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MINIMAL GRAPHS IN R3 OVER CONVEX DOMAINS

MICHAEL DORFF

(Communicated by Bennett Chow)

Abstract. Krust established that all conjugate and associate surfaces of a
minimal graph over a convex domain are also graphs. Using a convolution the-

orem from the theory of harmonic univalent mappings, we generalize Krust’s
theorem to include the family of convolution surfaces which are generated by
taking the Hadamard product or convolution of mappings. Since this con-
volution involves convex univalent analytic mappings, this family of convolu-
tion surfaces is much larger than just the family of associated surfaces. Also,
this generalization guarantees that all the resulting surfaces are over close-to-
convex domains. In particular, all the associate surfaces and certain Goursat
transformation surfaces of a minimal graph over a convex domain are over
close-to-convex domains.

1. Introduction

The Weierstrass representation of a minimal surface in R3 provides a formula
connecting minimal surfaces and harmonic mappings. Recently, several papers in
complex analysis have investigated the properties of complex-valued harmonic uni-
valent mappings from a classical viewpoint. We demonstrate that theorems in this
latter area can be used to prove results about minimal surfaces. In particular, Krust
established that all associate surfaces of a minimal graph over a convex domain are
also graphs and hence embedded. We generalize Krust’s theorem by using a theo-
rem concerning the Hadamard product or convolution of planar harmonic mappings.
This establishes that the resulting convolution surfaces of a minimal graph over a
convex domain are graphs over close-to-convex domains. By restricting one of the
harmonic mappings, we derive all the associate minimal surfaces just as in Krust’s
theorem. However, by allowing this harmonic mapping to vary, we can generate
collections of minimal surfaces that are guaranteed to be embedded.

2. Background

2.1. Minimal surfaces. References for this material include [3], [7], [10], and [11].
We will use the following Weierstrass representation form.

Theorem 2.1. Let p be an analytic function and q a meromorphic function in
some domain Ω ∈ C, having the property that at each point where q has a pole of
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492 MICHAEL DORFF

order m, p has a zero of order at least 2m. Then every regular minimal surface has
a local isothermal parametric representation of the form

X = (x1(z), x2(z), x3(z))

=
(

Re
{∫

p(1 + q2)dw
}
,Re

{∫
−ip(1− q2)dw

}
,

Re
{∫

−2ipqdw
})

.(1)

Related to a minimal surface is its conjugate or adjoint surface.

Definition 2.2. If a minimal surface X(u, v) = (x1(u, v), x2(u, v), x3(u, v)) is de-
fined on a simply connected domain Ω ∈ C, then we define the conjugate surface or
adjoint surface, X∗(u, v) = (x∗1(u, v), x∗2(u, v), x∗3(u, v)) to Z(u, v) on Ω as a solution
of the Cauchy–Riemann equations

Xu = X∗v , Xv = −X∗u(2)

in Ω.

Example 2.3. Using p = 1/(1− z4) and q = iz, the Weierstrass representation in
eq. (1) yields

X =
(

Re
{
i

2
log
(
z + i

z − i

)}
,Re

{
− i

2
log
(

1 + z

1− z

)}
,Re

{
1
2

log
(

1 + z2

1− z2

)})
and generates Scherk’s 1st Surface. With p∗ = −ip = −i/(1− z4) and q∗ = q = iz,
we have

X∗ =
(

Re
{

1
2

log
(
z + i

z − i

)}
,Re

{
− 1

2
log
(

1 + z

1− z

)}
,Re

{
− i

2
log
(

1 + z2

1− z2

)})
which forms Scherk’s Saddle Tower Surface. These surfaces are conjugate. Note
that Scherk’s Saddle Tower Surface can be generated with p∗ = 1/(1 − z4) and
q∗ = z, although the resulting Weierstrass representation X∗ and the original X
do not satisfy eq. (2).

A conjugate surface is a minimal surface. Thus, we can construct a one–
parameter family of minimal surfaces.

