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Abstract: When dealing with complex environmental datasets, it is also difficult to establish the 
strength of the input-output relation among variables. Correlation analysis may yield a preliminary 
indication, but is limited to the linear case. Mutual Information (MI) is a more powerful method which 
can establish input-output dependence regardless of the nature of their interaction. However, to avoid 
the heavy computational demand of MI, a simple method is presented based on fuzzy clustering and 
Bayes’ rule. After a preliminary conditioning phase, the data are grouped by fuzzy clustering and 
approximated with the value of the most relevant centroid. Then the prior and likelihood probabilities 
are computed by frequentist methods by counting the occurrences of each sample with respect to the 
precomputed clusters. In this way the MI can be quickly computed, to yield the relative importance of 
the informative content of each input. 

 

Keywords: Data mining; Uncertainty reduction; Environmental data processing; Fuzzy systems; 
Mutual Information; Bayesian inference.   

 

1 INTRODUCTION 
The causal relationships among environmental variables are not always apparent, so that it is often 
difficult to establish which variable is influencing which and to what extent. Ecosystem managers often 
ask which environmental variable has an impact on an observed phenomenon. In other words they are 
asking for a quantitative estimate of mutual influence among variables. 

The simplest measurement of variable interdependence is the correlation analysis. but it is limited to a 
linear relation. On the other hand, nonlinear relationships are often encountered in ecosystems and 
cannot be properly captured by the linear correlation methods. Conversely, the Mutual Information 
(MI) criterion (Fraser and Swinney, 1986) uses the joint and marginal probabilities to quantify their 
dependence, hence more insight can be gleaned into the variables interactions by using this criterion, 
even in the case of a nonlinear relationship. 

Given two random variables x and y, the Mutual Information (MI) measures their general 
interdependence better than the cross-correlation, which is limited to a linear dependence, and yields 
the reduction in uncertainty of y due to knowledge of the variable x. In the case of N discrete samples 
( )i ix ,y | i 1,...,N=  the Mutual Information criterion is defined as 

( ) ( )
( ) ( )= =

 
=   ⋅ 

∑∑
N N

xy i j
xy i j

i 1 j 1 x i y j

p x ,y1MI p x ,y ln
N p x p y

  (1) 
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where ( )xy i jp x ,y  is the joint probability density function (pdf) between variables ix  and jy , while 

( )x ip x  and ( )y jp y  are their marginal pdfs. The MI criterion of eq. (1) defines the extent to which the 
prior knowledge of x reduces the uncertainty on y. If they are independent, their MI is zero, because 

( ) ( ) ( )xy x yp x,y p x p y= ⋅  hence the ratio is equal to one and its logarithm is zero, but if there is a 
dependence its extent will be expressed by the value of MI, regardless of the linear or nonlinear 
relation between the two variables.  

The MI criterion has been largely applied in feature selection problems and often integrated into expert 
systems (Wang et al., 2004; Hoque et al., 2014; Bennasar et al., 2015) and it was also used in 
selecting inputs to neural networks in hydrological data-driven models (Battiti, 1994; Sharma, 2000; 
Bowden et al., 2005). The main difficulty in applying eq. (1) is the practical estimation of the joint pdf 

( )xy i jp x ,y . While histograms were originally used (Fraser and Swinney, 1986), more recent 
applications were based on kernel density estimation (Sharma, 2000; Bowden et al., 2005).  

In this paper we follow a different approach and compute the conditional pdf ( )xy i jp x ,y  as the 
posterior probabilities obtained by applying the Bayes’ rule after the data have been grouped by fuzzy 
clustering. The whole algorithm is illustrated in Figure 1. It is assumed a priori which variable is the 
consequent 1 Ny ×∈y  and which variables are the antecedents ( ) ×= ∈ p N

1 2 px ,x ,...,x X . After data 
regularization and denoising through spline smoothing, each antecedent variable is clustered into c 
classes, then its values are discretized by substituting each value with centroid of the cluster providing 
the maximal degree of membership. The likelihoods and marginal probabilities of the variables are 
then computed as the relative frequencies of each class. These quantities are then used to represent 
the conditional probabilities in eq. (1) required to compute the Mutual Information, where the joint 
probabilities are computed according to the Bayes’ rule.  

