Keiji Imamura. *Prehistoric Japan: New Perspectives on Insular East Asia*

Steman B. Noble

Follow this and additional works at: [https://scholarsarchive.byu.edu/ccr](https://scholarsarchive.byu.edu/ccr)

**Recommended Citation**

Available at: [https://scholarsarchive.byu.edu/ccr/vol42/iss42/12](https://scholarsarchive.byu.edu/ccr/vol42/iss42/12)

This is a marvelous book. I recommend it to anyone interested in the history of Japan from earliest times up to the 7th century AD. Or anyone who wonders why the Japanese were so late in developing agriculture. The book is well written, interestingly illustrated, and is succinctly summarized in an excellent final chapter. I found the index to be useful.

The book reviews a literature on archaeology that is written in Japanese and is therefore not accessible to most of us. And as the author points out, “more than 99 per cent of archaeological publications in Japan are written in Japanese”.

The one limitation of the book is that it rigidly sticks to being about “prehistoric” Japan. This seems innocent enough, but it permits Imamura to be biased. When considering the genetic composition of present-day Japanese, Imamura’s analysis depends almost entirely upon prehistorical (i.e., archaeological) evidence. Why do the Japanese have the genetic characteristics that they do? The answer depends in considerable part upon late (historical) evidence. In early historical times, Japan was flooded with Koreans, a fact that its genes reveal but that the Japanese would prefer to forget.

For world historians, a major strength of the book is that Imamura places Japanese prehistory fully within East Asian developments. In doing so, he provides evidence that can contribute to much wider histories — of greater Asia, of Eurasia, even of the entire world — from Africa to Europe to Asia to the New World.

For world historians and civilizationists, the book documents an important generalization regarding diffusion. Imamura provides support for a position taken by Braudel in opposition to Toynbee. But Imamura even goes beyond the Braudel formulation. In the conclusion of this review, I will show that this improved formulation by Imamura is an important way of viewing all of ancient world history, as summarized in the following.
Toynbee: There has been no substantial contact between civilizations. Each one progresses according to internal dynamics and not external influences.

Braudel: All cultural goods are constantly on the move. A civilization asserts itself in its refusals to borrow.

Imamura: Rice cultivation had to achieve a certain level of efficiency before it was suitable for use in Japan. This occurred when China was intensifying its agriculture, a development which then spread to Korea and on to Japan.

My generalization: There were four times when Japanese developments echoed those in China. Each had a considerable impact upon Japan, but the energy for each one came from beyond China and resulted in widespread changes - in China and in many other regions. Major advances in ancient times seem to have depended largely upon certain specific, rare, but powerful developments that spread very widely geographically.

I The Japanese context for archaeology.

In several paragraphs, scattered through the book, Imamura shifts from ancient times to the near-present, discussing the controversy regarding the emperor myth (188, 191), and related to this, the origin of the Japanese Archaeological Association (140).

The myth of the founding of the Japanese state tells of a conquest by the first emperor, Emperor Jinmu. However, this story was written centuries after it supposedly happened, at a time when the Japanese were beginning to emulate Chinese governance. They created a story of their own "history," in the image of Chinese realities of the time. Modern historians have long known that the story was mythic and false. "It was a nightmare for many historians that such a myth was taught as fact before the Second World War and that it contributed to the formation of Japanese imperialism and militarism" (188, 191). Imamura rather understates. Fawcett (1995:244) reports that "In the prewar era, ...[there was] dismissal or even arrest of archaeologists who questioned official versions of history based on the myth of imperial sanctity."
Imamura continues. “Defeat in the war brought about a denial of the imperial Japanese historical view and marked the appearance of the archaeological view in school textbooks” (140). This was when the Japanese Archaeological Association was formed. With this new respect for archaeology, it eventually became the legal obligation of developers to pay the expense of archeological excavations on their sites (23). The result: “The tremendous increase in the number of rescue excavations in recent Japan (9494 sites in 1994, for instance)” (ix). The result is an overwhelming literature. The archaeological record in Japan is one of the most complete records in the world. This book seeks to make coherent sense out of this extensive evidence.

