New approach to interactive use of energy system models for policy support

Evelina Trutnevyte
ETH Zurich, D-USYS

Phillip Bernsten
ETH Zurich, D-USYS

Follow this and additional works at: https://scholarsarchive.byu.edu/iemssconference

Part of the Civil Engineering Commons, Data Storage Systems Commons, Environmental Engineering Commons, Hydraulic Engineering Commons, and the Other Civil and Environmental Engineering Commons

https://scholarsarchive.byu.edu/iemssconference/2016/Stream-B/19

This Event is brought to you for free and open access by the Civil and Environmental Engineering at BYU ScholarsArchive. It has been accepted for inclusion in International Congress on Environmental Modelling and Software by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
New approach to interactive use of energy system models for policy support

Evelina Trutnevytea and Philip Berntsena
a ETH Zurich, Department of Environmental Systems Science (D-USYS), USYS Transdisciplinarity Lab, Zurich CH-8092, Switzerland

Abstract:
A typical approach of producing a handful of energy scenarios with energy system models is limited because these scenarios cover only patches of the vast uncertainties and complexities inherent in the energy transition. Such a handful of scenarios is inflexible to serve the needs of the variety of policy makers and stakeholders in a rapidly changing policy arena. Interactive use of energy system models has proved effective for enabling users to browse through many scenarios for insight. Existing interactive tools, such as UK DECC2050 Calculator or Swiss Energyscope, ask users to choose one or several preferred energy scenarios. However, focus on selecting several scenarios only again misses the opportunity of learning from the rest of possible scenarios. We propose a new approach to interactive use of energy system models. Bottom-up energy system model EXPANSE (EXploration of PAtterns in Near-optimal energy ScEnarios) is used to generate a large ensemble of energy scenarios (N=10'000) by combining Monte Carlo runs and Modelling-to-Generate Alternatives technique. An interactive interface is created where the users can explore this large scenario ensemble themselves. The users are first asked to give their preferences based on multiple criteria, such as technology choices, costs, risks to human health, safety, and environment, as well as on qualitative criteria, such as expert confidence about risks. The users express their preferences in terms of preferred, acceptable, indifferent, ambivalent, and unacceptable criteria values rather than preferred ones only. We present the prototype and ongoing work on such an interactive tool for the Swiss electricity sector. Social science methods are used to guarantee that the tool is useful and accessible to its intended users.