Definition 2.4. For θ ∈ R, the surfaces Z(z, θ) are called associated minimal
surfaces to the surface X(z), where

Z(z, θ) := X(z) cos θ +X∗(z) sin θ.

The Weierstrass representation gives us a formula for minimal surfaces, but these
surfaces may have self-intersections. We are interested in embedded surfaces (i.e.,
ones with no self-intersections). In a personal correspondence to Karcher (see [7] or
[3]), Krust established the following result concerning minimal graphs, which are
embedded by definition.

Theorem 2.5 (Krust). If an embedded minimal surface X : D→ R3 can be written
as a graph over a convex domain in C, then all associated minimal surfaces Z : D→
R3 are graphs.
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Krust’s theorem can be used to prove embeddedness of surfaces in general (see
[3]) and, in particular, for proving the embeddedness of the fundamental domain
of a periodic minimal surface which provides the basis for the conjugate surface
method of constructing periodic minimal surfaces with a proposed shape. The
conjugate surface method uses properties of conjugate surfaces and their associate
family to construct specific minimal surfaces related to the free boundary problem
by first considering the conjugate surface, which is more easily constructed, and
then relating it back to the desired surface (see [7] and [9]). Some other papers
that have used this approach to obtain results include [1], [8], [12], [13], and [15].

2.2. Harmonic univalent mappings. References for this material include [2],
[4], and [5].

Definition 2.6. A complex-valued, harmonic function is a continuous function
f = u+ iv, for which both u and v are real harmonic.

Throughout this paper we will discuss harmonic functions that are univalent
(i.e., one-to-one) and sense-preserving on D = {z : |z| < 1}. In such a case, Clunie
and Sheil-Small [2] established the following.

Theorem 2.7. If f = u + iv is harmonic in D, then f = h + g, where h and g
are analytic and |h′(z)| > |g′(z)|. Hence f(z) =

∑∞
k=0 akz

k +
∑∞

k=1 bkz
k.

Let SH be the class of such functions for which a1 = 1 and a0 = 0, and let SOH
be the subset of SH in which b1 = 0. The classical family S of analytic univalent
functions is the subclass of SH in which bk = 0 for all k. Also, let KH , S∗

H
, and CH be

the subclasses of SH mapping D onto convex, starlike, and close-to-convex domains,
similar to K, S∗, and C, which are the subclasses of S mapping D onto convex,
starlike, and close-to-convex domains, respectively. A close-to-convex domain is a
domain in which its complement can be written as a union of noncrossing half-lines.
We will let the second complex dilatation be denoted by ω = fz/fz = g′(z)/h′(z).

For analytic functions f(z) = z +
∑∞
n=2 anz

n and F (z) = z +
∑∞

n=2Anz
n, their

Hadamard product or convolution is defined as f ∗ F = z +
∑∞

n=2 anAnz
n. In the

harmonic case, with

f = h+ g = z +
∞∑
n=2

anz
n +

∞∑
n=1

bn z
n and

F = H + G = z +
∞∑
n=2

Anz
n +

∞∑
n=1

Bn z
n,

define the harmonic convolution as

(3) f ∗̃ F = h ∗H + g ∗G = z +
∞∑
n=2

anAnz
n +

∞∑
n=1

bnBn z
n.

In this paper we will use some theorems about harmonic univalent mappings.

Theorem 2.8 (Clunie and Sheil-Small [2]). If f = h+ g ∈ KH and ϕ ∈ K, then
the functions

f ∗̃ (ϕ+ αϕ) ∈ CH
where |α| ≤ 1 and ∗̃ denotes harmonic convolution as described in (3).
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Theorem 2.9 (Sheil-Small [14]). If f = h+ g ∈ S∗
H

, then after normalization

f̃ =
∫ z

0

h(ζ)
ζ
dζ −

∫ z

0

g(ζ)
ζ
dζ ∈ KH .

