
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2006-06-23

Ontology-Based Free-Form Query Processing for the Semantic Ontology-Based Free-Form Query Processing for the Semantic

Web Web

Mark S. Vickers
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Computer Sciences Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Vickers, Mark S., "Ontology-Based Free-Form Query Processing for the Semantic Web" (2006). Theses and
Dissertations. 475.
https://scholarsarchive.byu.edu/etd/475

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F475&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F475&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/475?utm_source=scholarsarchive.byu.edu%2Fetd%2F475&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

ONTOLOGY-BASED FREE-FORM QUERY PROCESSING

FOR THE SEMANTIC WEB

by

Mark Vickers

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Science

Brigham Young University

June 21 2006

Copyright c© 2006 Mark Vickers

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Mark Vickers

This thesis has been read by each member of the following graduate committee and by
majority vote has been found to be satisfactory.

Date David W. Embley, Chair

Date Deryle Lonsdale

Date Mike Jones

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of Mark Vickers in
its final form and have found that (1) its format, citations, and bibliographical style are
consistent and acceptable and fulfill university and department style requirements; (2) its
illustrative materials including figures, tables, and charts are in place; and (3) the final
manuscript is satisfactory to the graduate committee and is ready for submission to the
university library.

Date David W. Embley
Chair, Graduate Committee

Accepted for the Department
Parris Egbert
Graduate Coordinator

Accepted for the College
Thomas W. Sederberg
Associate Dean
College of Physical and Mathematical Sciences

ABSTRACT

ONTOLOGY-BASED FREE-FORM QUERY PROCESSING

FOR THE SEMANTIC WEB

Mark Vickers

Department of Computer Science

Master of Science

With the onset of the semantic web, the problem of making semantic content effec-

tively searchable for the general public emerges. Demanding an understanding of ontolo-

gies or familiarity with a new query language would likely frustrate semantic web users

and prevent widespread success. Given this need, this thesis describes AskOntos, which

is a system that uses extraction ontologies to convert conjunctive, free-form queries into

structured queries for semantically annotated web pages. AskOntos then executes these

structured queries and provides answers as tables of extracted values. In experiments con-

ducted AskOntos was able to translate queries with a precision of 88% and a recall of 81%.

ACKNOWLEDGMENTS

I would like to express my gratitude to my family and professors who have helped

make this thesis possible. I thank my wife for her patient support and love. I thank Dr.

Embley for his feedback, mentoring, and for being the good man that he is. I am also

grateful to all the professors at BYU who have made my experience here so enjoyable.

Contents

Acknowledgments vi

List of Figures ix

1 INTRODUCTION 1

2 RELATED WORK 5

2.1 Semantic Web Querying Systems . 5

2.2 NLIDBs . 8

3 QUERY PROCESSING 11

3.1 Introduction to Extraction Ontologies . 11

3.1.1 Extracting Values from Text . 13

3.1.2 Extracting Operations from Queries 18

3.2 Match Query to a Context . 21

3.3 Formulate Query . 24

3.4 Execute Query . 28

4 EXPERIMENTAL RESULTS 33

4.1 Procedures . 33

4.2 Metrics . 34

4.3 Results . 35

4.4 Issues . 37

4.4.1 System Issues . 37

4.4.2 Domain Issues . 39

4.4.3 English Issues . 40

vii

5 CONCLUSION AND FUTURE WORK 41

5.1 Future Work . 41

Bibliography 46

A Instruction Packet 47

B Experimental Results for the Penultimate Version of AskOntos 55

C All Third-Round Queries with Hand-Generated and System-Generated Trans-

lations for AskOntos version 2 57

D All Third-Round Queries with Hand-Generated and System-Generated Trans-

lations for AskOntos version 1 67

E All Second-Round Queries with Hand-Generated and System-Generated Trans-

lations for AskOntos version 1 77

viii

List of Figures

1.1 Web page data extraction. 3

1.2 Process-flow view of AskOntos. 4

3.1 An extraction ontology describing the concept of a car. 12

3.2 A value recognizer for car-ad prices. 14

3.3 A web page containing a car-ad record. 15

3.4 Recognized strings from in the first extraction phase. 16

3.5 Snippet from the OWL file associated with the Car Ad ontology. 19

3.6 A less-than operation recognizer for the Price’s data frame. 20

3.7 An extraction ontology for diamonds. 23

3.8 Generic query of the sample user query. 24

3.9 XQuery expression derived from the example generic query. 26

3.10 Records returned by XQuery engine. 29

3.11 Results transformed to HTML. 30

3.12 Capture of the web page containing a car-ad record with the extracted val-

ues highlighted. 31

4.1 Experimental results for AskOntos. 36

B.1 Experimental results from both the second and third round for the penulti-

mate version of AskOntos. 56

ix

x

Chapter 1

INTRODUCTION

With estimates of more than 11.5 billion indexable pages [15], the web is an in-

credibly rich source of information. The challenge of harnessing this information, making

it easier to search and query, has been the focus of much research. While great strides

have been made towards this goal, searching is still an application with significant room

for improvement [14].

A proposed framework, known as the semantic web [2], promises to significantly

enhance web querying. Whereas the current web contains information that is human read-

able, the semantic web extends the information to be machine-readable as well. To achieve

this goal, the semantic web uses ontologies. An ontology is a formal, explicit specification

of a conceptualization [13]. Ontologies will allow web search programs to look for pages

containing a precise concept or answer a specific question. Semantic web search engines

promise to be a great improvement over current web search engines, which typically return

all pages that contain given (often ambiguous) keywords.

Even with the upcoming semantic web framework, the details of how humans are

to query the semantic web are unclear. Two major issues to consider for this problem

are the usability of the interface, and the effectiveness of the query processing. The user

interface should require a minimal learning curve yet still allow complex queries. Queries

should be processed in a way that takes advantage of semantic content on the web, aiming

at interpreting a query’s meaning instead of viewing it as a set of keywords. Whether this

ideal can be achieved remains unclear.