I like the tone of the book. Imamura is a Professor in the Department of Archaeology at the University of Tokyo, and the book sounds authoritative, as if by someone who felt duty-bound to organize this vast literature with its significance for the Japanese identity. The historical development of archaeological ideas are frequently presented. Controversies are identified, and his opinion is given. His goal is for the book to present “new perspectives based on the latest data of Japanese archaeology” (ix).

Remnants of the old order remain in Japan. In the period just before historical writing began, large tombs were built, and these are now in the custody of the Imperial Household Agency which does not permit them to be excavated “since they are thought to be the tombs of ancestral emperors and their family members” (194). Detailed and important information is thereby lost, but Imamura is relaxed: “excavation techniques are rapidly progressing” and “Japanese archaeologists are busily occupied in coping with many rescue excavations.... This is not the time to dig and break such important monuments” (194).

Some fundamental criticisms: A more negative comment on the politics of postwar Japanese archaeology is provided by Fawcett who concludes, rather pessimistically, that “archaeology has once again come under the control of the Japanese state” (1995:245). She elaborates the consequences. “Nationalist ideology has been transformed from a system of belief based on the
notion of *kokutai* (the national body), in which the Japanese people were seen as a ‘family’ linked to the emperor in a paternalistic bond, to a vision of the Japanese people as descended from the ‘original Japanese,’ who created the ‘roots’ of the Japanese nation” (Fawcett 1995:245).

Imamura emphasizes that Japan was deeply influenced by China, generally by way of Korea. Japan was never conquered by China, as were Korea and Vietnam, so it had periods when it was intertwined with the East Asian World, and periods of isolation when unique features of its culture were able to develop (211).

However, Imamura is not so open when discussing the genetic composition of the Japanese. Wet-rice agriculture came to Japan from Korea accompanied by Koreans. Archaeology indicates that few Koreans were involved as indicated by dwellings with Korean pottery. He is aware of the present situation, that “The mainland Japanese are more similar to the peoples on the Northeast Asia continent than to the Ainu and the Ryukyuans” (209). His explanation: “the expansion of the continental gene was caused by rapid population growth among migrant or migrant-indigenous mixed groups with advanced food production technologies, rather than by migration itself” (216, 7).

He omits to mention any evidence from the historical period. The story is told differently by Reischauer and Fairbank:

Immigrants from Korea. One important reason for the growth of the Yamato state and for its political and cultural development during the fifth and sixth centuries (A.D.) was the steady immigration from the Korean peninsula to the capital district. Many of the people came as large and well organized groups, whose leaders took a prominent place in the Yamato aristocracy since they possessed skills and knowledge which were highly prized in relatively backward Japan.... The great importance of the Korean immigrants in the Yamato aristocracy is indicated by a book of noble genealogies compiled in 815..., which attributes foreign origins to more than a third of the 1182 families of the central nobility of the period. (Reischauer and Fairbank 1958:471)

The references in Imamura’s book are hopelessly non-Western. Almost 400 references are provided, but all but 17 are
in Asian languages. I learn the author, date, title, but I cannot look up or read most of the references. Yet I have found a case where results, cited by Imamura, were published in English earlier than his Japanese reference. In dealing with Chinese archaeology, he never cites Kwang-chih Chang, even when the results by Chang (1986) are more up-to-date and extensive than the evidence cited by Imamura.

The contents of the book. After a discussion of Japan's unusual amount of rainfall, and an analysis as to why Japanese prehistory is periodized as it is, there is a chapter on the Japanese Paleolithic, also called the pre-ceramic period. This is followed by a chapter as to how Japanese archaeologists came to realize that Japan had the earliest known pottery, dated slightly before 12,000 BP (Before Present, i.e., 10,000 BC). [However, as we will see below, there were fired clay figurines produced in the Czech Republic as early as 26,000 BP. Using clay for pottery does first occur around 12,000 BP.]

The earliest Japanese pottery is very rare, having been used by nomadic people. Around 9000 BP, sedentary villages occur that have large quantities of pottery called *Jomon* pottery. The next five chapters discuss the long period of these stable settlements which had no agriculture, but made efficient use of temperate forests (largely acorns) and of fishing. The *Jomon* period was long-lived, and during it, Japan was isolated from the rest of the world and from such developments as agriculture, horse riding, bronze, trade over long distances, and cities.