 
Figure 1. Algorithm flow diagram for computing the Fuzzy Mutual Information from a set of 

environmental data. 

2 MUTUAL INFORMATION ALGORITHM 

2.1 Trial dataset 
To demonstrate the algorithm, a dataset describing the water quality in the Orbetello lagoon, in the 
Tyrrhenian Sea, central Italy, is considered. This shallow lagoon, whose dynamics has been 
thoroughly described by deterministic models (Giusti and Marsili-Libelli, 2005;Giusti and Marsili-Libelli, 
2006; Giusti and Marsili-Libelli, 2009; Giusti et al., 2010), is a very fragile ecosystem, where oxygen 
depletion has caused severe dystrophic crises (Christian et al., 1996; Azzoni et al., 2001; Giordani et 
al., 2009). Though the inner workings of the nutrients/oxygen balance are fully explained by the 
previous literature, managers and stakeholders who are not familiar with mathematical models often 
ask for a simple data-driven approach to establish causal relations among environmental variables. 
The present analysis is aimed at determining which environmental variable among pH, oxido-reduction 

Data Pre-processing Estimate membership 
function for each variable

Sort the data
according to clusters

Compute the likelihoods 
and prior probabilities

Compute the Mutual 
Information

Bayes’
rule

( ) ⇒1 2 px ,x ,...,x y ( )µ µ µ→k k1 k2 kcx , ,...,

( )µ µ µ→ =k j k1 k2 kcx v | j max , ,...,
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potential (ORP), water temperature (T), and Salinity (Sal) has the highest influence on the dissolved 
oxygen (DO) concentration.  

2.2  Data pre-processing 
The environmental data may significantly differ in their accuracy and continuity. Missing data or 
outliers are often encountered. Though the algorithm to be described later is fairly robust, it is always a 
good practice to regularize the data by removing unwanted noise, replacing outliers and filling in 
missing data. Smoothing by cubic splines can provide the necessary regularization without eroding the 
information in the data. It can also replace outliers with their smoothed approximation and provide 
reasonable estimates for sparse missing data. Cubic spline approximation balances approximation vs. 
smoothing via a smoothing parameter α  whereby more emphasis can be put on the approximation 
( )1α →  rather than on smoothness ( )0α → . The composite objective function to be optimized is  

( ) ( ) ( ) ( )
α α λ

=

− + −∑ ∫
22N

2 s
s 2

k 1 αpproximαtion
smoothing

d y k
y(k ) y (k ) 1 t dt

dt((((

((((((

,  (2) 

where y represent the data and ys their smoothed approximation. The selection of α  can be guided by 
comparing the frequency spectra of the original and smoothed time-series (Marsili-Libelli, 2016). The 
original and smoothed trial datasets used in this study are shown in Figure 2. 

 
Figure 2. The trial data set used to demonstrate the FMI algorithm, before and after denoising. It 
consists of over 4000 hourly samples of the water quality parameters drawn from the monitoring 

station in the Orbetello lagoon between June and October 2003. 

2.3 Classification by fuzzy clustering 
For the subsequent computation of the likelihoods in the Bayes’ rule, it is crucial that each antecedent 
is processed independently from all the others, therefore the values of each antecedent variable are 
separately clustered into c groups using the Fuzzy C-means (FCM) algorithm (Bezdek, 1981; Bezdek 
and Pal, 1995). Bezdek’s idea was to minimize a fuzzy partition functional subject to the constraint of 
total membership 
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( ) ( ) ( )
µ

µ µ
= = =

= =− −∑ ∑ ∑
c N c

µ T2 2
ik ik ik ikk i k i,v

i 1 k 1 i 1

µin d with d s.t. 1x v x v . (3) 

