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Allowed mesoscopic point group symmetries in domain average
engineering of perovskite ferroelectric crystals

D. M. Hatcha) and H. T. Stokes
Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602

W. Caob)
Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong, China

�Received 30 June 2003; accepted 30 July 2003�

In multivariant systems, several energetically degenerate low temperature domain states can be
produced at the structural phase transition. Coexistence of these domain states can produce
mesoscopic structures that possess symmetries distinct from the microscopic single domain crystal
symmetry. Such engineered domain structures in certain ferroelectric materials have been proven to
give superior piezoelectric properties and extremely soft shear moduli. The objective of this article
is to consider the variety of symmetries that can be produced through domain average engineering
in proper ferroelectric systems arising from the cubic Pm 3̄m symmetry perovskite structure.
© 2003 American Institute of Physics. �DOI: 10.1063/1.1611634�

I. INTRODUCTION

Many ferroelectric systems belong to the pervovskite
family with the high temperature phase having cubic Pm 3̄m
symmetry. A ferroelectic phase transition driven by a zone
center transverse optical ‘‘soft’’ mode produces a crystal
structure with a dipole in each unit cell, reducing the sym-
metry to one of the polar classes: 1, 2, 3, 4, 6, m, mm2, 3m ,
4mm , and 6mm . As a consequence, there is more than one
low temperature ferroelectric domain state present. A domain
refers to a homogeneous crystal region in which all the di-
poles are aligned in the same direction. It is a well estab-
lished fact that the presence of domains can substantially
enhance the properties of ferroelectric materials. In a single
crystal system, two neighboring domains form a twin struc-
ture and there is a spatial transition region between them,
which is termed the domain wall, since it usually appears as
a planar structure along particular crystallographic orienta-
tions. Under an applied external field, the size of ferroelectric
domains can either contract or expand in order to lower the
total energy of the system, causing the domain walls to
move. These domain wall movements and the resulting do-
main configurations produce the so-called ‘‘extrinsic contri-
butions’’ to the effective material properties in many ceramic
ferroelectrics. These extrinsic contributions have been ex-
perimentally verified to amount to 60% of the total piezo-
electric and dielectric effects in Pb�Zr,Ti�O3 �PZT� ceramics
at room temperature. For this reason, researchers have spent
extensive effort to find better chemical additives that can
enhance the mobility of domain walls. For example, a few
percent of La or Nb dopants can produce more than 50%
improvement in piezoelectric and dielectric properties in the
so called soft PZT ceramics.

Recently, a method has been reported to fabricate desired
multidomain single crystals, which can greatly enhance the
piezoelectric and the electromechanical coupling coefficients
in relaxor-based ferroelectric single crystals of
Pb�Mg1/3Nb2/3)O3 �PMN–PT� and Pb�Zn1/3Nb2/3)O3
�PZN–PT�.1–4 Both solid solution systems have a perovskite
structure. Poling along one of the pseudocubic axes, for ex-
ample �001�, in the rhombohedral phase ferroelectric crystals
�corresponding to a �111� polarization�, creates a multido-
main state containing four of the eight possible low tempera-
ture variants with the local dipoles oriented randomly along
�111�, �11̄1� , � 1̄11� and � 1̄1̄1� directions with respect to the
pseudocubic axes. Such a poled multi-domain system has a
piezoelectric coefficient over 2000 pC/N and an electrome-
chanical coupling coefficient k33 over 90%,1,3,4 which is a
dream come true for transducer and piezoactuator designers.
The complete set of matrix properties have been determined
for the PZN–PT and PMN–PT multidomain single crystal
based on the pseudotetragonal symmetry, which is substan-
tially different from data of the single domain single crystal
and ceramic samples.3,4 The method used in enhancing the
material properties in this case is to manipulate the domain
structures instead of the domain wall mobility. Therefore, the
configuration and size of the domains will determine the ef-
fective symmetry and the average material properties.

It was found that one of the shear moduli in the multi-
domain systems is extremely low, which means that the me-
soscopic structures can also greatly influence the elastic
properties. These results demonstrated that the domain-
engineering concept might help us to produce materials with
superior properties. In order to take full advantage of this
process, one must gain a better understanding of the kinds of
effective symmetry that can be produced in each given crys-
tal system. Obviously, the mesoscopic symmetry or symme-
try of domain patterns is intrinsically linked to the underly-
ing crystal structure. Here we use group theoretical methods
to make a detailed analysis of possible proper ferroelectric
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systems which can result from transitions in a cubic Pm 3̄m
perovskite structure. The analysis will be performed for both
equal and non-equal volume fractions of different domains in
the structure. The volume fraction deviation from equal par-
tition will cause the mesoscopic symmetry to become lower.
In fact, as analyzed previously for the PMN–PT and
PZN–PT systems, the effective macroscopic symmetry pro-
duced by the microscopically rhombohedral crystal structure
can range from cubic m 3̄m , tetragonal 4mm , orthorhombic
mm2, monoclinic m, all the way down to triclinic 1.5,6 The
symmetry of the multi-domain structure does not necessarily
have to be a subgroup of the microscopic crystal symmetry,
as shown in Fig. 1. In case �a� all four domains are identical
in size. The solid circles represent the endpoints of the po-
larization direction vector in each domain, originating from
the center of the cube. The system has two mirror planes and
one four-fold rotation axis; therefore, the effective symmetry
of the structure is 4mm . In Fig. 1�b�, the two right domains
have equal volume fractions �represented by solid circles�
and the two left domains have equal volume fraction �repre-
sented by the open circles� but the two left domains have
different volume fractions from the right domains. Therefore,
there is only one mirror plane in the structure and the sym-
metry of this twin is reduced to monoclinic m. �In this article
if the domains have the same volume fraction they are rep-
resented by the same symbol, e.g., solid circle, open circle,
solid triangle, etc., might be used, but different symbols im-
ply different volume fractions.�

The mesoscopic symmetry analysis must distinguish the
following two different situations. The first kind of domain
structure analysis is on domain geometry and includes the
consideration of the geometrical nature of domain configu-
ration in space, twinning patterns as well as domain wall
orientation, and positioning. The second kind of domain
analysis, domain averaging, considers an average of these
domains without consideration of spatial occupation details.
The symmetry operations therefore refer to the global aver-
age in terms of volume fractions and the operation may not
exactly bring the local structure back to itself. This article is
focused on the second kind of domain structure analysis.

Of course, the domain pattern symmetry will be different
if the microscopic symmetry of the crystal structure is al-
tered. The ultimate objective is to systematically obtain all
allowed ‘‘domain sets,’’ their mesoscopic symmetry, infor-
mation about the role of domain fractions in determining that

symmetry, and the corresponding physical tensor properties
for that domain set. Since the domain patterns can vary
greatly, and since the questions of variety and resulting sym-
metries are not directly determined from the crystal symme-
try, these possibilities can become complicated and difficult
to obtain systematically. In the following we describe al-
lowed mesoscopic symmetries in crystals having a � point
soft mode, which upon softening produces a proper ferro-
electric phase transition. The three cases we consider corre-
spond to polarization (px ,py ,pz) oriented along �100�,
�110�, and �111�, resulting in the single domain state symme-
tries P4mm , Amm2, and R3m , respectively. For the �111�
polarization direction the PZM–PT and PMN–PT crystals
are examples of interest. The well known BaTiO3 is an ex-
ample of a structural change with polarization along the
�100� direction. KNbO3 is an example of a material which
undergoes a transition due to the spontaneous polarization
toward the cube edges �110�.

Multidomain symmmetries have been considered by
Fousek et al.7 and Fuksa and Janovec.8 In the work of
Fousek et al.7 all volume fractions were assumed equal and
thus the number of symmetries for the domain configuration
were restricted. They considered multidomain symmetries
for the transition from m 3̄m to R3m . This corresponds to our
�111� polarization ordering. The equal volume restriction was
relaxed in the work of Fuksa and Janovec8 and they listed
possible symmetries for the �111� ordering. Here we consider
the case of nonequal volume fractions and briefly describe an
algorithm to systematically obtain all possible domain con-
figurations. The algorithm has been implemented on com-
puter and thus can easily yield similar results for multido-
main configurations resulting from any phase transition. As
examples of our procedure we list results for the experimen-
tally interesting perovskites mentioned above of ordering
along �100�, �110�, and �111�. We compare our results for the
�111� ordering with previously published work.

II. ALLOWED MESOSCOPIC SYMMETRIES

At the transition the symmetry reduces from the parent
group symmetry G to a phase of symmetry F1�G , which is
the symmetry of the domain state S1 . There is a one to one
correspondence between the domain states and the left cosets
of F1 in G. The group G is the union of all these left cosets

G�F1�g2F1� . . .�g	F1 .

Each coset representative gi of F1 in G acting on the state S1
takes it into the corresponding state Si whose symmetry is
giF1gi

�1. The set of these 	 domain states formed by the
transition is represented as S�
S1 ,S2 .. .�. The action of the
parent group G on the set S is a mapping of S to S which, for
each element g�G , assigns a state Sb to a state Sa for all
states in S. This mapping must be an isomorphism which is
associative. The identity element of this mapping is the iden-
tity element of G. The action of g on S results in a permuta-
tion of the elements in S and can be mapped onto a permu-
tation matrix D(g). The mapping of all operators g�G onto

FIG. 1. Illustration of two different symmetries for a twin structure pro-
duced in a rhombohedral ferroelectric phase transition. �a� The four domains
have identical size so that the system has 4mm symmetry. �b� Two domains
are larger than the others.
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permutation matrices results in a permutation representation
of G on S which contains a finite number of distinct matrices
forming a permutation group P.

If H is an arbitrary subgroup of G then the H orbit of the
state Sa is the set Sa of distinct states generated by applying
all elements of H to Sa . For any H�G , the set S
�
S1 ,S2 .. .� is either a single H orbit S�Sa or the union of
disjoint H orbits. An operation g�G takes an H orbit of Sa
into a gHg�1 orbit of gSa . Thus the division of S
�
S1 ,. . .� into H orbits S�Sa�Sb� . . . is transformed into a
division of gHg�1 orbits S�gSag�1�gSbg�1� . . . . We
will say that the two divisions of S under any two subgroups
H1 and H2 of G, are equivalent if there exists an operation
g�G which takes every orbit of H1 into an orbit of H2 .