Starting in 400 BC, the *Jomon* tradition was rather quickly replaced in most of Japan by rice cultivation, with iron tools replacing stone tools. This is called the Yayoi period, and the book has four chapters on this development. In this period, Japan emerged from its isolation, had extensive trade, especially with Korea, and developed diplomatic intercourse with Korea and China. There was the beginning of social stratification and the emergence of political bodies.

In the third century AD, the appearance of a new type of tomb “is seen as indicative of important social transformation”
This development, called the Kofun period, led to political unification by the 7th century AD. During this period, Japan “was very positive towards the introduction of Korean culture” (224). While Japanese generally think that during this period, Japan invaded Korea, Imamura points out that kofun-type tombs have been found in Korea, hence it is possible that the Kofun period represents “Korean rule over Japan” (224). This period is covered in a single chapter, and completes the prehistory of Japan.

Following a chapter that discusses the racial characteristics of the peoples of Japan, there is a final chapter which reviews the entire book, focusing upon the position of Japan in East Asia during the period covered by the book. This last chapter can be read on its own, and provides a compact summary of the book.

II When and how did Japan accept agriculture?

Why was Japan so late in developing agriculture? It is not that cultural traits diffuse slowly, for Imamura emphasizes that often they have diffused rapidly (213). Nor is it too cool in Japan for standard agriculture. Yet to this day, Japanese agriculture focuses predominantly upon rice. Little land is given to cereals and “stock-raising remains relatively unimportant, as has been the case since the beginning of agriculture. The reason for this is Japan’s natural environment”(7). A different question should be asked. Why is Japanese agricultural production so different from that of other parts of the world?

Because of the prevailing winds and its central mountains, Japan receives considerably more precipitation than any other country in the temperate zone. This promotes the vigorous growth of vegetation, and in the competition, it is forests that win. “There are no natural grasslands in Japan”(4). The trees can be burned and foreign crops can be introduced, but the weeds (i.e., the natural grasses that survive in Japan) have survived only by being unusually competitive. Foreign crops” are weaker than Japanese indigenous grasses”(4), and weeding becomes unusually difficult.

However, at the time that the Chinese were becoming
agricultural, and living in sedentary villages, the Japanese also became sedentary. Because of the forests and lack of grassland, they could not grow the emmer that the Chinese were growing in dry fields. The archaeological record reveals many grinding stones for processing plants; pits in which acorns were stored; shells, fish hooks and bones of fish; traps for catching the only large animal, wild boars.

Around 4000 BC there was an intensification of this economy, resulting in a surge of population in Japan. This is indicated by the much larger quantities of acorns that were being stored. However, the environment was fragile, and by 1000 BC there was a sharp drop in population, possibly because of deterioration of weather, possibly because the large population overtaxed the available resources. The Japanese were in contact with Korea and China at the time, but there was no transition to agriculture, because there was no available mode of agriculture that was more efficient, per person, than was their efficient use of their temperate rain forests.

The Jmon people had the capacity to adopt agriculture. They "had already adopted a sedentary life, which is the basic condition for agriculture. They also practiced annual scheduling of food production... and storage, as is seen in the storage of nuts in large underground pits. Moreover, the habits of hard work required to carry out wet-rice cultivation were already well developed among the Late Jmon people, who routinely practiced such painstaking processes of food preparation as making horse chestnuts edible"(215).

Around 600 BC, as iron began to be used in China, there was a great surge of development in Chinese agriculture, and apparently this resulted in a type of rice being introduced into Korea that could survive in the cooler climate there. This rice also could be grown in Japan. It was Koreans that brought rice to Japan, but the archaeological record shows that only a small number of people were Korean (that is, were living with Korean pottery), and they soon mixed well with the Japanese (that is, pottery soon appeared that combined Korean and Japanese traits.)
The problem to be faced in Japan is that the heavy rainfall helps weeds as much as crops. How could these competitors be dealt with? "The technique of raising rice seedlings on preparatory plots, then transplanting them onto fields that had previously been plowed to suppress weed growth, is a most effective way of giving rice a competitive advantage over other plants.... Thus, the precondition for the adoption of agriculture in Japan is sufficient productivity to counterbalance the amount of labour that must be invested" (215).

