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ABSTRACT 

 

EXPLORING SEIZURE SIGNAL PROCESSING AND METHODS TO CHARACTERIZE 

SEIZURE-LIKE ACTIVITY IN MOUSE BRAINS 

Benjamin Kearsley 

Department of Statistics 

Bachelor of Statistics 

 Status Epilepticus (SE) is a dangerous type of seizure that is difficult to treat and can 

have permanent or fatal consequences.  Developing methods to properly process and classify SE 

in Local Field Potential (LFP) signals are important steps towards being able to predict SE in 

clinic and save lives.  This thesis explores methods for the seizure data processing LFP data with 

the goal of gaining a deeper understanding of the effect of brain region and tissue preparation 

paradigm on power output in specific frequency ranges.  The brain regions compared are the 

neocortex and hippocampus, and the preparation paradigms are 4AP and 0 Mg2+.  This thesis 

also explores the use of statistical features in tree-based models for classifying SE-like behavior.   

A random-forest model was fit and tested on both intra-trace classification and inter-trace 

classification, with 99.58% and 64.97% accuracy, respectively, suggesting that other models may 

be better suited for this classification task.  
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CHAPTER 1 - INTRODUCTION 

A seizure is an abrupt, unregulated surge of electrical activity in the brain.  In human 

subjects, seizures pose serious risks, potentially causing brain impairment or fatality.  Of 

particular concern is Status Epilepticus (SE), a seizure type characterized by prolonged seizure 

activity.  Historically SE was defined clinically as a seizure persisting for over thirty minutes 

(Drislane).  More recently, neuroscientists have refined this definition to encompass seizures 

exhibiting five or more minutes of continuous clinical or electrographic seizure activity, or 

recurrent seizure activity without recovery between seizures (Brophy, et. al.).   SE may manifest 

as convulsive or non-convulsive events, with potential for generalization and propagation across 

brain cells, leading to more serious and permanent damage.  Standard treatment of SE involves 

administration of benzodiazepines, a common medication used to control seizures.  Nonetheless, 

during prolonged seizures, like SE events, many patients lose their sensitivity to these 

medications and the seizures become pharmacoresistant, rendering benzodiazepines an 

ineffective treatment (Goodkin, et. al.).  Thus, it is critically important to be able to diagnose and 

even predict SE in patients in order to reduce the most serious neurological damage and mitigate 

mortality rates.   

Various processes can precipitate SE, including both acute and chronic factors.  Acute 

precipitants may include head trauma, hypoxia, drug withdrawal symptoms, and infections 

affecting the central nervous system.  Additionally, chronic conditions such as pre-existing 

epilepsy, other seizure disorders, or prior brain injury and stroke can also be predisposing factors 

for future seizure occurrence (Wylie, et. al.).  While these phenotypic precursors offer valuable 

insight into seizure risk, they do not readily translate into predictive features.  Outside the realm 

of just SE, alternative methods have been investigated as indicators of seizure onset.  Certain 
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individuals undergoing seizure episodes report experiencing subjective symptoms referred to as 

auras, manifesting before and during the onset of the seizure.  Auras commonly manifest as 

hallucinations, sensory disturbances such as numbness or paralysis, among other presentations 

(Leticia, et. al.).  However, little research has examined the utility of auras as predictive features 

of SE.  While auras may be relevant at an individual level, they lack the necessary 

standardization for widespread clinical application, and cannot be relied on for seizure 

prediction.  Alternative avenues for seizure prediction have been explored, including training 

service animals to anticipate seizures in their owners and adjusting lifestyle factors such as sleep 

patterns, dietary habits, and physical activity (Dawit, et. al).  Again, while these methods may be 

beneficial in select cases, they do not represent a universally applicable strategy for seizure 

management, and the extent of their efficacy in the context of SE remains insufficiently 

investigated. 