A multidomain crystal has an average symmetry H if the
effective property tensor Ū is invariant under the group H.
Any effective property tensor Ū can be written as a function
of tensor properties U1 , U2 ,. . .Un of the domain states S1 ,
S2 ,. . .Sn respectively, weighted by their volume fractions.
The essential information needed in order to obtain a macro-
scopic symmetry and thus the macroscopic properties is the
knowledge of the multidomain structure, their respective vol-
ume fractions, and the maximal set of symmetries which
preserve these volume fractions. The average symmetry will
be determined only by the symmetry of the domains as they
transform into one another under the restriction that the sym-
metry transformation cannot disturb the relative weighting of
the domains according to the volume fraction. With this phi-
losophy in mind, the domains which are present in the struc-
ture, with their respective group symmetries, can be inter-
preted as coexisting in space and being permuted by the
elements of the symmetry operation corresponding to the
coset decomposition. In fact, the same philosophy has been
used in all ceramics and alloys when they are assumed ho-
mogeneous and isotropic. Our algorithm is based upon coset
permutations corresponding to a given transition and their
resulting symmetries.

We will call a domain set ‘‘connected’’ with respect to a
group H�G , if the action of H on any one of the domain
states yields the entire set of domain states, the set consists of
a single H orbit. If H is the symmetry of a multidomain
structure, all elements of an H-connected set must have equal
volume fractions. A nonconnected �NC� set of domains con-
sists of distinct connected components. In the NC set differ-
ent components do not have the same volume fraction but
the domain states in each component do. The symmetry of
the NC set is the intersection of the symmetries of its distinct
connected components.

A multidomain structure can be represented by a vector
S where the components represent the relative fraction of the
total volume each domain occupies in the crystal. For ex-
ample, a crystal composed of two domains, S1 and S2 of
equal amounts is represented by S�(a ,a ,0,0,...,0) whereas a
crystal composed of the two domains in unequal amounts
�necessarily nonconnected� is represented by S
�(a ,b ,0,0,...,0) where a�b . The symmetry L of a multido-
main structure consists of all operators which leave S invari-
ant, i.e., all g for which D(g)S�S. In the examples above,
the symmetry of S�(a ,a ,0,0,...,0) could include operators

that interchange domains S1 and S2 whereas the symmetry of
the nonconnected multidomain set S�(a ,b ,0,0,...,0) would
not.

The above procedure is also applicable in the reverse
direction. This is the basis of our algorithmic approach. A
more detailed discussion of the computer implementation
will be given elsewhere. Here we want to emphasize the
results which will be of interest for mesoscopic symmetries
and tensor properties. Given a group symmetry L, the most
general form of S which satisfies the matrix equation
D(g)S�S for every g in L gives us the most general multi-
domain structure with that symmetry. This procedure reduces
to solving a set of simultaneous equations by computer, a
matrix equation resulting for each element g in L. The sym-
metry L of every multidomain structure corresponds to
�maps onto� one of the subgroups of P. Since P is finite, it
has a finite number of subgroups. If we consider every pos-
sible symmetry that might be allowed by a multidomain
structure �corresponding to all subgroups of the permutation
group P�, and obtain the multidomain structure for each sym-
metry, we can obtain all possible multidomain structures. We
construct by computer all subgroups of P by requiring ele-
ment multiplication and group closure. We start with groups
of order two, check for equivalences, then go to groups of
order three, etc., on up to the order of the group P. We then
need only consider each of these subgroups, one at a time,
and obtain the general domain set structure S for each one.

The process of starting from symmetries Li and obtain-
ing the domain configuration needs some clarification. First
there are subgroups of the permutation group P, defining the
symmetries Li , which generate the same multidomain struc-
ture as a higher symmetry group L. We are only interested in
the complete symmetry of a structure, so in the results pre-
sented here we list only the maximal symmetry group for a
given multidomain structure. Second, a multidomain struc-
ture may be equivalent to another in that it is just a rotation
of the latter by a lost parent-group element. We can system-
atically check for equivalence for each domain structure. We
list only one representative in an equivalence class. Third,
suppose the symmetry L determines a nonconnected vector
S�(a ,a ,b ,c ,d ,e) as a general multidomain structure of
symmetry L. It is possible that the vector S�(0,0,b ,0,d ,0)
also determines the same symmetry. This symmetry is not
obtainable by omitting b or d �i.e., the symmetry increases
when b or d is omitted� and the addition of the other domains
�corresponding to a, c, and e� does not decrease the symme-
try. We note that S�(0,0,b ,0,d ,0) is then a minimal domain
set for the symmetry L while S�(a ,a ,b ,c ,d ,e) is not mini-
mal. In the listing of our tables we only include the minimal
domain set that determines the maximal symmetry group of
the domain structure. Additional nonconnected sets which
yield the same symmetry will not be listed. This allows us to
present a more compact listing in the tables. In our example
the vector S�(0,0,b ,0,d ,0) would yield a domain set which
would be listed in our tables with symmetry L, because it is
a minimal multidomain set. However, the vector S
�(a ,a ,b ,c ,d ,e) and its symmetry would not be listed be-
cause it yields the same symmetry, even though it is a non-
connected domain set of symmetry L. �See the discussion of
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a specific example in Sec. III.� Similarly, suppose a con-
nected set S�(0,0,a ,a ,0,0) with symmetry L is listed in our
tables. If the addition of domains 2 and 6, corresponding to
the vector S�(0,b ,a ,a ,0,b), does not decrease the symme-
try, this nonconnected set is not listed because it is not a
minimal set yielding the symmetry L. �See the specific ex-
ample in Sec. III.�

Thus in the listing of our results we will list: �1� the
maximal symmetry for a multidomain structure; �2� only one
representative for each equivalence class; and �3� only the
minimal domain set determining the symmetry. We do pro-
vide the most general domain structure for each symmetry.
This allows one to infer domain structures from the minimal
form up to the most general form for each symmetry of an
equivalence class. We check by computer each disjoint orbit
to obtain the minimal domain configuration.

