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Computing the m=1 diocotron frequency via an equilibrium calculation in
non-neutral plasmas

Ross L. Spencer
Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602

(Received 19 May 2004; accepted 12 August 2004; published online 22 October 2004)

The m=1 diocotron mode in non-neutral plasmas has long been thought of as a shifted equilibrium,
and its frequency has been approximately calculated in this way by Fine and Driscoll [Phys. Plasmas
5, 601 (1998)]. This article shows that this idea can be coupled with a standard axisymmetric
equilibrium calculation on a grid to calculate the frequency of this mode to very high precision
including both finite-length and thermal effects, provided that the Debye length is small enough. As
the Debye length begins to approach the plasma size not only does the shifted equilibrium
calculation fail to predict correctly the frequency of the mode, but the idea that the mode is a simple
shift of the original equilibrium also becomes invalid. © 2004 American Institute of Physics.
[DOI: 10.1063/1.1803840]

A conceptually straightforward way to calculate the dio-
cotron mode frequency in non-neutral plasmas that has been
investigated approximately by Fine and Driscoll,1 is to treat
the mode as a shifted equilibrium (m=1 perturbation). In this
scheme the plasma is shifted sideways in the x direction by
an amount D and then both the perturbed density
n1�r ,z�cos � and perturbed electrostatic potential
�1�r ,z�cos � are calculated. The plasma and external/
induced-charge potentials are then separated in the way
given below:

�0�r,z� = �0p�r,z� + �0e�r,z�, �1�r,z�

= �1p�r,z� + �1e�r,z� , �1�

where the subscript e indicates the “external” potential (due
both to equilibrium confining fields and induced-charge
fields) and the subscript p indicates the potential of the
plasma alone. The external components of the field are then
allowed to act on the plasma and the first-order contributions
to the electric force are integrated over the volume of the
plasma to find the net force on the shifted plasma:

�F1� = − q� �n1 � �0e + n0 � �1e�dV . �2�

In this integral only the component of the force in the
direction of the shift will survive (the x component in this
case) so the diocotron mode frequency can be computed
from the net E�B drift of the shifted plasma from

�D = −
�F1x�
NqBD

, �3�

where N is the number of particles in the plasma, q is the
charge on each particle, and B is the magnitude of the uni-
form confining magnetic field. (This equation is essentially
the same as Eq. (5) in Fine and Driscoll.1)

This conceptually simple method is not so straightfor-
ward in computational practice because it is difficult to sepa-
rate the plasma and external components of the field when
the field is computed on a grid. (Fine and Driscoll did this

analytically by means of a Green’s function technique.) It
would be better if there was a method for finding �F1x� due to
external sources that used the full field on a computational
grid, for then the m=1 diocotron frequency could be com-
puted accurately as part of a standard non-neutral plasma
equilibrium calculation.2 A method for carrying out this cal-
culation is the subject of this paper.

To find this method we simply write down the obvious
full-field extension of Eq. (2), then separate the external and
plasma parts,

�F1�� = − q� �n1 � �0 + n0 � �1�dV , �4�

or

�F1�� = − q� �n1 � �0e + n0 � �1e�dV − q� �n1 � �0p

+ n0 � �1p�dV . �5�

If the second integral were to vanish then we would have
�F1��= �F1� and the diocotron frequency could be calculated
from the full field on the grid.

That the second integral is zero is obvious on physical
grounds. It is the net self-force on the plasma after it has
been shifted and allowed to come into equilibrium, and the
plasma cannot exert a net force on itself, as pointed out by
Fine and Driscoll.1 Of course, having the integral vanish on
physical grounds and having it vanish on a computational
grid are not the same thing, but it will be seen later in this
paper that ignoring it leads to accurate results.

The computation of the diocotron mode frequency from
an equilibrium calculation on a grid proceeds as follows: (a)
First compute an axisymmetric equilibrium.2 (b) Mathemati-
cally shift the equilibrium density in the x direction and com-
pute the perturbed density n1�r ,z�cos � and perturbed poten-
tial �1�r ,z�cos � for this shifted equilibrium using a
perturbed equilibrium calculation on an r-z grid. (c) Finally,
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compute the gradients of �0 and �1 and use them in Eqs. (3)
and (4) to find the diocotron frequency. Each of these steps
will now be discussed in detail.

