoids the
problem of recombination becoming too large an effect dur-
ing the expansion.

A more realistic relationship between density and tem-
perature from Ref. [11] uses a=1/3. This has the conse-
quence that the strong coupling parameter in the expanding
plasma remains roughly constant [11,13]. It also means that
the Coulomb logarithm is independent of density, and that
v/w, is constant during the expansion. The model used to
determine this value of « considers three-body recombina-
tion and electron-Rydberg scattering as the main heating
sources. There may also be other heating sources that give
smaller values for «.

IV. THE RESPONSE OF AN EXPANDING PLASMA

With a choice for «, it is now possible to use the above
analysis to simulate the response of an expanding plasma to
an rf field. We mimic the experiment [3] by fixing the fre-
quency of the rf field and letting the plasma expand. For the
purpose of comparing to experiment, we define the average
plasma density to be

- f[n(r,t)]24ﬂ'r2dr
n(t)=

f n(r,t)4mr’dr

noo'g

= [2(0’6+v2z2)]3/2

=2"5(0,), (12)

with n(r,7) defined by Eq. (1). We also define the average
plasma frequency to be

q°n(1)
me€ '

(13)

w,(1)=

In the experiment, they assumed that the maximum response
of the plasma occurred when the driving field resonated with

the average plasma frequency (;p , and used that response to

determine the average density 7.

We simulate the plasma expansion experiment as follows.
The plasma expansion velocity v, the rf frequency w, and rf
amplitude E are held constant. At a particular time 7, we
insert the density from Eq. (1) into Eq. (5) to find the poten-
tial 5¢ and the total electric field [Eq. (8)]. We integrate the
power density [Eq. (9)] over the spatial coordinates to get the
plasma heating rate at that time. We increment time and re-
peat the heating rate calculation to generate one of the time
sweeps shown in Fig. 3(a). Repeating these calculations for a
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FIG. 3. (a) Calculated plasma heating rate. The applied frequen-
cies w/27 in megahertz are shown to the left of each trace. The
traces are offset vertically for clarity. The plasma conditions are
no=10" m™, v =100 m/s, 0y=220 um, and v/w,(0)=0.01. (b)
Average plasma density as a function of time. The circles (@) are
taken from the data in (a). The applied frequency is converted to a
density n(7), with 7 given by the peak of the signal in (a) (see text).
The solid line is a fit of these points to Eq. (12), with n(0) and v as
free parameters. The fitted density is #(0)=1.1X10" m™3 or n,
=3.1X 10" m™3, about a factor of 3 too low. The fitted expansion
velocity is v =100 m/s, in exact agreement with the expansion
model.

range of applied field frequencies generates all of the time
sweeps shown in the figure.

We convert the time sweeps in Fig. 3(a) into average den-
sity determinations. At the peak of each time sweep we set
the applied frequency w equal to the average plasma fre-

quency [Eq. (13)], to calculate the average density 7, as was
done in the experiment [3]. With this conversion from fre-

quency to density, the simulated average density n(¢) is plot-
ted in Fig. 3(b). The data is fit to Eq. (12) using a least-
squares method to extract the initial central density n, and
expansion velocity v.

V. DISCUSSION

The objective of this paper is to find out if the density
determined in this fashion accurately reproduces the known
density from the expansion model. With the initial value of
the damping rate set by the electron-electron collision rate,
the only free parameter in the model is «, the exponent in
the relationship between density and temperature (7on®).

For the conditions given in the original experiment
(v wfyo)=0.01), we find that the derived density and ex-
pansion velocity are independent of « for physically reason-
able values in the range 4/9>a>0. The shapes of the cal-
culated plasma heating rates shown in Fig. 3(a) match the

experimental ones from Ref. [3], and the fit of n(7) in Fig.
3(b) to Eq. (12) is excellent.
The fitted density extracted from Fig. 3 is about a factor

PHYSICAL REVIEW E 67, 026414 (2003)

of 3 lower than the density used in the expansion model. It is
a little surprising that the fitted density is not lower. After all,
the quasimode resonance occurs at a frequency three times
lower than expected, which should translate into a factor of 9
in the density. Apparently, averaging the quasimode reso-
nance over the density distribution shifts the peak plasma
heating rate to somewhat higher densities.

Cold plasma theory only addresses the collective behavior
of the system. Another effect that might be involved in the
resonant behavior seen in the experiment is that the electron
motion in the plasma resonates with the driving field. Ro-
bicheaux and Hanson estimate that in the bulk of the plasma,
the potential satisfies ¢ ¢/kzT=r*/20%. This means that
most of the particles are in an isotropic harmonic oscillator
well with natural frequency wy=w,(0)\p(0)/o, where
Ap(0) is the Debye length at the center of the cloud. Since
Ap(0)~1/10 and w~w,(0)/5, perhaps kinetic effects are
important. But such effects are beyond the scope of this the-
oretical treatment.

Cold plasma theory is valid for determining the collective
response of quasineutral plasmas in which (\ /o)><1. This
is true for the cold plasma experiments of Ref. [3]. At lower
temperatures, electron-ion recombination, electron-Rydberg
scattering, and strong plasma coupling significantly alter the
plasma behavior, as discussed by other authors [11-13]. Our
treatment also explicitly assumes that the driving field is
weak compared to the field internal to the plasma resulting
from a small charge imbalance, such as is true for the experi-
ments we are simulating.

VI. CONCLUSION

We have used a simulation based on cold plasma theory to
calculate the response of an expanding ultracold plasma to an
applied rf field. The plasma response to the field is domi-
nated by the quasimode. Even though the mode is strongly
damped, it shifts the plasma resonance to lower densities
than otherwise expected from a local-density approximation.
In using the theory to interpret experimental expansion data,
we assumed the relationship between temperature and den-
sity to be Txn“, although the expansion was independent of
the particular value of « across its most likely range. The
plasmas we simulate are initially weakly collisional, and re-
main so as they expand. The expansion velocity determined
by the response of the plasma to the field accurately repro-
duces the actual plasma expansion velocity. The initial den-
sity determined from the plasma response to the field gives
the proper order of magnitude, and underestimates the actual
density by a factor of 3.
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