The mass production of iron arrived with wet-field rice, and just as iron had spurred agricultural development in China, so in Japan, it eased the "excavation of canals and the preparation of horizontally segmented fields.... Although the majority of excavated farming tools in Japan were made of hard wood, iron cutting tools must have been indispensable for the production of such tools" (217).

According to Imamura, "the contrast between the long-lasting stable hunting-gathering community, and the rapid changes leading to an agricultural society within a short time-span, is the most remarkable feature of Japanese prehistory" (211). "Once accepted, wet-rice cultivation set off a chain reaction of increased production, increased population, and the further development of new rice fields.... Around 300 years after the beginning of agriculture, conflicts and frequent warfare are reflected in archaeological material and recorded in Chinese chronicles" (218).

"Around this time, distinct social classes also appeared, soon followed by the appearance of special individuals who were buried with exceptionally rich graves goods.... These individuals must have been kings who ruled comparatively small areas" (219). "The main cause of this rapid process was clearly the high level of the agriculture being introduced. Progressive prevalence of iron tools surely accelerated the speed" (219).

III Japan in its East Asian Setting.

Four links between Japan and mainland Asia. Japanese prehistory and history have alternated between "times of active
importation of the continental culture, and times when the continental cultural influence was passive but maturing indigenously" (211). The earliest evidence is difficult to interpret, but Imamura is able to identify four periods, starting just before 10,000 BC, when new traits in Japan emulate developments in nearby Asia. Three of these involve diffusion, one involves a response to similar circumstances.

(1) During the Paleolithic, somewhat before 10,000 BC, stone tools called microblades appear in Japan. "This was clearly a diffusion from the mainland, where such industries had appeared earlier" (37). Figure 3.16 in Imamura’s book shows that these also spread from China into northeastern Siberia and on to Alaska. Imamura emphasizes that pottery, which he says is first known in Japan, “emerged in or immediately after the extensive diffusion of the microblade culture, that is, the time when Japan had exceptionally close cultural relations with the mainland” (212).

(2) The next simultaneity is that China and Japan developed sedentary villages at approximately the same time, around 7000 BC. In China, farming began — the growing of millet in the north and rice in the south. In Japan, efficient use was made of forests and waterways, and permanent settlements are found. Imamura interprets these developments as due to “the northward spread of warm climate” (63) after the long period of glaciation that had occurred.

There was a long period in Japan, until at least 500 BC, when the Japanese were hunter-gatherers but were living in villages. There were some contacts with the mainland at this time (34), so it would have been possible for the Japanese to accept outside developments, but the many changes during this period did not spread to Japan.

(3) Eventually wet-rice agriculture did appear and spread widely in Japan. “New cultural elements, including several kinds of stone tools similar to those found in Korea, Korean-influenced pottery types, special types of pit-dwellings and storage pits seen on the peninsula emerged together with advanced rice agriculture
in Japan around 400 to 500 BC. All these clearly show that rice arrived in Japan via the Korean peninsula. Some of these elements, such as reaping knives and storage pits can be traced back to northern China" (132).

This "new economic base resulted in very rapid social changes" in Japan. It occurred during an unusual period in Chinese history when some of the same technologies — "mass production of iron tools, construction of irrigation canals," among others (221) — were leading to major cultural and political changes in China.

(4) The final diffusion is a historical development that is well known. Occurring as prehistory ends, it is barely mentioned by Imamura: the acceptance of "Buddhism and its temples" (224). This was a major way by which the Japanese joined the civilized world. It occurred at a time when Buddhism had become unusually influential in China and Korea.

In each of these cases, the Japanese culture was fundamentally affected. The Chinese culture was also affected, in deep and somewhat similar ways. This raises a number of important questions. Why did similar changes occur in China and in Japan at about the same time? Just as Korea is several times an intermediary between China and Japan, do the developments in China reflect cases where China is an intermediary? Are there wider influences going on, and if so, just how wide are they? Before we turn to these questions, let us consider the general view that Imamura has come to hold about diffusion, based on his the evidence from East Asia.