1

This thesis introduces a system called AskOntos. AskOntos uses a novel approach

to query processing that contributes to the realization of enhanced searching on the seman-

tic web. The approach relies on extraction ontologies, which are ontologies used by an

extraction engine to extract and structure domain-relevant information from unstructured

web pages [7]. Extraction ontologies play a double role in the AskOntos system. First,

an extraction engine uses them to extract data values from the web. With respect to an

extraction ontology, the extraction engine stores extracted data values, and caches anno-

tated versions of the processed web pages. These cached pages constitute semantic web

pages, human-readable pages that have been annotated for machine processing. Second,

AskOntos uses extraction ontologies for query processing. AskOntos uses an extraction

engine to have each extraction ontology extract over the user’s free-form query. AskOntos

chooses the extraction ontology that is responsible for extracting the most instances from

the query. With the chosen ontology, and the extracted query instances, AskOntos produces

a query that it executes over the previously extracted web page data values associated with

the ontology.

Figure 1.1 illustrates web page data extraction. Ontos [28], an ontology-driven

extraction engine, uses an Extraction Ontology Repository to parse web pages (WPs) and

extract data values. If enough data values are extracted from a given page with respect

to an ontology, the page is considered relevant to that ontology’s domain, and a semantic

web page (SWP) is created. An SWP is a cached copy of a WP together with data that has

been extracted from it with respect to an ontology. The double arrowhead lines between

the SWPs and the extraction ontologies indicate that they reference each other.

Figure 1.2 illustrates the process flow for AskOntos. First, AskOntos passes the

free-form, natural-language query to Ontos, which extracts recognized text strings from

the query using the extraction ontologies. The Ontology Selector ranks the ontologies

according to the number of recognized text strings they extract, and chooses the ontology

that extracts more text strings than any other as the best-fit context for the query. With

the chosen ontology and the recognized text strings in the query, the Query Generator

formulates an executable query. The Query Processor runs the formulated query against

the data values in the SWPs associated with the chosen ontology, producing the answer to

2

Figure 1.1: Web page data extraction.

the query. AskOntos returns database-like tables of extracted values. In addition to the

extracted values, each row in the table contains a link to a cached copy of the SWP from

which its values were extracted. When a user clicks on this link, AskOntos displays the

cached page and highlights extracted data values.

Because of its use of extraction ontologies, AskOntos offers three significant ben-

efits to semantic web query processing: 1) it assigns context to queries based on extracted

values, 2) it converts free-form queries into structured queries without using any traditional

natural language processing techniques such as part-of-speech recognition, and 3) it an-

swers queries with tables of extracted values. The initial version of AskOntos can process

database-like queries written as free-form, natural-language queries that may be incom-

plete sentences and need not be grammatically correct. Queries may also include common

symbols such as <, > and <=. AskOntos can also process queries requiring aggregation

functions: min, max, sum, count, and avg. The system, however, currently can only pro-

cess conjunctive queries—queries where atomic conditions must all hold. Other current

limitations include the system’s inability to handle negations or metadata questions.

The remaining chapters of the thesis present the details of AskOntos. Chapter 2

compares AskOntos to other natural-language query processing systems. Chapter 3 first

3

Figure 1.2: Process-flow view of AskOntos.

explains how extraction ontologies work and then describes the details of AskOntos. Chap-

ter 4 discusses experimental results. Chapter 5 concludes the thesis with a discussion of

contributions and proposed future work.

4

Chapter 2

RELATED WORK

Several other research efforts are similar to AskOntos in that they process queries

over semantic web pages. We survey these efforts in Section 2.1. Other research efforts

are similar to AskOntos in that they process natural language queries over databases. We

discuss these efforts in Section 2.2

2.1 Semantic Web Querying Systems

QUEST [1] is a semantic web querying system that facilitates expressing complex

queries by using a graphical query language. Their interface to the semantic web consists of

a semantic view (an ontology-like graph), and a visual view (HTML). QUEST users choose

ontological categories and express constraints. Query results come in the form of generated

documents and graphs. The graphical interface has many advantages, but requires the user

to be familiar with underlying graph structures. AskOntos is similar in that it relies heavily

on the structure of ontologies, but differs in that it has a free-form text interface. The free-

form text interface requires no knowledge or understanding of ontology structures from the

user and therefore has a smaller learning curve.

As with QUEST, the SHOE [17] approach has the user enter a query by interacting

directly with ontologies. The interface is form-based rather than graph-based. The user

can drill down an ontology structure and set constraints through pull-down menus and text

areas. The SHOE approach searches only web pages annotated by SHOE, but allows the

users to optionally submit keyword queries to a popular information retrieval style search

engine. While SHOE shares AskOntos’s ability to return answers in tabular form, their

interfaces differ. SHOE does not permit free-from textual queries.

5

The authors of [3] share the idea of making a natural language front end for se-

mantic web queries. The natural language they propose, however, is limited to a subset

of English called Attempto Controlled English (ACE) [10], which has a domain-specific

vocabulary and a restricted grammar in the form of a small set of construction and inter-

pretation rules. The system translates ACE queries into discourse representation structures

(DRS) [18]. DRS terms match against ontology keywords and relations to form a process

query language (PQL) statement [19], which queries an ontology. While using ACE helps

overcome some major natural language processing pitfalls, it does require the user to learn

the rules of the ACE language. They report that learning a controlled language takes a

couple of days for the basics and 4-6 weeks for full proficiency.

AQUA [26] is an ontology-driven question answering system with a natural lan-

guage interface that integrates computational linguistics, logic, question classification, and

information retrieval. AQUA first tries to translate the user query into a logic form in order

to do a proof of the query over a knowledge base. If the proof fails, AQUA resorts to a

more traditional question answering approach to satisfy the query. To translate the user

query into its logic form, AQUA first parses the query into its grammatical components

and then produces a Query Logic Language (QLL) expression. AQUA then converts the

QLL expression to standard predicate logic. In this conversion, AQUA uses an ontology to

instantiate type variables and allows them to be replaced by unary predicates (using exact

matching between terms in the ontology and terms in the QLL expression). Finally, AQUA

re-writes the logic formulae by replacing predicate names with relations in the ontology.