(a) Solve the nonlinear Poisson equation that describes a
non-neutral plasma equilibrium.2

(b) As a first approximation to the solution of the per-
turbed equilibrium problem it is possible simply to shift the
plasma in the x direction, resulting in a perturbed density
given by the formula

n1 = − Dx̂ · � n0 = − D
�n0
�r
cos � . �6�

Given this density, the m=1 Poisson equation

1
r

�

�r�r��1
�r � + �2�1

�z2
−

�1
r2
= −

qn1
�0

�7�

can then be solved. [Note that the factor cos � has been sup-
pressed for both n1 and �1 in Eq. (7).]

Numerical experiments show that this method actually
comes reasonably close to the correct answer, but because it
does not allow the perturbed plasma to relax to axial thermal
equilibrium, it is not yet correct. To obtain a more accurate
result recall that the general form for the density in equilib-
rium is2

n�r,z� = nmid�r� exp	− q���r,z� − ��r,0��/kT
 , �8�

where nmid�r� is the radial density profile in the plasma mid-
plane. In the shifted equilibrium the perturbed density, result-
ing from small changes in nmid and � is given by

n1�r,z,�� = n1mid�r�exp	− q��0�r,z� − �0�r,0��/kT


−
q	�1�r,z� − �1�r,0�


kT
n0�r,z� , �9�

which may then be used in Poisson’s equation (7). The un-
known profile n1mid�r� can be determined by noting that
when the plasma is shifted and then relaxed axially, the re-
laxation takes place along the magnetic field lines, which
preserves �ndz. So n1mid�r� can be determined by requiring
that it produce a thermally relaxed perturbed density with the
same profile of �n1dz as that of a rigid shift

� n1dz = − D� �n0
�r
dz �10�

at each radius.
With this specification of n1, Eqs. (7), (9), and (10) form

a nonlinear system of equations for �1 (through the con-
straint on n1mid) which can be solved by an iteration process
similar to that used for unshifted equilibrium problems.2

Note, however, that the difficulties which arise in the general
equilibrium problem because q� /kT appears as the argument
of the exponential function are avoided here because we are
linearizing in small �1. This makes Eq. (7) almost linear,
except for the relatively minor adjustment required on
n1mid�r�. The iteration technique used for determining
n1mid�r� is simply to solve Eqs. (9) and (10) for n1mid

* at each

step of the electrostatic relaxation and substitute it back into
Eq. (7) for the next step. It is found that underrelaxing on
this iteration is usually necessary:

n1mid
m+1 = �n1mid

* + �1 − ��n1mid
m , �11�

where m denotes iteration level and ��0.1.
(c) With the perturbed density and potential in hand the

diocotron frequency can be computed from Eqs. (3) and (4)
as follows. First calculate the x derivatives of the equilibrium
and perturbed potentials

�̇�0
�x
= cos �

��0
�r

�12�

and

��1
�x
= cos2 �

��1
�r
+ sin2 �

�1
r
. �13�

Then substitute these results into Eq. (4) to obtain

�F1x� = − q�� n0�r,z��n1�r,z���0
�r
+

��1
�r

+
�1
r ��rdrdz , �14�

where the integration in � has already been performed in the
volume integral.

Numerical experiments using a three-dimensional (3D)
drift-kinetic simulation4 show that this method works very
well (better than 1% accuracy) as long as the Debye length is
small, as shown in Fig. 1. In the simulations an axisymmetric
equilibrium was loaded into the simulation program after
which gradually, over the first few hundred time steps, the
plasma was shifted off axis by a total of about 3% of the

FIG. 1. The ratios of computed diocotron frequencies to results from a 3D
time-dependent simulation are displayed. The open circles are for the nu-
merically computed perturbed equilibria described in this paper. The crosses
are from the approximate analytic calculation of Fine and Driscoll (Ref. 1).
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conducting wall radius. (The time step � in the simulation is
restricted by a Courant condition on the plasma frequency, so
typically ���p /2.) After the shift was finished the plasma
was allowed to evolve freely and the position of the center-
of-mass was monitored. When the run was finished the
center-of-mass data were analyzed to find the instantaneous
angular frequency, which is the diocotron frequency. Ex-
amples of the time evolution of this frequency are displayed
in Fig. 2 and the simulation parameters used to produce Fig.
1 are displayed in Table I. In all cases the equilibrium pro-
files were roughly flattops with thermal edges (widths on the
order of the Debye length) in both r and z.