A general theory. Given the detailed information that is available to him, Imamura concludes that contacts between Japan and various parts of the mainland were ever-present. Yet only at certain times did traits from the mainland diffuse to Japan. He concludes: "Cultural diffusion is not a question of transport and transmission. It is more a question of whether the object or technique is sufficiently attractive to warrant adoption and whether it can be effectively used once it is appropriated" (216). Braudel (1980:203) holds a similar view regarding diffusion.
All these cultural goods, the microelements of civilization, are constantly on the move.... Civilizations are simultaneously exporting or borrowing them in turn. The vast traffic never stops.... But not every exchange proceeds straightforwardly. There are, in fact, refusals to borrow.... And of course, every refusal, especially if it is consciously and repeatedly asserted, is of singular importance. It is thus, and in these situations, that each civilization makes its decisive choice through which it asserts and reveals itself. The phenomena of ‘diffusion’, so little prized by Toynbee, seems to me one of the best touchstones by which to judge the vitality and originality of a civilization.

Braudel shifts our attention away from the specifics of Japan, Korea and China, and onto general patterns of world history. He provides a nice counter to Toynbee — diffusion cannot be ignored, it is the central issue. At this level of generality, the statements by Braudel and by Imamura are rather similar. Braudel speaks of “decisive choice.” Imamura analyzes a specific situation technologically, saying that a technique needs to be “sufficiently attractive to warrant adoption.”

But Braudel is speaking in general, and some of his words do not fit the context of China and Japan. “Exporting or borrowing in turn.” Where is the awareness of dominance, of the way that developments consolidate in China, then strongly influences Korea, Japan, Yunnan, Vietnam (219, 220)? “Constantly on the move.” Where is the concept of historical time, that China undergoes specific developments, some of which spread soon after? Several times we see Japan receiving influences, but at a time when China had been undergoing similar changes.

For world historians, it is important to ask, Is there a bigger story here? Are the developments in China, which then spread to Japan, part of a bigger story? Are there precursors of the story in China? For the spread of Buddhism, obviously there is a bigger story. Buddha lived in India, his religion spread to China where it had become unusually influential just as the Japanese became ready to join the civilized world.

Did the agricultural developments, that so changed China, have precursors outside of China? The effects of glaciation, of course, affected many regions beyond China and Japan, as
Imamura points out (63). What about the microliths that evolved in China and spread to Japan as it produced the earliest (or at least, almost the earliest) pottery in the world? Are there wider stories to tell?

IV Beyond East Asia: some historical sketches.

A world historical perspective. My goal is to organize world history, and my audiences are world historians and civilizationists. Imamura’s book is excellent at showing Japan in its East Asian setting. It is interesting to consider whether the critical diffusions identified by him are associated with wider patterns in world history.

There are four times, according to Imamura, when Japan was deeply affected by outside contacts. (a) In the Paleolithic (i.e. pre-ceramic period), it acquired microliths which appeared in China and Tibet, spread to Japan, but also spread up into eastern Russia and on to Alaska (Figure 3.16 in Imamura). (b) Imamura emphasizes that China and Japan became sedentary at approximately the same time. (c) Wet-rice agriculture was introduced around 400 BC, resulting in rapid changes in Japanese society. This change in agriculture was accompanied by iron which was the first metal to be introduced into Japan. These three developments are documented by Imamura. There is a fourth diffusion that occurred in the early historical period, later than Imamura’s book, but is well known. (d) Japan acquired Buddhism from China.

Let us examine these four developments from the perspective of the entire Eastern Hemisphere, proceeding from the later ones, where the evidence is quite good, to the earlier ones where evidence is problematic.

The spread of Buddhism. The story of Buddhism is implicit in its name. Buddhism began, of course, with the teachings of Buddha Gautama (c. 563 - c. 483 BC) who lived in northern India. In India, Buddhism bifurcated into many traditions, and spread in many directions. [Conze 1975 argues that Buddhism even spread to Greece, Egypt and the Mediterranean, and that
scholars ignore evidence that points to such a view.] It was the Mahayana doctrines of Buddhism that spread to China.

Buddhist monks and laymen are known to have been in China by 65 AD. In 148 AD, translators arrive in China. “From this time onward, a vast work of translation of [Buddhist] texts went on” (Needham 1956:398). Buddhism was resisted until the fall of the Han in 220 AD. Especially after the Huns overthrew the Chinese government in 311 AD, Buddhism became “domesticated” in China. [The term is used by Wright, 1959.] The story of the spread of Buddhism from China to Japan, then, is the tail end of a story that began in India and spread in many directions, including into China, and eventually to Japan. Along the way, Buddhism kept changing, and continued to change when it reached Japan. The Japanese developments are a piece of a wider history of Asia.