There is a nice relationship between minimal surfaces and harmonic univalent
mappings. Using the Weierstrass representation, we can construct harmonic uni-
valent maps by projecting embedded minimal surfaces onto their base plane, or
form embedded minimal surfaces by lifting harmonic univalent mappings (see [5]).
This relationship between conformally parametrized minimal surfaces and harmonic
functions becomes clear if one notes that the restriction of linear maps from R3 to
R to a minimal surface gives a harmonic function on the minimal surface. For ex-
ample, the coordinate functions lead to harmonic maps this way, and if the surface
is a graph, then the two coordinate functions make up a univalent harmonic map.

Theorem 2.10. If a minimal graph {(u, v, F (u, v)) : u+ iv ∈ Ω} is parametrized
by sense-preserving isothermal parameters z = x + iy ∈ D, the projection onto
its base plane defines a harmonic mapping w = u + iv = f(z) of D onto Ω whose
dilatation is the square of an analytic function. Conversely, if f = h+ g is a sense-
preserving harmonic mapping of D onto some domain Ω with dilatation ω = q2 for
some function q analytic in D, then the formulas

u = Re{h(z) + g(z)},
v = Im{h(z)− g(z)},(4)

t = 2 Im
{∫ z

0

q(ζ)h′(ζ)dζ
}

define by isothermal parameters a minimal graph whose projection is f .

Example 2.11. Projecting Scherk’s 1st Surface with the formula given in Example
2.3 onto the plane yields the harmonic univalent mapping f = h+ g ∈ KH described
in [4], where

h(z) =
i

4
log
(
z + i

z − i

)
+

1
4

log
(

1 + z

1− z

)
,

g(z) =
i

4
log
(
z + i

z − i

)
− 1

4
log
(

1 + z

1− z

)
.

Similarly, using the formula for Scherk’s Saddle Tower Surface, we have the har-
monic univalent mapping f = h+ g ∈ CH described in [6], where

h∗(z) =
1
4

log
(
z + i

z − i

)
− i

4
log
(

1 + z

1− z

)
,

g∗(z) =
1
4

log
(
z + i

z − i

)
+
i

4
log
(

1 + z

1− z

)
.

3. Results

We can use theorems from the theory of harmonic univalent functions to prove
results about minimal surfaces. In particular, we can prove a generalization of
Krust’s theorem.
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Theorem 3.1. Let X : D → R3 be an embedded minimal surface which can be
written as a graph over a convex domain and which has the Weierstrass represen-
tation

X =

(
Re

{∫
p (1 + q2) dw

}
,Re

{∫
−i p (1− q2) dw

}
,Re

{∫
−2i p q dw

})
,

where p(0) = 1. Then for

p̃(z) = p(z) ∗ ϕ(z)
z

and q̃(z) =
√
ω̃(z) =

√
αp(z)q2(z) ∗ ϕ(z)/z

p(z) ∗ ϕ(z)/z
,

where ϕ ∈ K and |α| ≤ 1, the convolution minimal surface

X̃ =

(
Re

{∫
p̃ (1 + q̃2) dw

}
,Re

{∫
−i p̃ (1− q̃2) dw

}
,Re

{∫
−2i p̃ q̃ dw

})

is a graph over a close-to-convex domain and hence embedded, whenever ω̃ is a
perfect square.

Proof. By Theorem 2.10 and since X is embedded, the projection of X onto the
uv−plane = C is f ∈ KH , where

f(z) = Re
{∫ z

0

p(ζ)(1 + q2(ζ))dζ
}

+ i Im
{∫ z

0

p(ζ)(1 − q2(ζ))dζ
}

= Re{h(z) + g(z)}+ i Im{h(z)− g(z)}.

Applying Theorem 2.8, yields

f̃(z) = Re{h̃(z) + g̃(z)}+ i Im{h̃(z)− g̃(z)}
= Re{ϕ ∗ (h(z) + ag(z))}+ i Im{ϕ ∗ (h(z)− ag(z))} ∈ SH .