This transformation is done by their similarity algorithm. The similarity algorithm creates

a graph from the query and finds its best intersection with the ontology graph by using a

hand-crafted domain dictionary and node/relation labels and returns a relation name that

may replace a predicate in the logic expression. Both AQUA and AskOntos use ontologies

to convert a natural user query into a formal query. One difference is that AQUA utilizes

a single domain ontology (useful in a company intra-net for example), while AskOntos

utilizes many ontologies and is designed as an interface for the semantic web. AQUA also

differs from AskOntos in that AQUA segments the query into subjects, verbs, prepositional

phrases, adjectives, and objects. Also, AQUA uses an ontology to replace query terms with

6

terms that match the ontology/knowledge base, while AskOntos uses ontologies to first find

the best context for the query and then maps query terms to concepts.

A semantic web search engine (SWSE) prototype is presented in [11]. Their sys-

tem has a Google-like interface that queries over RDF documents and returns a sequence

of subject, predicate, object/subject strings to answer the query. Their query processing

is as follows. First, the SWSE matches query words against rdfs:label, rdfs:comment,

and rdfs:Literal elements found in both RDF domain ontologies and an OWL translation

of WordNet [9]. This results in a list of property and predicate URIs, weighted according

to frequency. Next, the system generates RDF queries (sets of property-predicate-property

triplets) from the permutations of the property and predicate resources, including zero or

one wildcard (‘?’) in each triplet. The wildcard allows properties or predicates that were

not matched by the query, but that may be relevant, to be introduced. After the queries

are executed over an RDF knowledge base, the system adds resources in the resulting RDF

statements that were found through wildcard matches to the URI collection, and generates

a new set of RDF queries. The SWSE repeats this process a few times, each time expanding

its list of URIs. After several iterations, the resulting set of RDF statements constitute what

they call a “semantic webgraph.” In attempts to match multiple RDF statements to the user

query, the system counts the number of user query words that match properties and then

traverses that many properties of the semantic webgraph. Results are ranked before they

are displayed. Both the SWSE and AskOntos share the idea of returning semantically an-

notated data from a knowledge base. While neither system uses part-of-speech recognition

for query interpretation, they differ on how query context is determined. The SWSE system

relies on the labels, comments, and literals of RDF documents on the web and WordNet

for context matching. AskOntos relies on a repository of carefully designed extraction on-

tologies for query interpretation. In this regard, the SWSE system scales with less effort,

but AskOntos can be more precise about exactly what context and value phrases should be

matched by an ontology.

7

2.2 NLIDBs

Ever since the early sixties researchers have been working on building natural lan-

guage interfaces to databases (NLIDBs) [5]. The ideal NLIDB system would appropriately

interpret an unrestricted natural language query from an inexperienced user. Due to many

problems and limitations in natural language parsing technology [4], state-of-the-art sys-

tems are far from meeting these lofty goals. A typical NLIDB architecture has an analyzer

and a translator. Using a generalized grammar, lexicon, and domain knowledge the ana-

lyzer does syntactic and semantic processing on the input query, converting it into a logical,

intermediate representation. The translator takes the intermediate representation and does

task-specific and pragmatic processing, producing a database query.

While both AskOntos and NLIDB systems take a single natural language query as

input and produce a formal query as output, there are some important distinctions between

them. One difference between the systems lies in the initial grammar-based processing.

NLIDBs use generalized grammars to do syntactic analysis, which deals with the struc-

tural form of the input, and tries (often not very successfully) to handle fragmented and

ill-formed sentences. AskOntos has domain-specific grammars encoded in each extraction

ontology and makes no structural analysis and therefore handles fragmented and ill-formed

sentences well. As a tradeoff with its free-form tolerance, however, AskOntos currently

only handles conjunctive queries and queries with aggregations, while NLIDBs can handle

more complex queries. Another difference between the systems is in how new domains are

introduced. Porting an NLDB to a new domain typically requires low-level system exper-

tise as well as the know-how to modify lexicons, grammars, and task-specific processing

done in the NLIDB’s translator module. While the AskOntos engine itself is domain inde-

pendent, extraction ontologies must be carefully designed and created for each domain. It

is not trivial to add or change domains with either system, but AskOntos appears to require

less computer/system knowledge and training.

Because it is recent (showing the current state of the art) and because its back-end

processes the same XML query language that AskOntos does, XQuery [29], we single

out NaLIX [21] and compare it with AskOntos. NaLIX is a system that translates natu-

ral language queries into Schema-Free XQuery [20] expressions and then executes them

8

over an XML database. A Schema-Free XQuery expression is an XQuery expression with

additional functionality that allows the expression to have some freedom by not requiring

the its elements/attributes and structures to match precisely with target XML database el-

ements/attributes and structures. In the first step of translating a natural language query

into a Schema-Free XQuery, NaLIX uses MINIPAR [22], a broad-coverage natural lan-

guage parser, to create a parse tree. NaLIX then classifies the parse tree nodes as either

belonging to a certain XQuery component (such as a return clause, an order by clause, a

function, etc.), or a non-XQuery component that contributes to the query’s semantics (such

as pronouns, prepositions, adjectives, etc.). After classification, NaLIX validates the parse

tree to verify that it can be translated to a Schema-Free XQuery. If not, NaLIX begins a

user feedback loop. When the query can be translated, NaLIX analyzes the structure of the

parse tree and the node classifications to formulate a Schema-Free XQuery. Since NaLIX

and AskOntos both convert a natural text query into an XQuery, both systems are restricted

to the expressiveness of XQuery. NaLIX offers more expressiveness in the sense that it

structures the XQuery according to the user query, and supports nesting, disjunctions, and

negations, but the queries must be sentences parsable by MINIPAR. AskOntos always uses

the same two query structures, one for conjunctive queries and one for aggregation queries,

but queries need not be grammatically correct—they may be telegraphic for example and

may use symbols such as <, >, and >=. Other differences between the systems include

the fact that AskOntos is designed to be a query interface for semantic web pages, while

NaLIX is designed to be an interface for an XML database. Also, in terms of query “un-

derstanding,” NaLIX has the limitation of MINIPAR’s ability to build the correct parse tree

(MINIPAR achieves about 88% precision and 80% recall with respect to dependency re-

lations with the SUSANNE Corpus [22]), and the system’s ability to expand query terms

to match the underlying XML element names, which it does using WordNet or a domain

ontology if the XML database has one. AskOntos is only limited, in terms of query “under-

standing,” by the ability of the extraction ontologies to correctly recognize domain-relevant

text.