Iron tools, expanded agriculture, social stratification and political development, Imamura emphasize that the availability of iron tools accelerated agricultural development. Increased production of food made possible larger populations. This and technological advance increased social stratification (127). Eventually chiefs appeared, there was expanded warfare which eventuated in a unified political system (179).

This story is far from unique to Japan. Comparable changes in agriculture, based on the introduction of iron, were occurring in many places. Let us begin with iron. It was used directly in warfare, but iron was also efficient in clearing new lands, or in making possible the plowing of difficult soils. The extension of agriculture made possible an expansion of population, wealth, and social stratification. These developments in turn led to warfare from which the region became unified politically. Such stories are told by Gernet (1982:67ff) for China and Kulke (1996:385ff) for India.

Iron developed not in Asia, but around the Mediterranean and then its technology spread to India and China. Iron metallurgy developed from copper metallurgy — there are various situations where iron modules would form in the slag that occurs when
reducing copper ore (Charles 1980:164-167). At a surprisingly early stage, metallurgists sometimes made use of these modules. For example, Sherratt (1988:56) mentions an iron knife-handle produced from such iron, dating to the early second millennium (1988:63).

The following dates can be given for iron being the predominant metal, being used more than bronze.

<table>
<thead>
<tr>
<th>Region</th>
<th>Date BC</th>
<th>Source</th>
<th>Date BC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyprus</td>
<td>1050</td>
<td>Snodgrass 1980:345</td>
<td></td>
</tr>
<tr>
<td>Eastern Medit.</td>
<td>1000</td>
<td>Waldbaum 1980:87</td>
<td></td>
</tr>
<tr>
<td>Egypt</td>
<td>7th c.</td>
<td>Snodgrass 1980:366</td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>6th c.</td>
<td>Kule 1986:385</td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>400 to 500</td>
<td>Imamura 1996:132</td>
<td></td>
</tr>
</tbody>
</table>

In China, after a considerable period of fighting, the Ch’in Dynasty emerged in 221 BC. In India, with desultory fighting, the Mauryan Empire emerged earlier, in 321 BC, probably spurred by Alexander the Great’s invasion of northwestern India-Pakistan and his subsequent withdrawal. The Greeks never developed a unified empire which was provided for the Mediterranean by the Romans in 27 BC. Notice, then, that the unification of Japan, being AD, fourth and fifth centuries, is much later than the others. During the Jmon, the Japanese society apparently was tribal, where the other regions had urban elites that transcended such local identities. The Japanese needed considerably more political development before they could achieve centralization.

In this case, the Japanese story is part of a story that includes the Mediterranean as well as regions of Asia.

**Stable settlements.** Imamura says a number of times that settlements in Japan were “almost contemporaneous” (53), occurred “almost simultaneously” (212) with the appearance of agriculture in China. The point he wants to make is that the ancient Japanese, not having agriculture, are referred to as hunter-gatherers. They were, of course, but they also were sedentary.
It is interesting to compare the dates for being sedentary in Japan, China, and the Fertile Crescent.

<table>
<thead>
<tr>
<th>Region</th>
<th>Date bc</th>
<th>Date BC</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japan</td>
<td>7000</td>
<td>7000</td>
<td>Imamura 1996:57</td>
</tr>
<tr>
<td>China</td>
<td>5000</td>
<td>6500</td>
<td>Imamura 1996:53</td>
</tr>
<tr>
<td>China</td>
<td>6500</td>
<td>6500</td>
<td>Chang 1986:90,91</td>
</tr>
<tr>
<td>Fertile Crescent</td>
<td>by 7000 (3)*</td>
<td>by 6000 (12)*</td>
<td>Zohary &amp; Hopf 1993:37</td>
</tr>
<tr>
<td>Fertile Crescent</td>
<td>9000** to</td>
<td>9000** to</td>
<td>Hole 1996:266</td>
</tr>
</tbody>
</table>

[bc represents uncalibrated radiocarbon dates. BC are calibrated dates, that is, adjusted to fit historical time. Real time (BC) is about 1000 years later than uncalibrated time (bc) around this time interval.]

