Identification of an IL-17-producing NK1.1neg iNKT cell population involved in airway neutrophilia

Paul B. Savage
paul_savage@byu.edu

Marie-Laure Michel

Alexandre Castro Keller

Christophe Paget

Masakazu Fujio

See next page for additional authors

Follow this and additional works at: https://scholarsarchive.byu.edu/facpub

Part of the Biochemistry Commons, and the Chemistry Commons

BYU ScholarsArchive Citation
Savage, Paul B.; Michel, Marie-Laure; Keller, Alexandre Castro; Paget, Christophe; Fujio, Masakazu; Trottein, Francois; Wong, Chi-Huey; Schneider, Elke; Dy, Michael; and Leite-de-Moraes, Maria C., "Identification of an IL-17-producing NK1.1neg iNKT cell population involved in airway neutrophilia" (2004). Faculty Publications. 441.
https://scholarsarchive.byu.edu/facpub/441

This Peer-Reviewed Article is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
Identification of an IL-17–producing NK1.1neg iNKT cell population involved in airway neutrophilia

Marie-Laure Michel, Alexandre Castro Keller, Christophe Paget, Masakazu Fujio, François Trottein, Paul B. Savage, Chi-Huey Wong, Elke Schneider, Michel Dy, and Maria C. Leite-de-Moraes

Invariant natural killer T (iNKT) cells are an important source of both T helper type 1 (Th1) and Th2 cytokines, through which they can exert beneficial, as well as deleterious, effects in a variety of inflammatory diseases. This functional heterogeneity raises the question of how far phenotypically distinct subpopulations are responsible for such contrasting activities. In this study, we identify a particular set of iNKT cells that lack the NK1.1 marker (NK1.1neg) and secrete high amounts of interleukin (IL)-17 and low levels of interferon (IFN)–\textgamma and IL-4. NK1.1neg iNKT cells produce IL-17 upon synthetic (\(\alpha\)-galactosylceramide \(\alpha\text{-GalCer}\)) or PBS–57, as well as natural (lipopolysaccharides or glycolipids derived from \textit{Sphingomonas wittichii} and \textit{Borrelia burgdorferi}), ligand stimulation. NK1.1neg iNKT cells are more frequent in the lung, which is consistent with a role in the natural immunity to inhaled antigens. Indeed, airway neutrophilia induced by \(\alpha\text{-GalCer}\) or lipopolysaccharide instillation was significantly reduced in iNKT-cell–deficient \(\alpha\text{x}18\text{−}/\text{−}\) mice, which produced significantly less IL-17 in their bronchoalveolar lavage fluid than wild-type controls. Furthermore, airway neutrophilia was abolished by a single treatment with neutralizing monoclonal antibody against IL-17 before \(\alpha\text{-GalCer}\) administration.Collectively, our findings reveal that NK1.1neg iNKT lymphocytes represent a new population of IL-17–producing cells that can contribute to neutrophil recruitment through preferential IL-17 secretion.

In this line of evidence, it has been reported that they provide an early host protection against \textit{Streptococcus pneumoniae} by promoting the trafficking of neutrophils into airways (16). Moreover, we have previously demonstrated that a single injection of \(\alpha\text{-GalCer}\) induces mobilization

Identify if the text contains any figures, tables, or images. If yes, describe their content and why they are important.

No figures, tables, or images are present in the text.
of myeloid progenitors (CFU cells) and neutrophils from the bone marrow to the periphery (8). Yet, it is still not clear how iNKT cells promote neutrophil recruitment to inflammatory sites and what mediators are involved.

The newly described cytokine IL-17 is a likely candidate for this task because it has already been implicated in airway neutrophilia induced by endotoxin exposure (17, 18). Furthermore, it has been documented that in IL-17 receptor–deficient mice, the host defense against lung bacterial infection is impaired (19).

Based on these data, we set out to examine whether stimulated iNKT cells were able to produce IL-17, and whether this cytokine mediated the neutrophil recruitment. We found that a small subset of iNKT cells lacking the NK1.1 marker generated high amounts of IL-17, together with low IL-4 and IFN-γ levels, in response to several iNKT cell ligands, namely, α-GalCer or its analogue PBS-57, as well as glycolipids derived from S. wittichii and Borrelia burgdorferi. This NK1.1−iNKT cell subset was more frequent among lung iNKT cells, which is in accordance with a potential contribution to the airway neutrophilia elicited by intranasal (i.n.) exposure to α-GalCer, PBS-57, or LPS.