9

10

Chapter 3

QUERY PROCESSING

This chapter describes the AskOntos query processing in detail. Listed below are

the three major steps:

1. Match Query to a Context

2. Formulate Query

3. Execute Query

To lay the groundwork for a detailed explanation of each of these steps, Section 3.1

describes extraction ontologies, which are a fundamental component of the approach, and

how they extract instances from plain text and from queries. Following the introduction to

extraction ontologies is a description of the three processing steps, comprising Sections 3.2

through 3.4.

3.1 Introduction to Extraction Ontologies

An extraction ontology is a type of conceptual model capable of performing domain-

specific information extraction over plain text. Extraction ontologies include object sets,

relationship sets, and constraints. Figure 3.1 shows an example of an extraction ontology

for the car-advertisement domain, in graphical form. The boxes are object sets and repre-

sent a collection of instances. Object sets drawn with dashed lines contain lexical instances,

while object sets with solid lines contain non-lexical instances. The arrow and dot in the

Car object set denotes that it is the primary object, which means it is the main idea being

11

Figure 3.1: An extraction ontology describing the concept of a car.

described by the ontology. Lines between object sets are relationship sets. Numbers sepa-

rated by colons, such as 0:1, specify the minimum and maximum participation of objects in

a relationship set. An asterisk (*) denotes unlimited participation. Black and clear triangles

indicate aggregation and generalization/specialization respectively.

The key to extracting with extraction ontologies, and one of their distinguishing

features, is that each object set has an associated data frame [6]. A data frame encapsu-

lates the essential properties of everyday data items such as currency, dates, weights, and

measures. A data frame extends an abstract data type to include not only an internal data

representation and applicable operations, but also instance recognizers. Instance recogniz-

ers contain highly sophisticated representational and contextual information that allows a

string that appears in a text document, statement, or query to be classified as a value be-

longing to the data frame or as an operator applicable to values of the data frame. Data

12

frames also have input canonicalization operations that convert recognized strings into a

standard internal representation. Canonical values can be compared in comparison oper-

ations whereas this is not always true for strings (e.g. 48K = 48,000 as canonical values

but not as strings). Data frames also have output canonicalization operations that convert

internal representations into standard display strings.

We discuss value recognition in Section 3.1.1. In Section 3.1.2, we discuss opera-

tion recognition.

3.1.1 Extracting Values from Text

The value extraction process, orchestrated by Ontos, is a two-phase process. In

the first phase, Ontos takes an extraction ontology and a target text as input and applies

the value recognizers (described below) of each data frame in the ontology to the text,

generating a set of recognized value strings for each data frame. Because Ontos does not

attempt to resolve match conflicts as part of this phase, the recognized value strings are

only candidate values. In the second phase, Ontos applies several heuristics that decide for

each object set which value(s) should be accepted.

Value recognizers (as well as operation recognizers discussed in the next subsec-

tion) use regular expressions to describe the textual representation of information. Fig-

ure 3.2 shows a value recognizer for the Price data frame in the Car Ad ontology. The

value expression describes values that belong to the data frame. In this case the expression

specifies whole numbers with three to six digits (we assume cars in car ads cost at least

$100) and a possible comma before the last three digits. It also specifies that the number

cannot start with zero. For example, “500”, “4900”, or “12,999” are valid Price values.

The left and right context expressions describe what must be to the immediate right and

left of recognized value text strings. In this case, the left context expression indicates that

a valid Price value must have a word boundary followed by a possible dollar sign to its left

with nothing but whitespace (if any) between the dollar sign and the Price value. The right

context must be a word boundary. The keyword expression describes words or phrases that

might be near (but not necessarily immediately neighboring) recognized value text strings,

acting as indicators for valid values in the extraction process. To increase expressibility, all

13

regular expressions in a recognizer may contain embedded lexicons. A lexicon is embed-

ded by placing its name between curly braces in the expression. For example, the value

expression for the Color data frame is (light\s*|dark\s*)?{color}. When Ontos preforms

extraction with this expression, “light ” or “dark ” may appear followed by a color named in

the lexicon. A lexicon may be thought of as a regular expression with a bar (“|”) between

each entry. By default Ontos processes all regular expressions as case-insensitive unless

otherwise specified in the data frame.

Figure 3.2: A value recognizer for car-ad prices.

To illustrate the first phase of the extraction process, consider the Car Ad ontology

in Figure 3.1, including appropriate data frames for each object set, and the web page snip-

pet in Figure 3.3. For each data frame in the ontology, Ontos applies its value recognizers

to the text, producing a set of recognized value strings. Figure 3.4 shows the strings On-

tos recognizes as values, keywords, and left and right contexts for each object set (only

object sets with recognized strings are shown). To name a few incidental points about the

extracted values, the Make, Trim, BodyType, and Accessory values are all identified by reg-

ular expressions with embedded lexicons. The Color value expression does not identify

“blue” in “bluebook” because it does not end with a word boundary. The right context

expression for Mileage (which is (\s*k)?(\s*mi\.?|\s*miles)?\b) does not recognize the

“k” at the end of “bluebook” because right and left context expressions are not matched

alone, but are combined with the value expression. Consequently, if the first expression

14

Figure 3.3: A web page containing a car-ad record.

group in the Mileage right context expression (\s*k) were not optional (did not have the

?), “117” would be the only value recognized as a Mileage in the given text.

In the second value extraction phase, Ontos resolves conflicting matches and de-

cides which recognized values belong to which object sets. In many instances, this de-

cision is trivial. For example, no value recognizers identify “NISSAN” as a value other

than the Make value recognizer, and since “NISSAN” is the only value recognized by

the Make value recognizer, Ontos accepts “NISSAN” as a Make value. Similarly, Ontos

accepts “SE”, “red”, and “obo” as Trim, Color, and OBO (“or best offer”) values respec-

tively. Because the participation constraints for the Accessory object set (0:*) specify an

unbounded upper limit, all recognized Accessory value strings that do not overlap with rec-

ognized value strings of other object sets, which excludes “camper shell,” are accepted as

belonging to the Accessory object set.