Since ω̃ = g̃′/h̃′ = (ϕ(z)/z ∗ p(z)q2(z))/(ϕ(z)/z ∗ p(z)) is the square of an analytic
function, Theorem 2.10 allows us to lift f̃ to derive the minimal graph

X̃ =
(

Re
{
ϕ(z) ∗ (h(z) + ag(z))

}
, Im

{
ϕ(z) ∗ (h(z)− ag(z))

}
,

2 Im
{∫ z

0

√[
h′(ζ) ∗ ϕ(ζ)

ζ

] [
ag′(ζ) ∗ ϕ(ζ)

ζ

]
dζ

})
=
(

Re
{
ϕ(z) ∗

∫ z

0

p(ζ)(1 + aq2(ζ))dζ
}
,

Re
{
ϕ(z) ∗

∫ z

0

−ip(ζ)(1− aq2(ζ))dζ
}
,

Re
{∫ z

0

−2i

√(
p(ζ) ∗ ϕ(ζ)

ζ

)(
aq(ζ) ∗ ϕ(ζ)

ζ

)
dζ

})
=
(

Re
{∫ z

0

p̃(ζ)(1 + q̃2(ζ))dζ
}
,Re

{∫ z

0

−ip̃(ζ)(1 − q̃2(ζ))dζ
}
,

Re
{∫ z

0

−2ip̃(ζ)q̃(ζ)dζ
})

.

�
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Remark 3.2. Since ϕ is any analytic univalent mapping of the unit disk onto a con-
vex domain and normalized so that ϕ(0) = 0, ϕ′(0) = 1, this is not a reparametriza-
tion of the Weierstrass representation formula. The coefficients of the power series
of p are multiplied by the coefficients of the power series of ϕ(z)/z. Similarly, the
coefficients of the power series of q are altered. If ϕ(z) = z/(1 − z), the convo-
lution identity, then the functions p and q are unaltered and we have the special
case given by Krust’s theorem. In this case, however, this theorem tells us more
than Krust’s theorem since it establishes that the resulting minimal graph is over
a close-to-convex domain.

The minimal surfaces generated by this theorem are not new, but the fact that
these minimal surfaces are automatically embedded is new.

Example 3.3. The minimal graph known as Scherk’s 1st Surface can be formed
by using the Weierstrass representation with

p(z) =
1

1− z4
and q(z) = iz.

(1) If ϕ(z) =
z

1− z , then

p̃(z) =
1

1− z4
and q̃(z) = eiθz (θ ∈ R),

and we get the minimal surfaces known as Scherk’s 1st Surface, Scherk’s
Saddle Tower Surface, and all of their associated surfaces.

(2) If ϕ(z) = z, then

p̃(z) = 1 and q̃(z) = 0,

and we get the plane.
(3) If ϕ(z) = z + 1

9z
3, then

p̃(z) = 1 and q̃(z) =
eiθ

3
z (θ ∈ R),

and we get Enneper-like minimal surfaces.

(4) If we have the 1-parameter family ϕα(z) =
1

2i sin(α)
log
( 1 + zeiα

1 + ze−iα

)
, where

π/2 ≤ α < π mapping D onto vertical strips, then

p̃α(z) =
1

8z sin(α)

[
log

(z − ieiα)(z + ie−iα)

(z + ieiα)(z − ie−iα)
+ i log

(z + eiα)(z − e−iα)

(z − eiα)(z + e−iα)

]
,

q̃α(z) =

√
a

p̃α(z)

√√√√ 1

8z sin(α)

[
log

(z − ieiα)(z + ie−iα)

(z + ieiα)(z − ie−iα)
− i log

(z + eiα)(z − e−iα)

(z − eiα)(z + e−iα)

]
.

and we have a 2-parameter family of embedded minimal surfaces where a
new convolution minimal graph is generated as α varies and all the associ-
ated minimal graphs are formed as θ varies.