Advancements in mathematics and data science have led to the development of 

sophisticated methods for managing vast datasets, including stochastic signals, thereby rendering 

machine learning and signal processing techniques more accessible and valuable for analyzing 

diverse forms of data, including biological data pertinent to seizures.  One common form of 

seizure-related biological data are electroencephalogram (EEG) recordings, which capture 

electrical activity within brain tissue and serve as a primary modality used by neuroscientists to 

investigate SE and other seizures.  A seminal study in 2011 demonstrated the efficacy of Support 

Vector Machines (SVMs) applied to EEG data, achieving a 97.5% sensitivity in seizure 

prediction (Park, et. al.).  More recently other deep learning architectures, such as bidirectional 

Long Short-Term Memory (LSTM) networks, have been used to predict seizures with 94.6% 

sensitivity (Singh, et. al.).  While a substantial body of literature exists describing the various 
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machine learning and signal processing methods employed for seizure classification and 

prediction, comparatively limited research has been devoted specifically to classifying SE.  A 

prevailing theme across this literature, irrespective of method, is the recognition that seizures 

follow non-random patterns that give rise to patient-specific probability distributions (Amengual, 

et. al.).  However, SE poses unique challenges for classification owing to its distinct clinical and 

EEG manifestation compared to other seizures, which are self-terminating.  Kramer, et al., 

observed that while self-terminating seizures converge toward a common dynamical mechanism 

upon termination, SE approaches this point but does not traverse it.  Furthermore, the non-

random nature of SE remains poorly understood, with little literature addressing the diurnal and 

nocturnal patterns of SE.  Despite the inherent complexities arising from the stochastic nature of 

SE signals as portrayed by EEG recordings, data-driven approaches using signal processing and 

machine learning hold promise for developing robust classification and prediction models for 

SE-like events. 

This thesis endeavors to explore the utilization of signal processing and machine learning 

methods for the visualization and comprehension of EEG-like data, termed Local Field Potential 

(LFP) data, related to SE-like events.  The structure of this thesis is organized as follows.  

Chapter 2 delves into the data acquisition process and the data’s structure.  We will review prior 

research done on seizure data processing and feature engineering.  We will discuss the significant 

spectral and statistical features that can be derived from raw LFP data.  Comparative analysis of 

these features across baseline brain activity, seizure activity, and SE-like activity will be 

undertaken.  Also, spectral analysis of seizure-like activity will be compared between the 

hippocampus and neocortex.  The research on seizure data processing in Chapter 2 provides a 

strong foundation for the exploration of methodologies for SE classification in the next chapter.  
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Chapter 3 presents findings from supervised machine learning paradigms, followed by 

discussions on unsupervised clustering techniques and changepoint detection methods.  A 

comprehensive evaluation of the merits and limitations of each approach is provided, along with 

suggestions for potential avenues of advancement in subsequent research endeavors.  Chapter 4 

synthesizes the outcome of our investigations and concludes this thesis.   
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CHAPTER 2 – SEIZURE DATA PROCESSING 1 

Integral to this chapter are two main questions: 

1. How do different preparation paradigms affect the spectral character of seizure-like 

activity in LFP recordings from mice brain slices in the hippocampus and neocortex? 

2. How do statistical features differ between baseline, Non-SE seizure-like activity, and SE-

like seizure activity? 

To answer these primary questions, we will begin by discussing prior research conducted on 

seizure data analysis and signal processing.  We will also review the use of some statistical 

feature engineering.  Next, we will review the data acquisition process, and briefly describe the 

different preparation paradigms and seizure activity classes.  We will discuss the methods used to 

answer the two main questions of this chapter.  We will present specific examples of differences 

found between preparation paradigms and differences between baseline and seizure-like activity.  

We will also examine differences found in aggregate across a larger sample.  Lastly, we will 

discuss our findings and their implications, in particular how they pertain to the research 

presented in Chapter 3. 

Prior Research on Seizure Data Processing 

 Signal processing stands as a pivotal domain in contemporary society, integral to the 

functionality of ubiquitous technologies such as cellphones, computers, and radios.  Rooted in 

electrical engineering, signal processing encompasses the modeling and analysis of data 

 
1 The content in this chapter is a selected review of research done as part of the following paper which is currently in 
the process of being published. Stubbs, I. W., Blotter, M. L., Jacob H. Norby, Holmes, M, Kearsley, B, et. al. (n.d.). 
High Quality Seizure-Like Activity from Acute Brain Slices Using a Complementary Metal-Oxide-Semiconductor 
High-Density Microelectrode Array Systems.  
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representations of physical phenomena (IEEE Signal Processing Society).  An illustrative 

example of using signal processing techniques would be the work done by Prasad and Gaitonde 

in 2022, in which they presented a model for jet noise, leveraging sophisticated signal processing 

methodologies. Despite disparate manifestations, the chaotic nature of both jet noise and LFP 

seizure data underscores the utility of decomposing these signals into constituent components for 

comprehensive analysis. 

