Jul 13th, 9:10 AM - 9:30 AM

Climate change impacts on precipitation extremes, flows and flash floods in Mediterranean mesoscale catchments

Antoine Colmet Daage
CECI, CERFACS – CNRS TOULOUSE, Université de Montpellier – Hydrosciences Montpellier, Institut Montpelliérains de l’Eau et de l’Environnement – IRD, WSP France, colmet@cerfacs.fr

Sophie Ricci
CECI, CERFACS – CNRS TOULOUSE

Emilia Sanchez-Gomez
CECI, CERFACS – CNRS TOULOUSE

Valérie Borrell Estupina
Université de Montpellier – Hydrosciences Montpellier

Eric Servat
Institut Montpelliérains de l’Eau et de l’Environnement – IRD

Follow this and additional works at: https://scholarsarchive.byu.edu/iemssconference

Daage, Antoine Colmet; Ricci, Sophie; Sanchez-Gomez, Emilia; Estupina, Valérie Borrell; Servat, Eric; and Llovel, Cécile, "Climate change impacts on precipitation extremes, flows and flash floods in Mediterranean mesoscale catchments" (2016). International Congress on Environmental Modelling and Software. 51.
https://scholarsarchive.byu.edu/iemssconference/2016/Stream-A/51

This Event is brought to you for free and open access by the Civil and Environmental Engineering at BYU ScholarsArchive. It has been accepted for inclusion in International Congress on Environmental Modelling and Software by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
Climate change impacts on precipitation extremes, flows and flash floods in Mediterranean mesoscale catchments

Antoine Colmet Daage1,2,3,4
Sophie Ricci1
Emilia Sanchez-Gomez1
Valérie Borrell Estupina2
Eric Servat3
Cécile Llovel4
CECI,CERFACS – CNRS TOULOUSE (colmet@cerfacs.fr)
Université de Montpellier – Hydrosciences Montpellier
Institut Montpelliérains de l’Eau et de l’Environnement – IRD
WSP France

Abstract: Mediterranean meso-scale river catchments are submitted to extremes floods events linked to intense convective precipitation and local hydrologic features (karst, soil moisture, land use). The Mediterranean region is known to be one of the most affected areas by global warming, and it is likely that changes can be expected in the hydrological cycle. The aim of this study is to assess the climate change impacts on extreme precipitation events using a so-called “futurization” method, in which a transfer function is built by comparing the quantiles of distribution for both present and future climate precipitation. A number of historical flood events, previously chosen from an observational record, are “futurized” using the outputs from Regional Climate Models. This method have been developed and applied to the Lez catchment with ALADIN52 model by Harader, 2015. Strong uncertainties were found, linked to model simulation and soil moisture. In order to assess it, this analysis will be conducted in a multi-model approach, using outputs from the several RCMs running at 12 km horizontal resolution from the EURO-CORDEX project. The final objective is, once the future counterpart precipitation event is determined, these will be used as input to different hydrological models (ATHYS, TOPKAPI) on different catchments (Cevennes, Aude, Muga). The first stage of this work consists of a comparison of RCMs from EURO-CORDEX during the past period 1980-2010 and over France and Spain. Using the French and Spanish SAFRAN reanalysis as the reference, several metrics based on statistical analysis have been developed, in order to evaluate models in terms of their ability to reproduce hydrological features, but with particular emphasis on the precipitation extremes.

Keywords: Climate change, Precipitation extremes, Climate model, Hydrological model, Quantile, CORDEX.