In eq. (3) the Euclidean distance between the kx -th  sample and the iv -th  centroid is weighted by the 

degree of membership µik , with the fuzzy exponent )[∈ ∞m 1,  defining the fuzziness of the partition. 
The FCM algorithm provides the optimal partition ( )U  and the centroids ( )V  as 

( )

( )

N
m

ik k
k 1

ik i2 N
mc m 1 ikik

k 1
jkj 1

v
k 1,...,N1: and : v i 1,...,c
i 1,...,c

d
d

m
m

m

=

−

=
=

=
= = =

=
 
  
 

∑

∑∑
U V . (4) 

In this way each sample is replaced by the degree of membership to the clusters defined by the fuzzy 
exponent m and by the centroids ( )1 2 cv ,v ,...,v , namely 

( )k 1k 2k ckx , ,..., ,m k 1,...,Nmmm  → = . (5) 

The partition efficiency is checked through the fuzzy partition entropy Hn defined as (Bezdek, 1981) 

( )
c N

n ik ik
i 1 k 1

1H log /N
c1
N

µ µ
= =

= − ⋅
−
∑∑  . (6) 

2.4 Estimating membership function for each antecedent variable 

Once a partition of c centroids ( )1 2 cv ,v ,...,v  has been created, all the data of that particular variable 
can be classified with respect to that partition according to the membership function of eq. (4). This 
numerical approximation, however has some drawbacks, given by the fact that for data far from the 
extreme centroids, all the memberships tend to 1/c, while for intermediate data there are membership 
“humps” due to the total membership constraint in eq. (3). For these reasons, the numerical 
classification obtained by eq. (4) is approximated by analytical functions to the numerical membership 
data. The boundary (leftmost and rightmost) mfs are approximated with sigmoid Z or S curves, while 
the middle mfs are approximated by asymmetrical Gaussian curves. These analytical functions are 
fitted to the numerical mfs by least-squares, as described in Marsili-Libelli, (2016). 

 
Figure 3. An example of data pre-processing: in (a) the pH data are denoised by cubic spline 

smoothing, while (b) compares the numerical clustering (with c = 4 and m = 1.75) to their analytical 
mfs approximation, removing the humps and the inappropriate 1/c asymptotic behaviour. 

As to the number of clusters, it was observed that the relative partition entropy eq. (6) steadily 
decreased as the number of partitions increased, eventually stabilising around c = 8 for all the 
variables, as shown in Figure 4. Thus, a partition with eight clusters was adopted. 
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2.5 Variables discretization 
Enumeration of all the possible values assumed by the variables would increase the problem 
dimensionality to an unmanageable level. For this reason the previous classification is used to reduce 
the set of the possible values of the variables. Each variable is replaced by the value of the centroid 
corresponding to its maximum degree of membership. Figure 5 compares the original data with their 
discretized counterpart obtained by the classification of the data. 

 

 
Figure 4. Partition entropy eq. (6) 

decrease with the increasing number 
of clusters. 

 

Figure 5. The eight-level discretized water quality variables 
obtained with an FCM partition are compared to the original 

denoised data. 

 

2.6 Estimating the joint probabilities via Bayes’ rule 
Considering one antecedent at a time, so that the input/output implication becomes ⇒x y , according 
to Bayes’ rule (see e.g. Stone, 2013), the conditional probability of the output y subject to the 
occurrence of the antecedent x is given by 

( ) ( ) ( )
( )
⋅

=
P x | y P yP y | x

P x
. (7) 

Since we have partitioned all the variables into c classes, their probabilities can be approximated by 
their relative frequencies, computed as the number of times that the value of each variable is 
approximated by the value of the centroid with maximal membership. Thus, eq. (7) can be rewritten by 
considering the classes of occurrence rather than the value of the variables, thus 

( ) ( ) ( )
( )
⋅

= i j j
j i

i

P x | y P y
P y | x

P x
, (8) 

where the priors, the likelihoods and the marginal probabilities are estimated respectively as 

( )
( )

( )
( )

( )
( )