RESULTS AND DISCUSSION

α-GalCer stimulation induces IL-17 production

iNKT cells are plausible candidates for IL-17 production (20–24), considering that their biological activities overlap with most of those ascribed to this proinflammatory mediator. We tested this hypothesis using mononuclear cells (MNCs) isolated from the liver, where iNKT cells are more abundant than in other organs, and compared IL-17 production by total hepatic MNCs from wild-type C57BL/6 and iNKT cell-deficient (Jα18−/−) mice in response to the iNKT cell–specific antigen ligand α-GalCer. As shown in Fig. 1 A, IL-17 was easily detected in cell supernatants from wild-type mice and accumulated during the 72-h incubation period. In contrast, it failed to be produced by MNCs from Jα18−/− or from CD1d−/− mice (Fig. 1 A), which are both iNKT-cell deficient.

We further addressed the question of whether the capacity to induce IL-17 production was shared by more physiological ligands of iNKT cells, such as glycosphingolipids from Sphingomonas sp and diacylglycerol antigens from B. burgdorferi, which causes Lyme disease (11, 12). We found that liver cells from wild-type, but not from Jα18−/−, mice produced IL-17 in response to the galacturonide–containing S. wittichii glycosphingolipid (GaA-GSL) and, to a lesser extent, to some synthetic variants of BbGLII from B. burgdorferi (Fig. 1 C). Our results concord with previous studies identifying BbGLIIc as the best BbGLII variant for iNKT cell activation (12) and prove that ligands with more physiological relevance than α-GalCer can also induce IL-17 production.

It has been widely documented that iNKT cells produce large amounts of both IFN-γ and IL-4 in response to α-GalCer (1–4). Knowing that both cytokines are potent inhibitors of IL-17 production (22, 23), we examined how this activity was affected when endogenous IFN-γ and/or IL-4 production was abolished in genetically modified IFN-γ−/− mice and/or in the presence of neutralizing anti–IL-4 mAbs. The lack of either cytokine resulted in a clear increase of IL-17 secretion after α-GalCer activation (Fig. 1 B), which was further enhanced in the absence of both, indicating that IL-4 and IFN-γ are produced endogenously and contribute similarly to the inhibition.

The iNKT NK1.1−/− subset is the major source of IL-17 after α-GalCer stimulation

It is well established that α-GalCer acts specifically on iNKT cells (5). However, other cells could be secondarily stimulated and potentially produce IL-17 in our experimental model. To confirm the direct involvement of iNKT cells in IL-17 production, we gated the tetramer CD1d/α-GalCer+ population
from hepatic MNCs and sorted them into two subsets according to their NK1.1 expression (Fig. 2 A). Upon stimulation with α-GalCer, IL-17 was only detected in supernatants of NK1.1neg iNKT cells (Fig. 2 B), along with very low amounts of IL-4 and IFN-γ (Fig. 2, C and D). In contrast, the NK1.1pos subset produced high levels of the latter two cytokines (Fig. 2, C and D), but little IL-17 (Fig. 2 B), proving that it responded normally to α-GalCer stimulation. GaLa-GSL and BbGLIIc ligands also induced IL-17 production by sorted NK1.1neg, but not NK1.1pos, iNKT cells (Fig. 2 E). NK1.1pos iNKT cells were activated by these ligands because they produced IL-4 (Fig. 2 F). No detectable IL-17 production was observed when sorted T cells from Jα18−/− mice were stimulated with α-GalCer (Fig. 2 G). The conclusion that the NK1.1neg subset is the main source of IL-17 among iNKT cells was confirmed by intracellular cytokine staining, as shown in Fig. 2 H.

