Nitrogen cascade at the landscape scale: modelling the effect of climate, soils and agriculture on direct and indirect nitrogen emissions in contrasted rural sites

Cyril Benhamou
UMR ECOSTYS, INRA, AgroParisTech, Université Paris-Saclay, cyril.benhamou@grignon.inra.fr

Patrick Durand
UMR SAS, INRA, Agrocampus Ouest

Jordy Salmon-Monviola
UMR SAS, INRA, Agrocampus Ouest

Christophe Flechard
UMR SAS, INRA, Agrocampus Ouest

Sylvain Ferrant
UMR CESBIO, CNRS, UPS, CNES, IRD

Follow this and additional works at: https://scholarsarchive.byu.edu/iemssconference

Part of the Civil Engineering Commons, Data Storage Systems Commons, Environmental Engineering Commons, Hydraulic Engineering Commons, and the Other Civil and Environmental Engineering Commons

Benhamou, Cyril; Durand, Patrick; Salmon-Monviola, Jordy; Flechard, Christophe; Ferrant, Sylvain; Probst, Anne; Garnier, Josette; Tallec, Gaëlle; Cellier, Pierre; Casal, Laurène; Anglade, Juliette; Chambon, Camille; and Drouet, Jean-Louis, "Nitrogen cascade at the landscape scale: modelling the effect of climate, soils and agriculture on direct and indirect nitrogen emissions in contrasted rural sites" (2016). International Congress on Environmental Modelling and Software. 47.
https://scholarsarchive.byu.edu/iemssconference/2016/Stream-A/47

This Event is brought to you for free and open access by the Civil and Environmental Engineering at BYU ScholarsArchive. It has been accepted for inclusion in International Congress on Environmental Modelling and Software by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
Nitrogen cascade at the landscape scale: modelling the effect of climate, soils and agriculture on direct and indirect nitrogen emissions in contrasted rural sites

Cyril Benhamou¹, Patrick Durand², Jordy Salmon-Monviola², Christophe Flechard², Sylvain Ferrant³, Anne Probst⁴, Josette Garnier⁵, Gaëlle Tallec⁶, Pierre Cellier¹, Laurène Casal¹, Juliette Anglade⁵, Camille Chambon¹, Jean-Louis Drouet¹

¹ UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, F-78850, Thiverval-Grignon, France
² UMR SAS, INRA, Agrocampus Ouest, F-35042, Rennes, France
³ UMR CESBIO, CNRS, UPS, CNES, IRD, F-31401 Toulouse, France
⁴ UMR ECOLAB, CNRS, INPT, UPS, F-31326, Castanet-Tolosan, France
⁵ UMR METIS, CNRS, UPMC, F-75252 Paris, France
⁶ IRSTEA, UR HBAN, F-92761 Antony, France

Cyril.Benhamou@grignon.inra.fr

Abstract: In rural landscapes the nitrogen cascade, i.e. the way reactive nitrogen transforms and transfers into, within and out of the agro-ecosystems depends on farm management, landscape structure and their interactions with soil types, topography, climate and hydrology. While NO₃⁻ emissions to water bodies are frequently measured and modeled at the catchment level, this is rarely the case for NH₃ and N₂O emissions. However on one hand NH₃ emissions to the atmosphere in intensive livestock production areas may be of the same order of magnitude as NO₃⁻ emissions to water. On the other hand, indirect N₂O emissions resulting from nitrification or denitrification processes after lateral transport of NO₃⁻ and/or NH₄⁺ may be as high as direct emissions occurring in the field after N input by agriculture. As a part of the ESCAPADE project (ANR-12-AGRO-0003), N emissions to air, soil and water are assessed from modelling and data collection in three sites characterized by contrasted agriculture types, bedrock, soil and climate conditions, as well as landscape structures. Two integrated and spatially distributed models are used complementarily. The main objectives are (1) to evaluate the ability of these models to simulate observed spatio-temporal patterns of N fluxes under different environmental and agricultural conditions (2) to discuss the relative importance and main controlling factors of these different forms of N fluxes. These models will be used to assess the impact of mitigation and adaptation scenarios related to farm management, changes in landscape structure and agricultural policies on nitrogen losses towards the environment.

Keywords: nitrogen; modelling; emission; transfer; landscape; agroecosystems; scenarios