As a first attempt at sorting out conflicting matches, Ontos rejects all recognized

value strings that are subsumed in the text by other recognized value strings. As a result,

“camper” is rejected as a BodyType value and “706”, “207”, and “8033” are rejected as

15

Figure 3.4: Recognized strings from in the first extraction phase.

Price or Mileage values. This allows Ontos to trivially accept “camper shell” and “706-

207-8033” as Accessory and PhoneNr values respectively.

The problem remains of deciding whether “1997” belongs to Year, Mileage, or

Price, as well as deciding which, if any, of the values “117”, “7,415”, and “5,900” belong

to Price or Mileage. To solve these problems, Ontos ranks the object sets according to

precedence of claiming a value. The first ranking heuristic gives precedence to object sets

whose right or left context expressions recognize text to the immediate right or left of a

recognized value. This ranks Price (because of the “$”) and Mileage (because of the “K”)

over Year. To distinguish between Price and Mileage, a second heuristic favors object

sets whose keyword expression identifies a keyword phrase in the text. According to this

heuristic, Price ranks higher than Mileage because Mileage has no keyword matches and

Price has one, “price”. Once object sets are ranked, Ontos considers each object set in turn

16

and accepts as many values as the object set’s participation constraints allow, which happen

to be at most one value for Price, Mileage, and Year. In deciding which value to accept as a

Price value, Ontos rejects “1997” and “117” because they do not have recognized right or

left context strings to their immediate right or left, whereas “7,415” and “5,900” do (“$”).

Ontos accepts “5,900” and rejects “7,415” as a Price value because “5,900” is closer in the

text to the recognized Price keyword, “price”. Of the remaining possible Mileage values,

“1997”, “117”, and “7,415”, Ontos accepts “117” as a Mileage value because “117” is the

only recognized Mileage value with a recognized right or left context string as a neighbor

(“K”). Finally, because “1997” has not been claimed by any other object set, Ontos accepts

it as a Year value.

In order to make the accepted values comparable with other extracted values, On-

tos canonicalizes each one. This is necessary so that, for example, the extracted Mileage

value, “117” (which is really “117,000” because of the “K”) can be properly compared to

other mileage values not expressed in thousands. In order to canonicalize each accepted

value, Ontos calls the canonicalization operation specified, if any, in the value’s associated

data frame. A canonicalization operation accepts an extracted value string as an argument

and returns the value string in a canonicalized form. Besides the extracted value string,

canonicalization operations allow left and right context strings as arguments, which might

indicate the need for special processing. For example, if the right context parameter is “K”,

the Mileage canonicalization operation not only removes any commas that might exist, but

it adds three zeros to the end of the value. So, “117” is canonicalized to “117000” by the

Mileage canonicalization operation.

In order to conveniently display an extracted value in a user-friendly format, Ontos

also calls an output formatting operation, if one exists, specified in the data frame of each

accepted value. The Mileage output formatting operation, for example, accepts a canonical-

ized Mileage value as an argument and returns the value after adding appropriate commas

and appending “miles” to the end. So, “117000” becomes “117,000 miles” by the Mileage

output formatting operation.

Ontos generates two documents as a result of performing extraction, a cached copy

of the target page (typically a web page), and a document containing the extracted data.

17

Cached web pages are annotated with HTML tags that identify the location of each record

within the page. (Records are separated as part of the extraction process by the VSM

algorithm described in [27].) The document containing extracted data is an OWL (Web

Ontology Language) [23] file. Figure 3.5 shows a single record from the above example

saved in an OWL file. A single record consists of an instance element, one or more value

elements, and an owl:Thing element. The instance element indicates the instance number

of its record, which is unique within the OWL document. The instance element at the

top of Figure 3.5 indicates that the record is the seventh instance. This instance number

is appended to all rdf:ID attributes within the record. Ontos creates value elements from

accepted values and names them after the object set to which the value belongs. Each

value element contains four child elements: one for the value in its canonicalized form,

one for the value in its display form, one for the offset in the cached copy of the web

page from which the value was extracted, and one for the length of the originally extracted

value. owl:Thing elements also group values together by referencing each value element

in the record. The owl:Thing in Figure 3.5 shows that Ontos extracted Price, PhoneNr,

Mileage, Color, Make, Year, Trim, Engine, Accessory, and OBO values for the seventh

record. The ontos:URI element stores the URI to the cached copy of the web page from

which the record comes, and includes the fragment (#CarAdRecord0007) that references

the HTML tag placed in the cached copy of the web page to identify the record’s location

within the page.

3.1.2 Extracting Operations from Queries

Extracting information from queries is almost equivalent to extracting information

from plain text. One minor difference is that for queries, record separation is not necessary,

whereas it might be necessary when extracting from documents. One significant difference

is that operation phrases (such as “more than” or “or greater”) are not of interest when

extracting data from web pages. Since AskOntos processes queries for the purpose of

converting them into formal queries, however, it is critical to properly recognize operations.

As an example, each of “under”, “less than”, or “cheaper than” should trigger a less-than

18

Figure 3.5: Snippet from the OWL file associated with the Car Ad ontology.

19

Figure 3.6: A less-than operation recognizer for the Price’s data frame.

operation if it were followed by a Price value. For this purpose, data frames may have

operation recognizers in addition to value recognizers.

Operation recognizers help AskOntos translate a recognized operation phrase into

a formal query constraint by recognizing the operation in the query, recognizing operands

specified in the query, and specifying the appropriate operator syntax for the formal query.

Figure 3.6 shows an example of a less-than operation recognizer for the Price data frame.

Keyword expressions recognize operands as well as operators in queries. Object set names

between curly braces in keyword expressions specify the presence of an operand. On-

tos recognizes operands by replacing the object set name and curly braces with the left

context, value, and right context expressions of the specified object set. Ontos separates

each of these three parts into regular expression groups (places them between“()”) in or-

der to distinguish the value from its context. For example, Ontos replaces {Price} with

((\$\s*)?\b)([1-9]\d{0,2},\d{3}|[1-9]\d{2,6})(\b). Text matched by the value expres-

sion group (the second group in this example) is considered to be an operand for the rec-

ognized operation. As an example, if Ontos applies the keyword expression in Figure 3.6

to “under $6,000”, it recognizes the presence of a less-than operation with “6,000” as its

second operand. The first operand is always the object set name, which is Price in this

case. From this, AskOntos creates the condition: Price < 6000. The less-than symbol

comes from the operator syntax specified in the less-than operation recognizer.