With the exception of IL-17, which is produced by NK1.1neg iNKT cells, and IL-4, IFN-γ, and IL-3, which are produced more efficiently by NK1.1pos than NK1.1neg iNKT cells, the cytokine profile generated by the two subsets in response to α-GalCer was essentially the same, as assessed by a protein array detecting 32 different cytokines (Fig. S1, available at http://www.jem.org/cgi/content/full/jem.20061551/DC1). Moreover, NK1.1neg and NK1.1pos iNKT cells were undistinguishable by the expression of major iNKT cell markers, such as CD4, CD44, CD62L, CD69, Ly49A, and Ly49C, which occurred at similar levels (Fig. S2). Furthermore, both populations shared the Vβ bias that is typical for NK1.1pos iNKT cells (Fig. 2 I).

Figure 2. NK1.1neg iNKT cells are the major iNKT subset producing IL-17. Liver MNCs from wild-type mice were stained with CD1dα-GalCer tetramers, anti-TCRβ, and NK1.1 before sorting. (A) Representative FACS profiles obtained before (left) and after (right) sorting of CD1dα-GalCer tetramers + NK1.1neg (NK1.1neg iNKT) and CD1dα-GalCer tetramers + NK1.1pos (NK1.1pos iNKT) liver iNKT cells. (B–F) Sorted NK1.1neg and NK1.1pos liver MNCs were stimulated with α-GalCer (B–D) or synthetic B. burgdorferi glycolipids (BbGL-II [IIc]) or GaLa-GSL (GSL; E and F) plus irradiated liver MNCs from Jα18−/− mice as APCs. Sorted CD4+CD62L+ T cells from Jα18−/− mice were stimulated with α-GalCer plus irradiated liver MNCs from Jα18−/− mice as APCs (G). 3 d later, IL-17 (B, E, and G), IL-4 (C and F), and IFN-γ (D) were measured in the supernatants. No cytokine was detected in the absence of α-GalCer stimulation, in the absence of APCs or when APCs alone were stimulated with α-GalCer (not depicted). Data represent the mean ± the SD of two to three individual experiments. *, P < 0.05. (H) Intracellular IL-17 staining was performed after in vitro stimulation of liver MNCs and analyzed among gated CD1dα-GalCer tetramers + NK1.1neg or CD1dα-GalCer tetramers + NK1.1pos by flow cytometry. The percentage of IL-17+ and Ig control+ cells is indicated in each graph. (I) Representative FACS profile of Vβ expression by gated NK1.1neg and NK1.1pos iNKT cells. Data (H and I) are representative of three independent experiments. nd, not detected.
Recent studies reported that TGF-β and IL-6 are required for driving the differentiation of naive CD4 T cells into Th17 cells (25), thus prompting us to verify whether NK1.1^{pos} iNKT cells become more efficient IL-17 producers in these conditions. Fig. 3 C clearly shows that this is true for naive conventional T cells, but not for NK1.1^{pos} iNKT cells, even though they retained their ability to produce both IL-4 and IFN-γ (Fig. 3, D and E), which proves responsiveness to stimulation. In addition, we tested the effect of IL-23 on NK1.1^{pos} iNKT cells, knowing that it enhances IL-17 production by conventional T cells (26). Yet, once again, this treatment did not increase IL-17 secretion by NK1.1^{pos} iNKT (Fig. 3 F), suggesting that NK1.1^{neg} and NK1.1^{pos} cells are, indeed, functionally distinct iNKT cell subsets.

Physiological relevance of NK1.1^{neg} iNKT and IL-17 in early host defense to airborne antigens