III. †110‡ DIPOLE ORDERING IN PEROVSKITE BASED
FERROELECTRIC SYSTEMS

As an example of our procedure, consider the case where
the dipole moment orders at the transition toward the cube
edges 
110� e.g., KNbO3 . This ferroelectric distortion arises
from the �4

� representation and changes the symmetry from
that of the parent Pm 3̄m to that of the microscopic ortho-
rhombic crystal structure Amm2. There are 12 possible do-
main states, each being symmetrically related to the �110�
domain. Those 12 domain states are the following: 1(a ,a ,0),
2(a ,-a ,0), 3(-a ,a ,0), 4(-a ,-a ,0), 5(a ,0,a), 6(a ,0,-a),
7(-a ,0,-a), 8(-a ,0,a), 9(0,a ,a), 10(0,-a ,-a), 11(0,a ,-a),
and 12(0,-a ,a). Here we give the domain number and the
direction of the dipole moment. The twelve domain states are
represented in Fig. 2. All possible connected sets obtained by
our algorithm are shown in Table I. In column 2 of Table I
the point group symmetry of the mesoscopic average struc-
ture �the multidomain structure� is given. Under the symme-
try transformations of the point group listed in column 2 any
domain state in the set will transform into all of the listed
domain states. As mentioned earlier, a set of domains is
equivalent to another set if there exists a symmetry element
of the parent phase which simultaneously transforms the first
domain set into the second. Only one representative of each
symmetry class of domains is given in column 1. For ex-
ample, there are many domain sets of order 6. The domain
class represented by �1,4,5,7,9,10� is connected. There is also
another class, inequivalent to �1,4,5,7,9,10�, consisting of 6
domains which is connected and the representative of that

class is �2,3,6,8,11,12�. Only two domain classes of order 6
are connected. All other connected domain structures con-
taining six domains are equivalent to one of these two class
representativies. �Using our computer algorithm we can eas-
ily obtain a listing of all domain structures equivalent to a
selected one. We do not give the complete listing of equiva-
lent domains here because of space considerations.� In col-
umns 3, 4, 5 we give the directions of the order parameters
�OPs� for this structure. At the onset of the polarization �the
primary OP� there will be coupling to secondary OPs which
then become nonzero as a result of the transition. The sec-
ondary OPs of interest to us in this discussion are the com-
ponents of strain. For the phase transitions from Pm 3̄m the
strain contributions are �1

��(
xx�
yy�
zz) �volumetric
strain�, �3

��(
xx�
yy�2
zz ,�3
xx��3
yy) �deviatoric
strain�, and �5

��(
xy ,
yz ,
xz) �shear strain�. The OP values
of the symmetric domain set are the volume-fraction-
weighted average of the polarizations and strains for the
structure. Along with the primary OP of dipole moment
given in column 3, we give the direction of the secondary
strains in columns 4 and 5, which are also connected with the
mesoscopic structural symmetry.

For some domain set entries there is no dipole moment
contribution, e.g., domain set �5,7,9,10� has no mesoscopic
polarization �no entry for �4

�) but this connected set does
possess deviatoric and shear strain �entries for �3

� and �5
�).

Poling fields may be applied in a hierarchal fashion to
move down the chain of symmetries. For example, from the
domain set �1,2...11,12�, with all domains present and of
equal prominence �yielding the symmetry m 3̄m), a shear
stress of the form (a ,a ,a) induces the domain set
�1,4,5,7,9,10� �of symmetry 3̄m) and then by imposing an
electric field of the form (a ,a ,a) the domain set �1,5,9� is
obtained with symmetry 3m .

A selection of the values for the OPs �4
� , �3

� , �5
� does

not necessarily guarantee a unique symmetry. Notice that a
strain of the form �5

��(a ,a ,a) corresponds to two different
symmetries with two different domain sets,

FIG. 2. Directions of polarization of domain states with orthorhombic or-
dering along �110�.

TABLE I. All possible symmetrically distinct connected sets for ferroelec-
tric ordering along �110�. Only nonzero contributions of the order param-
eters are shown in columns 3, 4, 5.

Set Group �4
� �3

� �5
�

�1,2,...11,12� m 3̄m ¯ ¯ ¯
�1,4,5,7,9,10� 3̄xyzmx̄y ¯ ¯ (a ,a ,a)
�2,3,6,8,11,12� 3̄xyzmx̄y ¯ ¯ (a ,a ,a)
�1,5,9� 3xyzmx̄y (a ,a ,a) ¯ (a ,a ,a)
�2,8,11� 3xyz2 x̄y ¯ ¯ (a ,a ,a)
�1,2,3,4� 4z /mxmxymz ¯ (a ,0) ¯
�5,6,7,8,9,10,11,12� 4z /mxmxymz ¯ (a ,0) ¯
�5,8,10,11� 4̄zmx2xy ¯ (a ,0) ¯
�5,8,9,12� 4zmxmxy (0,0,a) (a ,0) ¯
�1,4� mx̄ymxymz ¯ (a ,0) (a ,0,0)
�1,3,6,7� myzmx2 ȳ z (0,a ,�a) (a ,�3a) (0,a ,0)
�11� myzmx2 ȳ z (0,a ,�a) (a ,�3a) (0,a ,0)
�1,3� mzmx2y (0,a ,0) (a ,0) ¯
�5,7,9,10� 2 ȳ z /mȳz ¯ (a ,0) (0,a ,a)
�5,9� mȳz (a ,a ,a) (a ,0) (0,a ,a)
�5,10� 2 ȳ z (a ,�a ,0) (a ,0) (0,a ,a)
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3̄m (1,4,5,7,9,10) and 32 �2,8,11�, respectively. The point
group symmetry 3̄m is completely specified by �5

�

�(a ,a ,a) while 32 needs the additional �1
� , �5

� distortions
to obtain this structure. These additional distortions are not
being considered in our limited discussion here, so these two
domain structures cannot be separated using stress and elec-
tric field alone. Other examples of this type are evident in
our tables.