 The Fourier transform, a cornerstone of signal processing, serves as a mathematical tool 

to dissect signals in the time domain into their constituent frequencies, revealing the power of the 

signal in frequencies up to one half of the signal’s sampling rate (also known as the Nyquist 

Frequency.)  Its widespread utilization spans various domains of science and engineering, 

facilitating the analysis and manipulation of signals in the frequency domain.  Core 

implementations of the Fourier transform are pervasive across programming languages like 

Python and MATLAB, with the Fast Fourier transform emerging as a computationally efficient 

alternative for computing Discrete Fourier Transforms across successive windows in a time 

trace.  In finance, the Fourier transform plays a crucial role in the Black-Scholes-Merton formula 

for pricing volatile options (Schmelzle).  Again, similar to jet noise and seizures, option pricing 

represents another stochastic signal that can be modeled using signal processing techniques. 

LFP signals represent ideal candidates for the application of Fourier analysis as a means 

for generating descriptive statistics for signals, as well as creating features for predictive models.  

In conventional neuroscience, there are typically seven defined frequency bands as shown in 

Table 1: 
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Table 1 – Conventional Frequency Bands 
for Seizure Analysis 
Band Frequency 
Delta 1-4 Hz 
Theta 4-8 Hz 
Alpha 8-12 Hz 
Beta 12-30 Hz 

Low Gamma 30-60 Hz 
High Gamma 60-150 Hz 

High Frequency Oscillations 150Hz 
 

Observing the power distribution in each of these frequency bands during different events 

during an LFP recording or across LFP recordings is a common and well-defined method for 

describing significant differences between signals (Wang and Mengoni).  In our research, we will 

use them as the primary features to differentiate between paradigms, regions, and events.   

Other research has been done on the capacity to use these descriptors as features in a 

predictive model.  Mehla and Singal, et. al., used the Fourier transform to decompose and 

engineer features for a Support Vector Machine (SVM) classification model, that correctly 

identified baseline and seizure activities with an accuracy of over 99%.  Using a multi-step 

algorithm with a discrete wavelet transform to reduce the noise and a Fourier transform to 

identify features, Gao, et. al., fit a Pattern Recognition Network with 92% accuracy at classifying 

seizure and baseline activity.  In both of these studies, the Fourier transform was effectively 

applied to EEG recordings, similar to our LFP recordings, and used to differentiate between 

seizure and baseline activity.  It is therefore logical to think that it might similarly be used to 

further differentiate between seizure and SE-like activity.  In summary, Fourier analysis has 

shown great promise for differentiating seizure and baseline activity, but little work has been 

done to apply Fourier analysis techniques to the differentiation of SE-like vs. non-SE-like 

activity. 
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Besides spectral analysis, statistical analysis is also a useful tool to analyze and find 

differences in stochastic signals.  In particular, the four statistical moments (mean, variance, 

skewness, kurtosis) are simple metrics that can be calculated over sliding windows across a time 

series to identify discrepancies between sections.  Alam, et. al., used empirical mode 

decomposition and the higher order statistical moments to inform a model for detecting seizures 

in EEG recordings.  This model proved faster than spectral models while retaining the same 

accuracy, suggesting that many of the differentiating factors of seizures can be captured simply 

with the statistics.  In another paper, the extreme events theory, which has roots in statistics and 

probability, was used to study the underlying mechanisms responsible for seizure in mice 

(Frolov).  Results from this analysis “evidenced a possibility for early (up to 7 s) prediction of 

epileptic seizures” (Frolov, et. al.).  Other research suggests that basic statistical moments can be 

used to create a feature set capable of characterizing basic EEG patterns, enabling seizure 

classification (Haderlein, et. al., Roy, et. al.).  These statistical methods may also be promising 

for classification, but have not been thoroughly applied to the seizure vs. SE case or baseline vs. 

SE case.   

Data Collection 

 Data for this exploration of seizure data processing was acquired in a neuroscience lab at 

Brigham Young University.  For the first question introduced in this chapter, data was acquired 

from the Parrish Lab.  In the lab researchers prepared acute brain slices from several male and 

female C57BL-6 mice using two different preparation paradigms, namely 0 Mg2+ and 4AP.2  

These brain slices were then placed on a 3Brain C-MOS Accura chip with 4096 electrodes, 

 
2 Exact details regarding mice breeding and brain slice preparation can be found in the paper cited in footnote 1.  In 
simple terms, preparation paradigm, refers to the type of convulsive media used on the sample. 
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spaced 60 micrometers apart, and perfused with pro-convulsant media such as will simulate 

seizures and SE-like events.  Seventeen three-hour LFP recordings at a sampling rate of 

10,000Hz have been recorded with the 3Brain BioCam DupleX across all 4096 array channels of 

the Multiple Electrode (MEA) device.  These raw recordings were incredibly large, with each 

raw recording containing more than 4x1011 samples across all channels and the entire time series. 

