ESCAPADE to quantify nitrogen losses in territories and assess mitigation and adaptation strategies

Jean-Louis Drouet
UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, jean-louis.drouet@grignon.inra.fr

François Laurent
ARVALIS-Institut du Végétal

Patrick Durand
UMR SAS, INRA, Agrocampus Ouest

Gilles Billen
UMR METIS, CNRS, UPMC

Pierre Cellier
UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay

Follow this and additional works at: https://scholarsarchive.byu.edu/iemssconference

Part of the Civil Engineering Commons, Data Storage Systems Commons, Environmental Engineering Commons, Hydraulic Engineering Commons, and the Other Civil and Environmental Engineering Commons

Drouet, Jean-Louis; Laurent, François; Durand, Patrick; Billen, Gilles; Cellier, Pierre; Maury, Olivier; Potok, Stéphanie; Faverdin, Philippe; Fléchard, Christophe; Garnier, Josette; Guy, Armelle; Hénault, Catherine; Minolet, Catherine; Monod, Hervé; Probst, Anne; Sorin, Stéphane; Tallec, Gaëlle; Beekmann, Matthias; Ceschia, Eric; Le Gall, Cécile; Morel, Thierry; Quesnel, Gauthier; and Ramat, Eric, "ESCAPADE to quantify nitrogen losses in territories and assess mitigation and adaptation strategies" (2016).
International Congress on Environmental Modelling and Software. 46.
https://scholarsarchive.byu.edu/iemssconference/2016/Stream-A/46

This Event is brought to you for free and open access by the Civil and Environmental Engineering at BYU ScholarsArchive. It has been accepted for inclusion in International Congress on Environmental Modelling and Software by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
Presenter/Author Information
Jean-Louis Drouet, François Laurent, Patrick Durand, Gilles Billen, Pierre Cellier, Olivier Maury, Stéphanie Potok, Philippe Faverdin, Christophe Fléchard, Josette Garnier, Armelle Guy, Catherine Hénault, Catherine Mignolet, Hervé Monod, Anne Probst, Stéphane Sorin, Gaëlle Tallec, Matthias Beekmann, Eric Ceschia, Cécile Le Gall, Thierry Morel, Gauthier Quesnel, and Eric Ramat

This event is available at BYU ScholarsArchive: https://scholarsarchive.byu.edu/iemssconference/2016/Stream-A/46
ESCAPADE to quantify nitrogen losses in territories and assess mitigation and adaptation strategies

Jean-Louis Drouet¹, François Laurent², Patrick Durand³, Gilles Billen⁴, Pierre Cellier¹, Olivier Maury¹, Stéphanie Potok⁵, Philippe Faverdin⁶, Christophe Fléchard⁷, Josette Garnier⁴, Armelle Guy⁷, Catherine Hénault⁶, Catherine Mignelet⁶, Hervé Monod¹⁰, Anne Probst¹¹, Stéphane Sorin¹², Gaëlle Tallec¹³, Matthias Beekmann¹⁴, Eric Ceschia¹⁵, Cécile Le Gall¹⁶, Thierry Morel¹⁷, Gauthier Quesnel¹⁸, Eric Ramat¹⁹

¹ UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, F-78850, Thiverval-Grignon, France
² ARVALIS-Institut du Végétal, F-91720, Boigneville, France
³ UMR SAS, INRA, Agrocampus Ouest, F-35042, Rennes, France
⁴ UMR METIS, CNRS, UPMC, F-75252, Paris, France
⁵ INRA Transfert, F-75015, Paris, France
⁶ UMR PEGASE, INRA, Agrocampus Ouest, F-35590, Saint-Gilles, France
⁷ TRISKALIA, F-29206, Landerneau, France
⁸ UR USS, INRA, F-45075, Orléans, France
⁹ UR ASTER, INRA, F-88500, Mirecourt, France
¹⁰ UMR MAIAGE, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France
¹¹ UMR ECOLAB, CNRS, INPT, UPS, F-31326, Castanet-Tolosan, France
¹² TERRENA, F-49002, Angers, France
¹³ IRSTEA, UR HBAN, F-92761 Antony, France
¹⁴ UMR LISA, CNRS, UPEC, UPD, F-94010, Créteil, France
¹⁵ UMR ÇESBIO, CNRS, UPS, CNES, IRD, F-31401 Toulouse, France
¹⁶ TERRES INOVIA, F-78850, Thiverval-Grignon, France
¹⁷ CERFACS, F-31057, Toulouse, France
¹⁸ UR MIAT, INRA, F-31326 Auzeville, France
¹⁹ LISIC, ULCO, F-62228, Calais, France

Jean-Louis.Drouet@grignon.inra.fr

Abstract: Agriculture is facing to the challenge of maintaining or even increasing production while limiting the use of nitrogen inputs. The introduction of mineral nitrogen in agroecosystems feeds a cascade of processes and losses to the environment at each stage of the cascade with many environmental and societal impacts (degradation of air, water and soil quality, impacts on greenhouse gas balance, biodiversity and human health…). Since classical approaches at plot or farm scale do not make possible to control all impacts, levers must also be sought at larger scales. The overall objective of the interdisciplinary project ESCAPADE (ANR-12-AGRO-0003, 2013-2017) is to build and assess innovative solutions to reduce nitrogen losses in the environment or adapt production systems. It aims at understanding and hierarchizing the processes involved in the nitrogen cascade and nitrogen losses to the environment, as well as integrating them by taking into account spatial and temporal interactions within landscape mosaics. The project mainly focuses on rural sites from a few km² to a few tens of km² and also on larger territories from hundreds to thousands of km². Modelling approaches are associated with inventories and observations to quantify flows of different forms of reactive nitrogen (NO₃⁻, NH₃, NOₓ, N₂O…). Agro-environmental scenarios of nitrogen and landscape management in sites and larger territories are co-constructed and assessed from models. Results produced from the models, the observations and inventories, as well as from the scenarios will be used to propose innovative strategies to mitigate nitrogen losses and adapt production systems to the new agricultural contexts.

Keywords: nitrogen; modelling; scenario; management; landscape; territory