( )
N N N

k j k i k i
k 1 k 1 k 1

j i j iN N N

k k j k
k 1 k 1 k 1

y v x v x v
P y ; P x | y ; P x

y y v x

= = =

= = =

⊂ ⊂ ⊂

= = =

⊂

∑ ∑ ∑

∑ ∑ ∑
, (9) 
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where in each of the three summation the notation ( )
N

k j
k 1

y v
=

⊂∑  or ( )
N

k j
k 1

x v
=

⊂∑  means counting the 

occurrences of either variable ky  or kx  being approximated by the jv  centroid with maximal 
membership. With these quantities the conditional occurrences defined by eq. (8) can be put in matrix 
form as follows 

( )
( ) ( )

( ) ( )
×

 
 = ∈ 
  

1 1 1 c
c c

c 1 c c

P x | y ... P x | y
P y | x ... ... ...

P x | y ... P x | y
y

 , (10) 

from which the Fuzzy Mutual Information can be derived from eq. (1) using the marginal probabilities 
computed via the quantities defined by eqs. (9). 

( ) ( )
( ) ( )

c c
i j

i j
i 1 j 1 i j

P x | y1FMI P x | y ln
c P x P y= =

 
=   ⋅ 
∑∑  , (11) 

The contribution of each input is then normalized to the total FMI 

( )

( )
c

j 1

FMI j
fmi( j )

FMI j
=

=

∑
 . (12) 

3 DISCUSSION 
The trial dataset of Figure 2 was processed by the FMI algorithm just described and the results are 
shown in Figure 6. It can be seen that the oxido-reduction potential (ORP) has the highest influence 
on the dissolved oxygen, while the temperature (T) is the second most important parameter and 
salinity (Sal) coming last. This ranking is consistent with the chemistry of the lagoon (Christian et al., 
1996; Azzoni et al., 2001; Giusti and Marsili-Libelli, 2006; Giusti and Marsili-Libelli, 2009), whereby the 
oxidized or reduced state of the sediment has a primary influence on dissolved oxygen by modulating 
the release of nutrients. Considering the various steps in Figure 1, the data pre-processing proved to 
be a crucial stage, because data irregularities could wrongly influence the subsequent clustering. The 
number of clusters in the partition should also be carefully considered, in terms of improved 
discrimination and best data separation. 

 

 
Figure 6. Relative fuzzy mutual information for the dataset of Figure 2. 
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4 CONCLUSION 
This paper has presented an alternate method to compute the Mutual Information for datasets of 
environmental interest. One of the difficulties in the practical computation of the Mutual Information 
criterion (1) is the evaluation of the joint probabilities, for which the use of Gaussian kernel function 
has been suggested (Sharma, 2000), later extended to datasets which do not follow a Gaussian 
distribution (Li et al., 2015). In all cases the resulting algorithms are computationally demanding. 

In this paper a simpler alternative approach was proposed, by estimating the joint probabilities via the 
Bayes’ rule, preceded by data denoising and fuzzy clustering. By approximating the variables with the 
clusters, the probability of occurrence of each input variable was estimated by a frequentist approach, 
which counted the number of occurrences in each cluster. In this way the priors, the likelihoods and 
the posterior probabilities to be used in the Bayes’ rule could be easily computed. 

The method was tested on a water quality dataset drawn from the Orbetello lagoon and it produced a 
ranking among the variables which influence the dissolved oxygen (DO) level. The oxido-reduction 
potential (ORP) appears to be the first factor controlling the DO. This is in agreement with the 
observations, whereby this factor actually provides information about the oxidized or reduced state of 
the sediment and the consequent nutrient resuspension. It becomes the primary indicator of a 
dystrophic crisis, when ORP plummets to negative values in the order of minus several hundreds of 
millivolts. The second most important factor is the water temperature, almost equalled by pH which is 
an indicator of the photosynthetic oxygen production. In fact, when this process  increases, the 
resulting CO2 depletion results in a pH increase. Salinity is comparatively less important, as it 
influences the oxygen saturation level, but a lesser extent than temperature. So the ranking shown in 
Figure 6 is compatible with known mechanisms at the basis of the DO dynamics in shallow waters. 
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