Corollary 3.4. If X is a minimal graph over a convex domain, then all of its
associated minimal surfaces are over close-to-convex domains.

Goursat showed how to develop a different one-parameter family of minimal
surfaces from a specific minimal surface and its conjugate (see [3], pp. 115-116).
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Let X = (x, y, z) and X∗ = (x∗, y∗, z∗) be conjugate minimal surfaces. Then for
κ ∈ R, Y = (ξ, η, ζ) is a one-parameter family of minimal surfaces, where

ξ =
1 + κ2

2κ
x+

1− κ2

2κ
y∗,

η =
1 + κ2

2κ
y +

κ2 − 1
2κ

x∗,

ζ = z.

We can use the results above to prove the following.

Corollary 3.5. If X is a minimal graph over a convex domain, then the Goursat
transformation Y with κ ≥ 1 is a minimal graph over a close-to-convex domain.

Proof. Let X have the Weierstrass representation given in Theorem 2.1. Then its
projection is f = h + g ∈ KH. By Theorem 3.1 with ϕ =

z

1− z , we get the

convolution minimal graph X̃ with p̃ = p and q̃ =
√
aq over a close-to-convex

domain, where

(5) X̃ =
(

Re{h(z) + ag(z)}, Im{h(z)− ag(z)},Re
{√

a

∫ z

0

2ipqdw
})

.

On the other hand, using the fact that X = (Re(h + g), Im(h − g), z) and its
conjugate surface is X∗ = ((Im(h+g),−Re(h−g), z∗), the Goursat transformation
Y = (ξ, η, ζ) has

ξ = Re
(
κh+

1
κ
g
)
,

η = Im
(
κh− 1

κ
g
)
.

Hence, letting a = 1/κ2 ∈ R in eq. (5), we see that Y = 1/
√
aX̃ . �

Unlike the previous situation, if we have a minimal graph over a nonconvex
domain, its convolution minimal surfaces need not be embedded. However, there is
one particular case in which embeddedness is guaranteed. If the minimal graph is
over a starlike domain, then the convolution surface formed by ϕ(z) = − log(1− z)
will be a minimal graph.

Theorem 3.6. Let X : D→ R3 be an embedded minimal surface which can be writ-
ten as a graph over a starlike domain and which has the Weierstrass representation
given in (1). Then the convolution minimal surface

Z =

(
Re

{∫
p̃ (1 + q̃2) dw

}
,Re

{∫
−i p̃ (1− q̃2) dw

}
,Re

{∫
−2i p̃ q̃ dw

})
is a graph over a convex domain, where

p̃(z) =
1
z

∫
p(z) dz = p(z) ∗ − log(1− z)

z
,

q̃(z) = i

√∫
p(z)q2(z) dz∫
p(z) dz

= i

√
p(z)q2(z) ∗ log(1− z)/z
p(z) ∗ log(1− z)/z

,

whenever q̃ is a perfect square.
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Proof. From (1) and (4), we have that

h(z) =
∫ z

0

p(ζ) dζ and g(z) =
∫ z

0

p(ζ)q2(ζ) dζ.

Hence

p̃(z) =
d

dz
[h̃(z)] =

d

dz

[∫ z

0

h(ζ)

ζ
dζ
]

=
h(z)

z
=

1

z

∫
p(z) dz = p(z) ∗ − log(1− z)

z

and

q̃(z) =

√√√√ d
dz

[g̃(z)]
d
dz

[h̃(z)]
=

√
−g(z)

h(z)
= i

√∫
p(z)q2(z) dz∫
p(z) dz

= i

√
p(z)q2(z) ∗ log(1− z)/z
p(z) ∗ log(1− z)/z .

Now follow the same approach as in the proof of Theorem 3.1 replacing the use of
Theorem 2.8 with Theorem 2.9. �
Remark 3.7. By applying Theorem 3.1 to Z, we can construct convolution surfaces
(including the conjugate and associated surfaces) of Z which will be minimal graphs
over close-to-convex domains.
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