In Table II all possible distinct symmetries of minimal
nonconnected sets for ferroelectric ordering along �110� are
given. Nonzero contributions of the order parameters are
shown in columns 3, 4, 5. The list is exhaustive as far as
allowed symmetries of minimal nonconnected sets are con-
cerned and gives a representative for each class. It is not
exhaustive in showing all nonequivalent nonconnected do-
main sets which can give the same symmetry. For example,

the nonconnected domain set �1,2,3,4�,�5,6,7,8� yields the
symmetry mxmymz . However, the non-connected domain set
�1,2,3,4�,�5,6,7,8�,�9,10,11,12� also yields the same symme-
try. Only minimal non-connected sets, representatives of
each symmetry, are listed. Also, an allowed nonconnected set
may not be shown because the symmetry �or the equivalent
symmetry� it determines can be obtained from a connected
set of domains. For example, the connected domain set �1,3�
yields the symmetry mzmx2y . The domain set
(a ,b ,a ,b ,0,0,0,0,0,0,0,0) is nonconnected but it determines
the same symmetry as that of (a ,0,a ,0,0,0,0,0,0,0,0,0), a
connected set. The nonconnected domain set
(a ,b ,a ,b ,0,0,0,0,0,0,0,0) is not listed in Table II.

In Table III we list the most general domain structure
allowed by the representative symmetry of a given class.
This allows the reader to obtain a set of domain structures
yielding the same symmetry, progressing from the minimal
domain structure to the more general. The discussion of the
two examples in the paragraph above can be developed by
considering the sets of numbers 4 and 13, respectively, of
Table III.

For a structure composed of domains 1 and 3, with equal
volume fractions, the domain set is connected and the sym-
metry is mzmx2y �see Table I�. If a shear stress, correspond-
ing to �5

�(�a ,0,0), is added, then the domains are of dif-
ferent energies, their volume fractions are no longer equal,
the domain set is not connected but consists of two compo-
nents �1� and �3� respectively, and the symmetry changes to
mz . �This domain structure is equivalent to the domain struc-
ture �9�,�11� of Table II.� There is an also an associated
change in dipole moment direction.

IV. †100‡ DIPOLE ORDERING IN PEROVSKITE BASED
FERROELECTRIC SYSTEMS

Now consider the case where the dipole moment orders
at the transition along the 
100� cubic directions, e.g.
BaTiO3 . This ferroelectric distortion also arises from the �4

�

representation and changes the symmetry of the microscopic
crystal structure from Pm 3̄m to the tetragonal P4mm struc-
ture. There are six possible domain states with each being
symmetrically related to the �100� domain. The six domain
states are represented in Fig. 3. The labeling of OP directions
are the following: 1(a ,0,0), 2(�a ,0,0), 3(0,0,a), 4(0,0,
�a), 5(0,a ,0), 6(0,�a ,0). All possible connected sets aris-
ing from this transition are given in Table IV. In Table V all
possible distinct symmetries of nonconnected sets for ferro-
electric ordering along �100� are given. Table VI lists the
most general domain structure allowed by the symmetry rep-
resenting each equivalence class for the �100� ordering.

As an example of the use of the symmetry tables for
ordering along �100� consider the case discussed by Erhart
and Cao.5,6 As can be seen from Table IV, when a poling
field is applied along �111� rather than one of the polarization
directions it leads to a three domain state containing the do-
main set �1,3,5�. If only two of these domains remain due to
additional poling then only the symmetry mm2 is possible.
This follows from the fact that domain sets �1,3� and �1,5�
are in the class corresponding to entry �3,6� in Table IV. If

TABLE II. All possible distinct symmetries of nonconnected sets for ferro-
electric ordering along �110� are given. Only nonzero contributions of the
order parameters are shown in columns 3, 4, 5.

Set Group �4
� �3

� �5
�

�1,2,3,4�,�5,6,7,8� mxmymz ¯ (a ,b) ¯
�1,4�,�5,8,10,11� 2 x̄y2xy2z ¯ (a ,0) (a ,0,0)
�1,2,3,4�,�9,10� 2x /mx ¯ (a ,b) (0,a ,0)
�1,4�,�5,8,9,12� mx̄ymxy2z (0,0,a) (a ,0) (a ,0,0)
�1,5,9�,�2,8,11� 3xyz (a ,a ,a) ¯ (a ,a ,a)
�1,2�,�9,10� 2x (a ,0,0) (a ,b) (0,a ,0)
�1,4�,�5,7� 1̄ ¯ (a ,b) (a ,b ,c)
�1,3�,�5,8� mx (0,a ,b) (a ,b) (0,a ,0)
�1,3�,�9� mx (0,a ,b) (a ,b) (0,a ,0)
�1,3�,�10� mx (0,a ,b) (a ,b) (0,a ,0)
�9�,�11� mx (0,a ,b) (a ,b) (0,a ,0)
�1�,�5� 1 (a ,b ,c) (a ,b) (a ,b ,c)
�1�,�7� 1 (a ,b ,c) (a ,b) (a ,b ,c)

TABLE III. The most general domain structure for given symmetry of �110�
ordering.