AskOntos also handles more complicated operations. For example, the Price data

frame has a between operation recognizer with several keyword expressions, one of which

20

is between {Price}\s*(and|to|-)\s*{Price}. The operator syntax of the recognizer is

“>, <”. If Ontos applies this operation recognizer to “between $2,000 and $8,000”, it ex-

tracts “2,000” and “8,000” as operands for the between operation. AskOntos recognizes

that there are two extracted operands and two operators specified in the operator syntax

(“>”, and “<”), so it creates two binary conditions for the formal query. In the first con-

dition, Price is the first operand, “>” is the operator, and 2000 is the canonicalized second

operand. In the second condition, Price is the first operand, “<” is the operator, and 8000 is

the canonicalized second operand. Whenever there are two operators specified in the oper-

ator syntax of an operation recognizer, the first operator is associated with the lesser of the

two operands. This allows AskOntos to correctly translate phrases such as “between $8,000

and $2,000” by simply ordering the operands from least to greatest, and then associating

the operator syntax operators to the operands in their specified order.

3.2 Match Query to a Context

Query processing begins when the user submits a free-form query to AskOntos.

AskOntos performs the first processing step by passing the query to Ontos. Ontos parses

the query using each of the extraction ontologies in the extraction ontology repository.

To illustrate this process, suppose the user enters the query:

“Find me the price and mileage of all red Nissans - I want a 1996 or newer.”

With respect to the Car Ad extraction ontology, Ontos extracts “price” and “mileage” as

keywords for the Price and Mileage data frames respectively. Ontos extracts “red”, “Nis-

san”, and “1996” as values for the Color, Make, and Year data frames respectively. Finally,

Ontos extracts the phrase “1996 or newer” as a greater-than-or-equal operation in the Year

data frame, and identifies “1996” as a parameter.

Given the information extracted from the query for each ontology, AskOntos finds

the ontology in the repository (if any) that best serves as a context for the query. If the on-

tology repository had many domains, this could potentially be a difficult problem; however,

the experimental repository only has five domains. This being the case, the ontology that

best corresponds with the query is simply the one that extracts the most value and keyword

21

phrases from the query (although there are some special circumstances, described below).

The number of matched value and keyword phrases is the ontology’s similarity value. Op-

eration matches are not counted towards the similarity value because many operations (e.g.

less-than and greater-than) appear in most ontologies and thus provide no discriminating

information. An ontology with many comparison operations may falsely accumulate a high

similarity value.

To illustrate the ontology selection process, consider the Car Ad extraction ontol-

ogy in Figure 3.1 and the example query in Section 3.2. From the parsing process de-

scribed in Section 3.2, the Car Ad ontology has a total of five value or keyword matches:

“price”, “mileage”, “red”, “nissan”, and “1996”. The similarity value for the Car Ad on-

tology, in this case, is 5. Now consider the Diamond ontology in Figure 3.7. The word

“price” matches the Price keyword recognizer, and “red” matches the Color value recog-

nizer (though rare, red diamonds do exist), so the Diamond ontology’s similarity value is 2.

Since the Car Ad ontology has a higher similarity value, it corresponds better to the query

than the Diamond ontology.

Regarding similarity values, there are three cases to consider: 1) there is an obvious

best match, 2) there are multiple scores that are above a minimum threshold, but none is

the obvious best, and 3) all scores are below a minimum threshold. For the first case, the

system automatically selects the obvious best match, which is where a single ontology has

a similarity value that is α standard deviations above the mean of all similarity values.

Empirical results show that α = 1.4 works well for the testing environment. For the second

case, AskOntos prompts the user to choose between the ontologies that have a similarity

value above the minimum threshold. This case also includes the situation when two or more

ontologies are α standard deviations above the mean, but they all have the same similarity

value. For the third case, AskOntos notifies the user that the query does not match any

domain. Since queries can often have low similarity values (for example the query “What

is the cheapest Ford?” has a similarity value of 1 for the Car Ad ontology), the minimum

threshold is currently set to 1.

In the case where the ontology repository is large, research reported in [8] may

apply. This research decides if an HTML document contains objects of interest with respect

22

Figure 3.7: An extraction ontology for diamonds.

23

Figure 3.8: Generic query of the sample user query.

to an extraction ontology. The system uses machine-learned rules over density, expected-

value, and grouping heuristics to decide the relevance of a document. We should be able to

use some of these same techniques or similar techniques to decide how applicable a query

is to an ontology.

3.3 Formulate Query

To formulate a formal query, the query generator creates a generic query from the

chosen ontology’s extracted phrases, and then AskOntos translates the generic query into

an XQuery expression. The expression restricts records to those that do not violate any

constraint, and it may make use of the XQuery’s aggregation functions: min, max, sum,

avg, and count.

A generic query has three list structures. The first list contains names of the ob-

ject sets that belong in a return clause. The second list contains the query conditions—a

condition is an attribute/operation/value triplet. The third list contains aggregations. An ag-

gregation is a function-name/parameter pair, where the parameter is the name of an object

set; for example, max/Price. Figure 3.8 shows the generic query generated from the exam-

ple query in Section 3.2. Incidentally, observe that AskOntos generates conditions using

the canonicalized form of each value. This ensures that generated comparison operations

will work properly.

The query generator creates the three-component structure of a generic query by

analyzing the matches of the various recognizers. The generator adds the names of all

object sets whose data frames recognize at least one phrase (either a value, keyword or

24

operation phrase) to the return-clause name list. Figure 3.8 shows that returned values for

the sample query are to come from the Price, Mileage, Color, Make, and Year object sets.

The query generator creates one condition for each extracted value. The condition’s at-

tribute is the name of the object set to which the value belongs. The condition’s value is

the canonicalized form of the value, and by default the condition’s operation is equality.