* These numbers represent the number of villages by that date.

** These sites are not comparable. They represent villages with domestic sheep and goats who are harvesting wild grains.

If 1000 years are added to the bc numbers, the dates are quite comparable. It is the distinction by Hole that is significant. Just what is meant by agriculture? In the Near East, at least, sheep and goats were domesticated before "real" agriculture began.

While Imamura regards the temporal correspondence of China and Japan as important, there is no indication that he regards this as due to diffusion. In any case, millet farmers could not help the Japanese learn how to remove the poisons from acorns of deciduous oaks, something they had apparently learned at a very early date (57). It is done by boiling, hence the need for pottery.

Why the similarity in timing? The weather of the entire world was affected by glaciation, which was at its most extreme at 16,000 bc. Deglaciation occurred in two steps. There was deglaciation and then a return to glacial conditions. The second period of deglaciation is referred to as the Younger Dryas (56). Sometime after that, the Near East, China and Japan each found its distinctive way to become sedentary. But we have seen that there are various distinctions that can be made. It would be valu-
able to have a comparative study of the way in which different regions responded once ended the Younger Dryas.

Why was there so much attention to agriculture after the glaciations, and not before them? I do not know why. Do you?

**Microliths.** The earliest example of diffusion begins at an extremely early time — 70,000 years ago. The evidence is not very clear and the story is more complicated than those already seen. It begins with what are called geometric microliths which is a way to use stone very efficiently.

Troeng (1993:75, 78-81) shows the enormous sweep of geometric microliths, both in space and time. They are first seen in the Klasies River Mouth in South Africa, dated to 70,000 years ago. By 31,000 years ago, they are found in eastern Europe in a tradition called the Eastern Gravettian (Kozlowski 1986). At the famous site of Dolni Vestonice, this development becomes associated with the earliest pottery known in the world, 26,000 years ago (Soffer 1988).

This tradition spread to China (Chen 1984; Chen & Olsen 1990:281; Gai Pei 1985) around 18,000 years ago which is the time of the greatest glaciation. Later, around 12 or 13,000 before present, the same type of microliths spread on to Japan, again associated with clay, but this time, the clay products were pottery - the first pottery ever known. This is pointed out by Imamura (212). The microlithic tradition spread to Alaska, but pottery did not. It was the Japanese that had the unusual need that clay be used for pottery - because of their need to boil acorns so as to eliminate toxic substances. Troeng (1993:148) refers to pottery in Siberia and Japan as being equally early, 13,000 years ago. In Siberia, pottery was found along the Amur River (Derevianko 1989:10).

This early diffusion begins in South Africa, goes to Europe and then on to Asia, and finally reaches the Americas. It begins in 70,000 and reaches Japan around 13,000 years ago. However, the coupling between microliths and clay are not functional, so it is not clear why they tended to move together.
A pattern of world history.

Using the evidence provided here — on the relationship of Japanese to Chinese history, and the historical evidence for its place in world-wide patterns — let us consider the validity of the general concepts of history provided by Toynbee and by Braudel.

Toynbee. Is it true that there were limited contacts between civilizations, and that civilizations had a negligible impact upon one another? The case studies indicate that this is quite incorrect. A Toynbee-like position could be that Japan is part of the Chinese sphere of civilization. However, the sweep of Buddhism, from India to China had a considerable impact upon China, and a Toynbee perspective could not argue that India and China are a single civilization.

The spread of the technology of iron, from the Mediterranean to India and to China, had extreme impacts upon the receivers. The earliest spread of the technology of microliths, from South Africa to Cro-Magnon Europe to China, occurred very early, well before there were any civilizational identities. Obviously the impacts were fundamental, but archaeologists are just beginning to provide meaningful analyses of what it was like to live in such ancient times.

Braudel. In opposition to Toynbee, Braudel (1980:203) claims that “cultural goods...are constantly on the move.” That is, if you want a technique or skill, foreign to your own culture, then it is available. Take it whenever you need it.