Set No. Domain set Symmetry

1 (a ,a ,a ,a ,a ,a ,a ,a ,a ,a ,a ,a) m 3̄m
2 (a ,a ,a ,a ,b ,b ,b ,b ,b ,b ,b ,b) 4x /mymzmx
3 (a ,b ,b ,a ,a ,b ,a ,b ,a ,a ,b ,b) 3̄xyzmx̄y
4 (a ,a ,a ,a ,b ,b ,b ,b ,c ,c ,c ,c) mxmymz
5 (a ,b ,b ,a ,c ,c ,c ,c ,c ,c ,c ,c) mx̄ymxymz
6 (a ,a ,a ,a ,b ,c ,c ,b ,c ,b ,b ,c) 4̄zmx2xy
7 (a ,a ,a ,a ,b ,c ,c ,b ,b ,c ,c ,b) 4 zmxmxy
8 (a ,b ,c ,a ,a ,c ,a ,b ,a ,a ,b ,c) 3xyz2 x̄y
9 (a ,b ,b ,c ,a ,b ,c ,b ,a ,c ,b ,b) 3xyzmx̄y
10 (a ,b ,b ,a ,c ,d ,d ,c ,d ,c ,c ,d) 2 x̄y2xy2z
11 (a ,a ,a ,a ,b ,b ,b ,b ,c ,c ,d ,d) 2x /mx
12 (a ,b ,b ,a ,c ,d ,c ,d ,c ,c ,d ,d) 2 x̄y /mx̄y
13 (a ,b ,a ,b ,c ,c ,c ,c ,d ,e ,d ,e) mzmx2y
14 (a ,b ,a ,b ,b ,a ,a ,b ,c ,c ,d ,e) mxmyz2 ȳ z
15 (a ,b ,b ,a ,c ,d ,d ,c ,c ,d ,d ,c) mxymx̄y2z
16 (a ,b ,c ,d ,a ,c ,d ,b ,a ,d ,b ,c) 3xyz
17 (a ,a ,b ,b ,c ,c ,d ,d ,e ,e , f , f ) 2x
18 (a ,b ,c ,a ,d ,e , f ,g , f ,d ,g ,e) 2 x̄y
19 (a ,b ,b ,a ,c ,d ,c ,d ,e ,e , f , f ) 1̄
20 (a ,b ,a ,b ,c ,d ,d ,c ,e , f ,g ,h) mx
21 (a ,b ,b ,c ,d ,e , f ,g ,d , f ,e ,g) mx̄y
22 (a ,b ,c ,d ,e , f ,g ,h ,i , j ,k ,l) 1
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the domains are of different volume fractions then Tables V
and VI indicate the symmetry is reduced to m.

V. †111‡ DIPOLE ORDERING IN PEROVSKITE BASED
FERROELECTRIC SYSTEMS

Now consider the case where the dipole moment orders
at the transition along the �111� cube diagonals, e.g., PZN–
PT. This ferroelectric distortion also arises from the �4

� rep-
resentation and changes the symmetry of the microscopic
crystal structure from Pm 3̄m to R3m . There are eight pos-
sible homogeneous domain states with each being symmetri-
cally related to the �111� domain. The eight domain states are
represented in Fig. 4. The labeling of OP directions are:
1(a ,a ,a), 2(a ,�a ,�a), 3(�a ,a ,�a), 4(�a ,�a ,a), 5
(�a ,�a ,�a), 6(�a ,a ,a), 7(a ,�a ,a), 8(a ,a ,�a). All
possible connected sets arising from this transition are shown
in Table VII. In Table VIII all possible distinct symmetries of
nonconnected sets for ferroelectric ordering along �111� are
given. Table IX lists the most general domain structure al-
lowed by the symmetry representing the equivalence class
for the �111� ordering.

Although this case was investigated by Fousek et al.7 we
found some differences. The set �135� of Fousek et al.7 cor-
responds to our labeling of domains �1,4,5�. The domain set
�1,4,5� does not show up in our listing of connected sets in
Table VII and it is not equivalent �not just a ‘‘rotated’’ ver-
sion� to the three domain set �2,3,4� which does appear in
that table. The symmetry of domain set �1,4,5� is mx̄y accord-
ing to Fousek et al.7 They considered only equal volume
fractions to get this symmetry. However, the mx̄y symmetry
is obtained in our work by the minimal domain set �1��4�,
shown in Table VIII. Moreover, by adding the third domain
to obtain the domain set �1��4��5�, which is not a minimal

nonconnected domain set for this symmetry, we do not di-
minish the symmetry from mx̄y . None of the three volume
fractions need to be equal to obtain this symmetry. Thus our
expanded consideration to nonconnected sets provides a
broader understanding of possible three-domain configura-
tions yielding the mx̄y symmetry.

Similarly, �1235� �this domain set corresponds to our la-
beling �1,2,4,5�� yields the symmetry mx̄z according to
Fousek et al.7 The same symmetry is obtained by the non-
connected, nonminimal domain set �1,4��2��5� or the noncon-
nected minimal domain set �1,4��2�. This domain set is
equivalent to our entry �1��2,3� in Table VIII.

The domain set �1238� corresponds to our labeling
�1,2,4,7�. This domain set yields the symmetry 3xȳzmx̄z ac-
cording to Fousek et al.7 The minimal connected domain set
�1,2,4� yields this symmetry and is equivalent to our entry
�2,3,4� in Table VII. The nonminimal, nonconnected set
�1,2,4��7� does not destroy any symmetry and thus yields the
same symmetry 3xȳzmx̄z .