The relevant parameter involving the Debye length that
determines whether the diocotron frequency can be accu-
rately calculated by the shifted-equilibrium method seems to
be the 	 parameter of Peurrung and Fajans:3

	 �

D
2

RpLp
, �15�

where 
D is the Debye length, Rp is the plasma radius, and
Lp is the full plasma length. Figure 1 shows a comparison
between the perturbed equilibrium calculation, the approxi-
mate calculation of Fine and Driscoll, and results from the
3D simulation for 22 different equilibria with various radii,
lengths, and profiles. As long as 	 is below about 0.01 the
perturbed equilibrium calculation is accurate to about 1%
and the approximate method of Fine and Driscoll is accurate

to about 3% (about the level of accuracy quoted in their
paper when they checked their calculation against experi-
mentally measured frequencies). But for larger values of 	
neither calculation works well.

The reason for the inaccuracy of the shifted-equilibrium
method when 	 is not small is, as pointed out by Peurrung
and Fajans, that particles of different axial kinetic energy
have different rotation frequencies due to the way they turn
around axially in the end of the thermal plasma. They saw
significant smearing effects in end-on pictures of the plasma
shape as 	 approached unity, but this same mechanism ap-
parently affects the shifted-equilibrium calculation at much
smaller values of 	. Figure 2 shows simulation traces of the
instantaneous angular frequency of the plasma center-of-
mass for two plasmas in the data set of Fig. 1, one with 	
=0.0024 and the other with 	=0.081. Notice in the case of
the larger 	 that a rigid shift seems not to be the correct
perturbation to produce a mode initially, but that things settle
down later on. For small 	, however, an excellent mode is
obtained. Figure 3 shows the result of dividing the particles
in the simulation into four different axial energy groups and
monitoring the instantaneous x position of the center-of-mass
of each group. Notice that for small 	 each group behaves in
the same way, indicating that a simple shift produces a mode.
But for the case of larger 	 the four groups are disorganized
at first. Only later on do they synchronize, indicating that a
diocotron mode has been established.

TABLE I. The plasma parameters used in the simulations displayed in Fig. 1 are listed in order of increasing �.
The central density is n0, the temperature is T, the midplane plasma radius (half-density point) is Rp, the plasma
half length (half-density point) is Zp, the magnetic field is B, the central rotation frequency is �0, and the
simulation diocotron frequency is �D. In all cases the plasma was contained by a grounded cylinder of radius
4 cm with end rings of length 3 cm set at a confining voltage of −100 V. The density profile was nearly
flattopped with thermal edges in r and z a few Debye lengths wide.