But there was that awful time, around 1000 BC, when the Japanese population dropped precipitously, presumably because the environment had been over stressed. Imamura cites evidence that the Japanese were in touch with the mainland, and therefore knew of the possibility of agriculture. The Japanese already had patterns of scheduling food, habits of hard work, but they did not turn to agriculture. The size of their population diminished considerably. But that could not be helped, Imamura indicates.

In fact, they tried. “Rice and barley were added to the list of plants cultivated by Jmon people around...the end of the Late Jmon. Nevertheless, such cultivation was not accompanied by
new tools in the continental tradition, so these plants must have been cultivated and processed using indigenous tools” (122). They tried, weakly, and failed. A tragic story!

Yet later on, agriculture did come to Japan and successfully supported very large populations. Accepted the inevitable, and died back in 1000 BC. Later on, accepted Korean farmers and their methods. Does this make sense?

Something has been left out of the story, and it is obvious what it is. The set of technological possibilities do not exist once and forever. A static analysis misrepresents the situation. The possibilities can expand over time, and they did. In between the time of the many deaths and the arrival of the new plantings, iron appeared in China, and as it became available, Korean farmers who grew rice used iron tools to develop a mode of growing rice that was effective in a region with the aggressive weeds found in Korea and Japan.

And in their excitement about this, the Korean farmers moved and kept moving — some of them into Japan. It is the momentum of a new technology that was involved. Braudel’s description is of a steady state, a fixed technology. Braudel places the dynamics on the receiver who can choose to accept or not. In so choosing, Braudel says, each society “asserts and reveals itself.”

But no. The dynamics did not come from the receiver, it came from the promoter. In their enthusiasm for just having found new possibilities, some Koreans moved in. And with their new possibilities, with possibilities that had so long been needed, it was difficult to resist them. Let them come. Imitate them. Change one’s way of life. That is what happened. Are you surprised? Of course not. It seems so obvious.

Beyond Braudel. The argument between Toynbee and Braudel — Is the technology of today available, can it move from one civilization to another? — that is not the significant question. The dynamic of history emerges out of the dynamic of technology. It is not the spreading around of what is known, it is the occasional cases of explosive expansion of what is possible that have
propelled historical developments. The people who have just acquired a new technology, once upon a time and even now, become missionaries, are believers. Everyone should have the benefits, they would insist, of this new technology.

Such energy arose when domesticated crops first appeared, and they swept from the Fertile Crescent eastward until stopped by the mountains on the way to China (Zohary and Hopf. 1993). Such energy arose again with the domestication of the horse; with solving the problem of mass-producing iron. Not all technologies proceed to all parts of the world. While wheat and barley have never been grown in tundra, they can be grown quite far north. The horse and chariot and bronze were accepted in China, but did not spread to Japan which lived by a different mode — boiling acorns, fishing, trapping pigs.

It was the strength of iron, its usefulness in recreating waterways, that made possible Korea’s rice patties, and led to the enthusiasm that swept on into Japan. This was hardly new to the world which had seen the comparable power of iron upon agriculture in many other settings.

This is a theory of a major dynamic in history. The power of the scientific method. The explosive spread of gunpowder. The development of ships that can survive stormy seas. How to sanctify and canonize sacred literature. These are examples that occurred later than iron. The spread of microliths, domestication of crops and animals, bronze, horses with or without chariots. These are examples that preceded it.

These technologies have been difficult to resist. They have had an unusual impact upon the history of mankind. But this theory is only part of the story. From the viewpoint of history, technological change is an exogenous event, such as the weather. Just as glaciation can have a deep impact on history, so can some of these technological developments. For example, the impact of the acceptance and growth of science is having an enormous impact upon history during our time.

But the endogenous aspects of history — the rise of ethical feelings, the movement towards world government, the profes-
sionalization of the historian, and many other developments — these grow stronger over time. Science is being absorbed into this endogenous domain. And these endogenous developments mean that societies are less influenced by exogenous changes. The appearance of the computer is having less impact, probably, than did the change from priestly, esoteric writing to the more accessible alphabets. Were an extreme change to occur, such as the return of glaciation, severe adjustments would be necessary, population would have to be reduced, but the familiar social structure is very apt to survive. It becomes, over time, ever more resilient, ever more adaptive. That is the true story of human history.

Stedman B. Noble

NOTES


Imamura, Keiji. 1996. [The book being reviewed.]