As we compare our results of �111� ordering with those
of Fuksa and Janovec8 we see that there are some differences
in presentation of results. We distinguish inequivalent do-
main structures in our listings where they do not. Fuksa and
Janovec list many nonconnected sets which are not minimal.
To systematically obtain non-connected sets which are not
minimal we give the most general domain structure for a
given symmetry so that the nonminimal domain sets can be
constructed. However, their results and ours generally agree.

An example of field induced domain reorientation was
recently described by Chen et al.9 The domains corre-
sponded to dipole moment ordering along �111�. Thus there

FIG. 3. Directions of polarization of domain states with tetragonal ordering
along �100�.

TABLE IV. All possible symmetrically distinct connected sets for ferroelec-
tric ordering along �100�. Only nonzero contributions of the order param-
eters are shown in columns 3, 4, 5.

Set Group �4
� �3

� �5
�

�1,2,3,4,5,6� m 3̄m ¯ ¯ ¯
�1,2,5,6� 4z /mxmxymz ¯ (a ,0) ¯
�3,4� 4z /mxmxymz ¯ (a ,0) ¯
�1,3,5� 3xyzmx̄y �a,a,a� ¯ �a,a,a�
�3� 4zmxmxy �0,0,a� �a,0� ¯
�3,6� myzmx2 ȳ z �0,a,�a� (a,�3a) �0,a,0�

TABLE V. All possible distinct symmetries of nonconnected sets for ferro-
electric ordering along �100� are given. Only nonzero contributions of the
order parameters are shown in columns 3, 4, 5.

Set Group �4
� �3

� �5
�

�1,2�,�3,4� mxmymz ¯ (a ,b) ¯
�1,2�,�5� mxmz2y (0,0,a) (a ,b) ¯
�3�,�5� mx (0,a ,b) (a ,b) (0,a ,0)
�1,5�,�3� mx̄y (a ,a ,b) (a ,0) (a ,b ,b)
�1�,�3�,�5� 1 (a ,b ,c) (a ,b) (a ,b ,c)

TABLE VI. The most general domain structure for given symmetry of �100�
ordering.

Set No. Domain set Symmetry

1 (a ,a ,a ,a ,a ,a) m 3̄m
2 (a ,a ,b ,b ,a ,a) 4z /mxmxymz
3 (a ,a ,b ,b ,c ,c) mxmymz
4 (a ,a ,b ,c ,a ,a) 4 z /mxmxymz
5 (a ,b ,a ,b ,a ,b) 3xyzmx̄y
6 (a ,a ,b ,b ,c ,d) mxmz2y
7 (a ,a ,b ,c ,c ,b) myzmx2 ȳ z
8 (a ,b ,c ,c ,d ,d) 2x
9 (a ,b ,c ,c ,b ,a) 2 x̄y
10 (a ,a ,b ,c ,d ,e) mx
11 (a ,b ,c ,d ,a ,b) mx̄y
12 (a ,b ,c ,d ,e , f ) 1
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are eight domain states, shown again in Fig. 5�a�. They di-
vided the process of polarization into four regions. In the first
region only a small field was applied �see Fig. 5�b�� and thus
only fairly low energy domain switching could take place,
namely 180° switching which removed domains 3 and 8.
Thus, with no lattice distortion the domain configuration be-
comes that shown in Fig. 5�b�. As indicated in the figure, the
electric field of direction �01̄1� simultaneously selects do-
main set �4,7� of symmetry myzmx2 ȳ z �symmetrically
equivalent to the domain set �3,8� shown in Table VII� and
domain set �1,2,5,6� �symmetrically equivalent to the domain
set �1,4,5,8� shown in Table VII�. This latter domain set con-
tains all symmetry elements of the first, thus yielding the
nonconnected domain set �1,2,5,6��4,7� of symmetry
myzmx2 ȳ z . In the second region a stronger field selects do-
main set �4,7�, resulting in two domains and the symmetry
remains myzmx2 ȳ z . In region three a rotation of the polariza-
tion takes place and the microscopic domain symmetry
changes. Our model does not apply to this process. Due to
strong-field poling the fourth region is a single domain with
dipole moment aligned along �01̄1� and of symmetry
myzmx2 ȳ z �symmetrically equivalent to the listing of domain
structure �11� in Table I�.

VI. DISCUSSION AND CONCLUSION

Domain average engineering has shown great success in
producing superior piezoelectric crystals.1–4 The effective
properties and symmetries are determined by the configura-

tion of domains at the mesoscopic level but still intrinsically
linked to the microscopic crystal symmetry. There are many
different possibilities of domain structure configurations for
each given crystal system. Fousek et al.7 composed a partial
list of domain averaging for a cubic–rhombohedral ferro-
electric system. Fuksa and Janovec8 then extended consider-
ations to nonconnected sets for this same species. Our exten-
sion adds the results of the other two ferroelectric phase
transition systems, i.e., cubic–tetragonal, cubic–
orthorhombic, and also considers the problem with the goal
of systematic implementation for other phase transitions.
Since the analysis depends only on the symmetries of the
parent and product phases the results obtained here are not
dependent on the specific perovskite structure. This structure
was used because of its practical importance in many ferro-
electric materials. Our results will apply for any structure
with the m 3̄m symmetry with a dipole moment ordering cor-
responding to the �4

� soft mode.
ISOTROPY contains the computer implementation10 of our

algorithm and obtains domain average structures for any
space group phase transition. For domain structure analysis
of the first kind �domain geometry�, the task is more in-

FIG. 4. Directions of polarization of domain states with rhombohedral or-
dering along �111�.