Because of their constant exposure to foreign antigens, airways and lungs depend on a competent immune response to avoid deleterious inflammatory responses caused by inefficient clearance of pathogens. Having established that iNKT cells are potent IL-17 producers, we addressed the question of their participation in airway neutrophilia resulting from exposure to α-GalCer, PBS-57, or LPS requires iNKT cells. Total (A–C) or sorted (D) NK1.1^{pos} iNKT and NK1.1^{neg} iNKT cells from lung MNCs from wild-type (A–D) and Jα¹⁸−/− (A–C) mice were stimulated in vitro with α-GalCer (A–D), PBS-57 (B), or LPS (C). 3 d later, supernatants were recovered and IL-17 was measured by ELISA. Data represent the mean ± the SEM of four individual mice. No cytokine was detected without stimulation (not depicted). *, P < 0.05. (E) Representative FACS profiles showing the higher percentage of NK1.1^{neg} iNKT cells among gated TCRβ⁺ iNKT cells from lung.
NK1.1^{neg} iNKT cells display a tissue distribution and a capacity to produce IL-17 that is consistent with their potential role in pulmonary neutrophil recruitment. The physiological relevance of our data was also supported by the observation that in iNKT cell–deficient J<sup>x<sup>Jax<sup>18<sup>−^{/−} mice, airway neutrophilia in response to LPS instillation was significantly decreased relative to wild-type controls (Fig. 5 A). Because in vivo treatment with LPS activates several cell populations besides iNKT cells, we delivered α-GalCer or PBS–57 by the same i.n. route to target iNKT cells specifically. In these conditions, neutrophilia occurred only in the lung of wild-type, but not of J<sup>x<sup>Jax<sup>18<sup>−^{/−} mice (Fig. 5 B). Furthermore, higher IL-17 levels were observed in bronchoalveolar lavage fluid (BALF; Fig. 5 C), and the neutralization of IL-17A (R&D Systems), IL-4, and IFN-γ was assayed by ELISA, as previously described (28, 29). Cytokine protein array II was purchased from Ray Biotech and used for analyzing supernatants were harvested and stored at −80°C. Determination of cytokines.

The levels of IL-17A (R&D Systems), IL-4, and IFN-γ were assayed by FLA, as previously described (28, 29). Cytokine protein array II was purchased from Ray Biotech and used for analyzing supernatants from α-GalCer–stimulated sorted NK1.1^{pos} and NK1.1^{neg} iNKT cells according to the manufacturer’s instructions.

Intracellular cytokine staining.

Liver MNCs were stimulated for 4 h with 10^{−8} M PMA (Sigma-Aldrich), 10^{−7} M monomycin, and 10 μg/ml brefeldin A. Cells were then washed and incubated with CD1d^α-GalCer tetramer–APC, anti-NK1.1, and IFN-γ– and anti-TCR<β⁺-FITC. For intracellular staining, cells were fixed with 4% PFA, washed, and permeabilized with 0.1% saponin.
with 0.5% saponin (Sigma-Aldrich), and then further incubated with anti–IL-17-PE or isotype control (BD Biosciences). The cells were washed and analyzed on a FACSCalibur (Becton Dickinson) using CellQuest software (BD Biosciences).

In vivo treatment. Mice received a single i.n. administration of 2 μg α-GalCer (Kirin Brewery Co., Ltd), 2 μg PBS-57 (Sigma-Aldrich), or 10 μg LPS (Sigma-Aldrich) 24 h before sacrifice. In some experiments, mice received 100 μg of anti–IL-17 mAb (R&D Systems) or control Ig (Sigma-Aldrich) i.p. 24 h before ligand administration. Differential cell counts were determined in BALF 24 h after ligand instillation, as previously described (30).

Statistical analysis. A nonparametric Mann-Whitney test was used to calculate significance levels for all measurements. P values <0.05 were considered statistically significant.

Online supplemental material. Fig. S1 shows cytokine profile of NK1.1+tetramer and NK1.1+ liver iNKT cells stimulated with α-GalCer for 3 d. Different cytokines were analyzed using mouse cytokine array II membranes. Fig. S2 shows that NK1.1+tetramer and NK1.1+ iNKT cells express similar levels of CD4, CD69, CD44, CD62L, Ly49A, and Ly49C markers. All antibodies used were obtained from Becton Dickinson. Fig. S3 shows the percentage of NK1.1+tetramer and NK1.1+ iNKT cells among gated CD1d/α-GalCer tetramers “TCRβ” iNKT splenocytes.

We are grateful to André Herbelin for helpful discussions and to Séverine Diem for technical assistance. We are especially indebted to Pharmaceutical Research Laboratory, Kirin Brewery Co., Ltd, for providing α-GalCer, to Sylvain Latour and Jean-Christophe Bories for kindly giving us reagents, and to Mitchell Kronenberg and P. Van Endert for providing plasmid containing CD1d and βm genes and helping with CD1d/α-GalCer-tetramer preparation. We are grateful to Corinne Garcia-Cordier and Jérôme Mégret (Necker Institut) for cell sorting.

REFERENCES

milieu supports de novo differentiation of IL-17-producing T cells. Immunity. 24:179–189.

