Comparative study between spatial-implicit and -explicit model: a case study of vegetation pattern in salt marshes

Man Qi
Beijing Normal University, qiman@mail.bnu.edu.cn

Alexey Voinov
University of Twente, a.a.voinov@utwente.nl

Tao Sun
Beijing Normal University, suntao@bnu.edu.cn

Follow this and additional works at: https://scholarsarchive.byu.edu/iemssconference

Part of the Civil Engineering Commons, Data Storage Systems Commons, Environmental Engineering Commons, Hydraulic Engineering Commons, and the Other Civil and Environmental Engineering Commons

Qi, Man; Voinov, Alexey; and Sun, Tao, "Comparative study between spatial-implicit and -explicit model: a case study of vegetation pattern in salt marshes" (2016). International Congress on Environmental Modelling and Software. 25.
https://scholarsarchive.byu.edu/iemssconference/2016/Stream-C/25

This Event is brought to you for free and open access by the Civil and Environmental Engineering at BYU ScholarsArchive. It has been accepted for inclusion in International Congress on Environmental Modelling and Software by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen amatangelo@byu.edu.
Comparative study between spatial-implicit and -explicit model: a case study of vegetation pattern in salt marshes

Man Qi1, Alexey Voinov2, and Tao Sun1*

1State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China (qiman@mail.bnu.edu.cn, suntao@bnu.edu.cn)
2Faculty for Geo-information Science and Earth Observation (ITC), University of Twente, P.O. Box 6, 7500 AA Enschede, The Netherlands (a.a.voinov@utwente.nl)

Abstract: From the inception of plant ecology as an independent field, much attention has been focused on understanding spatial and temporal changes in vegetation. Spatially explicit models, such as cellular automation (CA), were widely used to explore simple rules that control vegetation patterns in nature. However, compared to implicit model which was derived from statistic survey and was widely applied to uncover practical issues, spatial explicit model still rests on mimicking the complexities of real behaviours and stimulate new insights about them. Comparative analysis between these two model types was rarely explored. In this study, we simulated the vegetation pattern of a salt marsh wetland in the Yellow River Estuary with both spatial implicit and spatial explicit model. Besides the processes considered in the spatial implicit model, namely reproduction, mortality, stress tolerance, competition ability, and plant-soil feedbacks, we added spatial dispersal and colonization in the spatial explicit model. Vegetation patterns derived respectively from these two models were compared. In addition, sensitive analysis was implemented to recognize key determinates that contribute the most to differentiated simulations between spatial implicit and explicit models. This study makes it possible to construct spatial explicit model based on spatial implicit models and furthers our acknowledge of differences between spatial implicit and explicit model.

Keywords: vegetation pattern; spatial implicit model; spatial explicit model; cellular automata