TABLE VII. All possible symmetrically distinct connected sets for ferro-
electric ordering along �111�. Only nonzero contributions of the order pa-
rameters are shown in columns 3, 4, 5.

Set Group �4
� �3

� �5
�

�1,2,3,4,5,6,7,8� m 3̄m ¯ ¯ ¯
�2,3,4,6,7,8� 3̄xyzmx̄y ¯ ¯ (a ,a ,a)
�1,5� 3̄xyzmx̄y ¯ ¯ (a ,a ,a)
�1,2,3,4� 4̄z3xyzmxy ¯ ¯ ¯
�1,4,6,7� 4zmymx̄y (0,0,a) (a ,0) ¯
�1,4,5,8� mxymx̄ymz ¯ (a ,0) (a ,0,0)
�2,3,4� 3xyzmx̄y (a ,a ,a) ¯ (a ,a ,a)
�1� 3xyzmx̄y (a ,a ,a) ¯ (a ,a ,a)
�1,4� mxymx̄y2z (0,0,a) (a ,0) (a ,0,0)
�3,8� mxmyz2 ȳ z (0,a ,�a) (a ,�3a) (0,a ,0)

TABLE VIII. All possible distinct symmetries of nonconnected sets for
ferroelectric ordering along �111� are given. Only nonzero contributions of
the order parameters are shown in columns 3, 4, 5.

Set Group �4
� �3

� �5
�

�1,5�,�2,3,6,7� 2 x̄y /mx̄y ¯ (a ,0) (a ,b ,b)
�1,5�,�4,8� 2 x̄y /mx̄y ¯ (a ,0) (a ,b ,b)
�1,5�,�2,7� 2 x̄y (a ,�a ,0) (a ,0) (a ,b ,b)
�1,5�,�2,6�,�3,7� 1̄ ¯ (a ,b) (a ,b ,c)
�1,6�,�3,8� mx (0,a ,b) (a ,b) (0,a ,0)
�1�,�2,3� mx̄y (a ,a ,b) (a ,0) (a ,b ,b)
�1�,�4� mx̄y (a ,a ,b) (a ,0) (a ,b ,b)
�1�,�6,7� mx̄y (a ,a ,b) (a ,0) (a ,b ,b)
�1�,�8� mx̄y (a ,a ,b) (a ,0) (a ,b ,b)
�1�,�2�,�3� 1 (a ,b ,c) (a ,b) (a ,b ,c)
�1�,�2�,�7� 1 (a ,b ,c) (a ,b) (a ,b ,c)

TABLE IX. The most general domain structure for given symmetry of �111�
ordering.

Set No. Domain set Symmetry

1 (a ,a ,a ,a ,a ,a ,a ,a) m 3̄m
2 (a ,a ,a ,a ,b ,b ,b ,b) 4̄z3xyzmxy
3 (a ,b ,b ,b ,a ,b ,b ,b) 3̄xyzmx̄y
4 (a ,b ,b ,a ,a ,b ,b ,a) mxymx̄ymz
5 (a ,b ,b ,a ,b ,a ,a ,b) 4 zmymx̄y
6 (a ,b ,b ,b ,c ,d ,d ,d) 3xyzmx̄y
7 (a ,a ,b ,b ,a ,a ,b ,b) 2x /mx
8 (a ,b ,b ,c ,a ,b ,b ,c) 2 x̄y /mx̄y
9 (a ,b ,a ,b ,b ,a ,b ,a) mxmz2y
10 (a ,a ,b ,c ,a ,a ,c ,b) mxmyz2 ȳ z
11 (a ,b ,b ,a ,c ,d ,d ,c) mxymx̄y2z
12 (a ,a ,b ,b ,c ,c ,d ,d) 2x
13 (a ,b ,c ,d ,a ,c ,b ,d) 2 x̄y
14 (a ,b ,c ,d ,a ,b ,c ,d) 1̄
15 (a ,b ,c ,d ,b ,a ,d ,c) mx
16 (a ,b ,b ,c ,d ,e ,e , f ) mx̄y
17 (a ,b ,c ,d ,e , f ,g ,h) 1
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volved and there is as yet no systematic procedure available
to provide an exhaustive list of domain pattern symmetries.

The domain average symmetry considered in this paper
is applicable to crystals having a large number of domains.
For such a case, the domains form a kind of nanocomposite
with sets of domains. Each set contains domains of equal
volume and the domains have certain predetermined symme-
tries based on the underlying parent crystal symmetry.

We point out again that our list of symmetries include all
possible ones up to equivalence. Some multidomain mesos-
copic symmetries given here may be difficult to physically
realize. If the domain size becomes relatively large, say be-
yond microns, one must consider the spatial configuration of
domains and the orientation of domain walls that join these

domains. The limited number of domains in each given finite
sample may invalidate the statistical treatment used in this
article. Such large domain cases belong to the first kind of
mesoscopic symmetry problem mentioned above, which is
not discussed here.11
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FIG. 5. Symmetry changes resulting from a �01̄1� field: �a� OP directions
for rhombohedral ordering; �b� nonconnected domain configuration for
weak poling field; and �c� connected domain set of symmetry myzmx2 ȳ z for
strong poling field.
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