If the recognized value is also a parameter for a recognized operation phrase, the query

generator uses the the operation syntax specified in the operation recognizer as the condi-

tion’s operation. Figure 3.8 shows that since “red”, “nissan”, and “1996” are recognized

values from the sample query, they become part of the generic query conditions. Further,

because “1996 or newer” is a recognized operation, the Year condition is “>=”. The query

generator creates an aggregation for any recognized operation phrase whose recognizer is

for an aggregation operation, one of max, min, sum, avg, or count. The parameter for an ag-

gregation operation is the name of the object set to which the recognized operation phrase

belongs. Figure 3.8 indicates that there are no aggregation operations for the sample query.

AskOntos formulates an XQuery expression from the generic query created by the

query generator. For the generic query in Figure 3.8, for example, AskOntos generates the

XQuery in Figure 3.9. Generated XQuery expressions follow the standard FLWOR (For,

Let, Where, Order By, Return) pattern.

AskOntos generates the For clause as follows. Since OWL files contain an rdf:RDF

element with child owl:Thing elements (which are essentially records, see Figure 3.5), one

for loop is generated to loop over the rdf:RDF element(s) along with a nested loop to iterate

over the owl:Thing elements (see Lines 1-2 of Figure 3.9).

The generated Let clause is a series of XQuery statements (Lines 4-25 in Figure 3.9)

that produce four variables for each object set that matches any query word. Lines 5-8 show

the four Price variables. The first of the four assigns the canonicalized Price value to the

variable $Price, the second assigns the display value to $PriceDisplay, the third assigns

the offset of the Price value in a cached web page to $PriceOffset, and the fourth assigns

the length of that cached value to $PriceLength. The let statements use the $id variable

on Line 4 to assure that all values are from the same record. The let statement in Line

25 assigns the URI of a cached web page to the value $Source. To illustrate how the let

25

Figure 3.9: XQuery expression derived from the example generic query.

26

statements are processed, consider Lines 4 and 5 in Figure 3.9. The variable $id receives the

instance number of the owl:Thing element in the current iteration by taking the substring

after the “CarInstance” part of the rdf:about attribute. In Line 5, $Price receives the text

found in the car:canonicalValue element whose parent element is named car:Price and

has an rdf:ID attribute equal to “PriceInstance” concatenated with the instance number in

the variable $id.

AskOntos forms the Where clause (Lines 27-29 in Figure 3.9) using the canonical-

ized variable of each object set listed in the generic query’s list of conditions. Each Where

clause has an or empty condition appended to it to prevent false negatives. Most current

systems that retrieve information try to minimize false negatives at the expense of false

positives [16]. To illustrate this principle, consider the query submitted by a user looking

for red cars. If a car record does not include a color, it would be a false negative if the car

was red but the record not returned. It would be a false positive if the car were not red and

yet returned. The or empty allows the user to see possibly desired records that would have

otherwise been missed.

AskOntos does not produce an Order By clause. Instead, AskOntos orders the

resulting records after the XQuery has been executed according to the number of attribute

values that are non-empty. Records with the least number of empty attribute values are

displayed first.

The Price, Mileage, Color, Make, and Year elements in the Return clause (Lines

30-52 in Figure 3.9) come from the list of object sets to return in the generic query. In the

return statement, each object set element has child elements with the value in its output

format and the cached value’s offset and length, referenced by the appropriate variables.

AskOntos returns values for all object sets referenced in the query, as opposed to just object

sets that recognize keyword phrases, because it gives the user a more complete view of each

record. Further this choice helps the user to know with greater certainty that the constraints

specified were executed.

27

3.4 Execute Query

Using Qexo 1.7, a GNU implementation of an XQuery engine for Java, AskOntos

runs the generated XQuery expression over the extracted data associated with the selected

ontology. Qexo returns XML as specified by the query’s return statement. Figure 3.10

shows the XML output from running the XQuery expression in Figure 3.9 on an OWL file

with extracted data shown in Figure 3.5.

In order to display Qexo output in a more reader-friendly manner, AskOntos trans-

lates the XML results into the HTML table shown in Figure 3.11. AskOntos parses the

XML result and creates a list of record structures, one for each Record element. Each

record structure stores the attribute names (from the child element names), the disaplay-

Value text, and the offsets and lengths (found in the cacheOffset elements) within its

associated Record element. Before printing the records as an HTML table, AskOntos

sorts the records according to their number of display values.

It may be the case that a single record contains multiple values for one attribute.

For example, had the user mentioned the word ”accessories” in the query, a keyword match

would have triggered Accessory values to be returned. If it were the case that a record

contained multiple accessory values (which would be very likely), rather than listing them

all in single table cell, AskOntos would generate an HTML button. Clicking the button

would expand the cell to show all accessory values.

In the generated HTML table, each row contains a link that points to a cached copy

of the page from which the extracted record values come. Clicking the link opens the

cached page in a browser, and since the link contains the fragment that points to an HTML

record marker in the page, the browser is scrolled to the section where the record was

extracted. AskOntos uses the offset and length values in Qexo’s output XML to highlight

the extracted values from the row in order to help the user easily find them. Figure 3.12

shows the page displayed as a result of clicking on the first returned record in the example.

28

Figure 3.10: Records returned by XQuery engine.

29

Figure 3.11: Results transformed to HTML.

30

Figure 3.12: Capture of the web page containing a car-ad record with the extracted values
highlighted.

31

32

Chapter 4

EXPERIMENTAL RESULTS

AskOntos has two measurable processes: the extraction process and the query trans-

lation process. Although some improvements were made to Ontos’s extraction heuristics,

we did not explicitly test the performance of the extraction process. The originators of

Ontos give basic performance results for the extraction process on web pages [27, 28].

Although not explicitly tested, implicit testing of the extraction process is part of testing

the query translation process—poor extraction results in poor query translation. In our ex-

periments we focused only on AskOntos’s ability to translate a user query into a formal

query.

4.1 Procedures

We performed experiments using an extraction ontology repository with five do-

mains: car ads, house ads, countries, movies, and diamonds. Subjects were computer

science graduate students at Brigham Young University. None were members of our data-

extraction research group. We asked subjects to submit 25 queries (5 for each domain).

By way of instruction, we gave the subjects sample web-page printouts from each of the

five domains and asked them to write English queries against the data in the sample web

pages. The instructions also explain that the queries cannot have disjunctions or negations,

cannot be metadata queries, and cannot require knowledge outside the information on the

sample (or similar) web pages. Appendix A contains a copy of the instructions given to

each subject. The subjects were not aware of the AskOntos process flow or underlying

structures; they were only aware that it translates natural-language, free-form queries into

machine-processable queries.