n0��1012/m3� T (eV) Rp (cm) Lp (cm) B (T) � �0��106/s� �D��106/s�

3.00 0.10 2.00 16.7 0.01 0.000 555 2.71 0.768
1.00 0.10 2.00 23.3 0.01 0.001 19 0.905 0.251
1.00 0.10 2.00 20.6 0.01 0.001 34 0.905 0.254
3.00 0.10 2.00 6.55 0.01 0.001 41 2.71 0.931
3.00 0.10 2.00 4.50 0.01 0.002 05 2.71 1.030
0.10 0.01 2.00 12.9 0.0025 0.002 14 0.362 0.109
1.00 0.10 2.00 11.7 0.01 0.002 36 0.905 0.276
1.00 0.10 2.00 10.8 0.01 0.002 55 0.905 0.280
1.00 0.20 2.00 10.8 0.01 0.005 10 0.905 0.285
1.00 1.00 2.00 23.5 0.01 0.0118 0.905 0.305
1.00 0.40 1.62 10.8 0.01 0.0126 0.905 0.245
1.00 1.00 1.91 11.4 0.01 0.0254 0.905 0.298
1.00 1.00 1.77 12.1 0.01 0.0259 0.905 0.279
1.00 2.37 1.77 24.2 0.01 0.0306 0.905 0.270
1.00 4.33 1.77 25.3 0.01 0.0534 0.905 0.295
1.00 2.37 1.77 13.1 0.01 0.0567 0.905 0.316
1.00 6.87 1.77 26.4 0.01 0.0813 0.905 0.318
1.00 4.00 1.91 13.3 0.01 0.0874 0.905 0.377
1.00 4.33 1.77 14.2 0.01 0.0954 0.905 0.352
1.00 4.00 1.62 13.2 0.01 0.103 0.905 0.353
1.00 10.0 1.77 27.4 0.01 0.114 0.905 0.340
1.00 10.0 1.77 16.2 0.01 0.193 0.905 0.416
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Note. One of the workers suggested that the rigidity pa-
rameter (axial particle bounce frequency divided by the cen-
tral rotation frequency) might also be relevant to this study.
Unfortunately, nearly all of the simulations had the same
values for the magnetic field and the density, so rigidity and
	 increased and decreased together as the temperature was
varied. To explore this issue at least somewhat, several more
simulations were run at both small and large 	 in which
everything was kept the same except the magnetic field,
which varies the rigidity while keeping 	 constant. It was
found that for 	 below about 0.01 decreasing the rigidity by
a factor of 10 (down to values near 1, or below) caused only
small changes in the ratio of the simulated diocotron fre-
quency to that obtained from the equilibrium calculation
(about 1%, which is the level of accuracy for the cases stud-
ied here). But with 	 near 0.1, decreasing the rigidity down
to values near 1 causes a larger shift in this ratio. (In the case
with 	=0.0813 when B was changed from
0.01 to 0.00033 T the simulation frequency changed from
3.18�105 to 1.02�107/s, a ratio shift of 6%.) So the rigid-
ity seems to matter somewhat when the equilibrium predic-

tion does not work well, but is of little significance when it
does.

In conclusion, it is found that a relatively simple per-
turbed equilibrium calculation can be added to the standard
axisymmetric equilibrium calculation used by many re-
searchers in non-neutral plasma physics to compute the m
=1 diocotron mode frequency, provided that the Debye
length parameter 	=
D

2 / �RpLp� introduced by Peurrung and
Fajans is on the order of, or smaller, than 0.01. Such equi-
librium calculations are already used to help diagnose ex-
perimentally produced plasmas, and this extension provides
an additional tool for better understanding of these plasmas.

1K. S. Fine and C. F. Driscoll, Phys. Plasmas 5, 601 (1998).
2R. L. Spencer,S. N. Rasband, and R. R. Vanfleet, Phys. Fluids B 5, 4267
(1993).
3A. J. Peurrung and J. Fajans, Phys. Fluids B 5, 4295 (1993).
4G. W. Mason, Phys. Plasmas 10, 1231 (2003).

FIG. 2. Simulation results for the angular velocity of the plasma center-of-
mass are displayed. In the upper panel the Debye length is small, with 	
=0.0024, while in the lower panel it is larger, with 	=0.081. Both simula-
tions were seeded with a rigid sideways displacement, and it is clear that in
the lower panel this procedure does not give a clean mode.

FIG. 3. The x position of the center-of-mass for four different equally-
populated energy groups for two different simulations are displayed (lowest;
solid line, low; dashed, medium: dotted, high; dash-dot). When 	 is small
the four groups are synchronized for a rigid shift perturbation, and the per-
turbed equilibrium calculation accurately predicts the diocotron frequency.
When 	 is larger they are not synchronized at first, but gradually become
synchronized after the perturbed density evolves. In this case the diocotron
frequency after synchronization is not well-predicted by the rigid-shift/
perturbed equilibrium calculation (the equilibrium prediction is high by
20%).
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