33

The experiments consisted of three rounds of testing. In the first round, subjects

submitted 50 queries, but the queries did not hold to the limitations specified and were

therefore discarded. A revision of the instructions to those in Appendix A solved this prob-

lem. In the second round, different subjects submitted another 50 queries. We used these

queries to identify some problems and make minor adjustments to lexicons and regular ex-

pressions. In the third round, subjects (different from those in either of the first two rounds)

submitted another 50 queries. The results were only slightly better than those from the

second round, leading us to believe that AskOntos had become reasonably uniform in its

performance. Our results reported here are from this third round of submissions for the

final version of AskOntos. Appendix B gives all results from both the second and third

rounds for the penultimate version of AskOntos.

4.2 Metrics

To measure AskOntos’s ability to translate natural-language, free-form queries into

formal queries, we manually translated each submitted test query into the intermediate

form explained in Section 3.3. We combined the aggregation list with the conditions list,

however, because there was only one test query that required an aggregation operation.

(One test case does not provide enough data for a meaningful result). As an example,

if a query asks for the least expensive car, the condition (Price, =, min) is added to the

condition list. As before, the query “Find me the price and mileage of all red Nissans - I

want a 1998 or newer” is translated to

Return-Clause Names: Price, Mileage, Color, Make, Year

Conditions: (Color, =, red), (Make, =, nissan), (Year, ≥, 1998).

Since AskOntos automatically converts natural-langauge, free-form queries into this same

intermediate form, we were able to compare each hand-written intermediate query to its

generated intermediate query. Appendices C, D, and E contains all second- and third-round

users’ queries and their hand-generated and system-generated translations.

The evaluation metrics we use are similar to those used in [24], which are also

the standard metrics for SENSEVAL-3’s Logic Forms task [25]. As with their metrics,

34

we compute precision and recall over an entire set of test queries. Rather than measuring

precision and recall for correctly translated arguments and predicates, however, we measure

precision and recall for correctly translated return-clause names and conditions.

We calculate precision for the return-clause names as the number of correctly gen-

erated return-clause names divided by the total number of generated return-clause names.

We calculate the recall for the return-clause names as the number of correctly generated

return clause names divided by the number of return-clause names that should have been

generated. We calculate the precision for the conditions as the number of correctly gen-

erated conditions (correct means all three parts of the condition are correctly generated)

divided by the total number of generated conditions. We calculate the recall for condi-

tions as number of correctly generated conditions divided by the number of conditions that

should have been generated. The system automatically calculates a precision and recall

value for both the return-clause name list and conditions list. For example, if AskOntos

had translated the sample query above into an intermediate query with return-clause names

Price, Mileage, Make, Model, and Year, (notice that Color is missing and that Model has

been incorrectly added) the return-clause names for this query would have a precision of

80%, and a recall of 80%. We calculate precision and recall for each domain as well as

for all queries. We also calculate combined precision and recall values (not distinguishing

between the two query parts) and the percentage of queries that were translated with 100%

accuracy, with partial accuracy, and with 0% accuracy.

4.3 Results

Figure 4.1 shows the translation accuracy from the third round of test queries. The

combined precision is 88% and the combined recall is 81%. For the return-clause names,

the total precision is 90% and the recall is 90%. For the conditions, the total precision

is 86% and the recall is 71%. AskOntos translated 64% of the test queries with 100%

accuracy, 32% with partial accuracy, and 4% with 0% accuracy.

By way of comparison, the authors of NaLIX [21], which also converts a natural-

language query into an XQuery expression, report an average precision of 83% and an av-

erage recall of 90%. While the results from NaLIX look comparable to those of AskOntos,

35

Figure 4.1: Experimental results for AskOntos.

36

their evaluation procedures differ considerably, making a direct comparison difficult. First,

since the authors of NaLIX focus their experiments on how well, on average, their system

returns correct query results, they report an average precision and recall. Because we focus

on how well AskOntos correctly translates the return-clause names and the conditions of

a query, we feel it more appropriate to report a precision and recall from the collective

number of return clause names and conditions—following the standard of SENSEVAL-3’s

Logic Forms task. Second, the testing procedures used by the authors of NaLIX consisted

of subjects completing two blocks of search tasks, each block having nine tasks. For each

task, subjects had five minutes to read the task, formulate a query, analyze the results, evalu-

ate the results, and then were free to continually reformulate the query to improve precision

and recall if they desired. The authors of NaLIX report that each subject was able to for-

mulate a natural-language query acceptable by NaLIX on the first attempt for about half of

the search tasks. In our experiments, queries were submitted either on paper or by email

(whichever the subject preferred). Queries were not modified before calculating precision

and recall values, and, for our experiments, the subjects received no system feedback.

4.4 Issues

Training and experimental queries revealed several underlying difficulties and lim-

itations of AskOntos. The subsections below give examples that illustrate these problems.

The problems are organized according to whether they are system issues, domain-ontology

issues, or English-language issues.

4.4.1 System Issues

Some limitations and difficulties of AskOntos are caused from system techniques

and algorithms, including the use of lexicons, regular expressions, and the extraction heuris-

tics.

Lexicons allow system developers to conveniently list a wide variety of values that

appear in a given domain. Although they can be quite extensive, it is nearly impossible

to create a lexicon that covers everything a user might ask about in a query. One user, for

example, asked about houses that have trees. Since “trees” was not in the Feature lexicon

37

54

Appendix B

Experimental Results for the Penultimate Version of AskOntos

55

Figure B.1: Experimental results from both the second and third round for the penultimate
version of AskOntos.

56

Appendix C

All Third-Round Queries with Hand-Generated and System-Generated

Translations for AskOntos version 2

57

58

59

60

61

62

63

64

65

66

Appendix D

All Third-Round Queries with Hand-Generated and System-Generated

Translations for AskOntos version 1

67

68

69

70

71

72

73

74

75

76

Appendix E

All Second-Round Queries with Hand-Generated and System-Generated

Translations for AskOntos version 1

77

78

79

80

81

82

83

84

85

86

87