Two different sampling techniques were necessary to reduce the data load to a more feasible size.  

First, promising candidate channels were selected by research assistants in the Parrish Lab using 

the Xenon LFP Analysis Platform, reducing the 4096 array channels down to only a few handfuls 

per recording (Mahadevan, et. al).  Second, each trace was downsampled to a sampling rate of 

1,000Hz.  This rate was deemed low enough to grant computational advantages, but high enough 

to still allow for detailed analysis in the spectral domain at frequencies up to its Nyquist 

frequency (1/2 the sampling rate, in this case 500Hz).  Each one-second sample in the selected 

traces was then labeled as either baseline activity or seizure-like activity.  

For the second question, we use a body of single channel LFP recordings from MEA data 

obtained by Dr.  Ryley Parrish.  With this data, the channels had already been selected from the 

array and downsampled to 100Hz.  While this data was less fine than that used to answer the first 

question, it was deemed appropriate for the exploratory analysis conducted.  Each candidate 

trace is labeled as previously described. 

Figure 1 is included as an example of a full-length recording from a single electrode from 

the MEA device with the previously described labels.  Notably, the three distinct activity patterns 

in this example appear visually different from one another.  Baseline activity can be 

characterized in an LFP recording by a low amplitude, low voltage signal.  It is most easily 

identified at the beginning of a trace.  A non-SE-like seizure event is higher in amplitude than 
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baseline activity, but is self-terminating.3  SE-like seizure events are similar to non-SE-like 

seizure events in their high amplitude, but as described in Chapter 1, they last longer than five 

minutes, and are not self-terminating.  Because of the chaotic nature of seizure signals, these 

patterns do not always hold to a specific voltage threshold across electrodes or recordings, and 

ofttimes, the patterns that indicate an SE-like event in one electrode are not helpful comparisons 

for another. 

Figure 1 - Example Single Electrode Trace Recording From 3Brain C-MOS Accura Chip with 
Annotations Illustrating Non-SE and SE-like Seizure Events. 

 

Methods 

 To answer the first primary question of this chapter, each downsampled single channel 

trace in the sample was processed as follows.  First, each trace was transformed using the Fourier 

transformation.  Because the Fourier transformation produces output with an imaginary 

component, the absolute magnitude of the transformed value was then computed.  This gave the 

 
3 Most researchers will differentiate between types of self-terminating, non-SE-like seizure events, however, for the 
sake of this research, they have been lumped non-discriminatorily as non-SE-like seizure behavior. 
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magnitude for frequencies up to the Nyquist frequency.  We created filter masks at multiples of 

60Hz up to 480Hz to filter out frequencies that were artifacts of the machine used to record the 

LFP traces.   

 Next, for each of the bands previously mentioned, a bandpass filter was engineered and 

applied to a baseline, and seizure-like segment within each trace.  A Hanning filter was also 

applied to each respective segment to taper the transition period between phases of the event.  It 

was necessary to apply a correction to more completely capture the entire filtered signal based on 

the discrete nature of the trace.  This correction was applied on both sides of the band, and the 

corrections were summed with the main calculation for the single sided power spectral density to 

achieve the final power estimate within that band.   

 The final power estimates within each band were then standardized by length of the 

segment, and proportion of ambient power.  Ambient power was measured during a baseline 

period before a brain slice underwent any seizure like activity.  This method of standardization 

made it possible to compare estimates between recordings and traces.  The final, standardized 

power measures for each band in each segment class were then recorded along with the 

preparation paradigm and brain region of the class.  Spectrograms were created across the entire 

signal and as seen in the results section of this chapter, visually demonstrate the differences 

between segments. 

 Lastly, this data was tested in aggregate using a Tukey’s Honestly Significant Difference 

(HSD) Test to determine the statistical significance of brain region and preparation paradigm on 

average standardized power during seizure-like activity within a specified frequency band.  This 

test included main factors for brain region and preparation paradigm, as well as an interaction 

term.   
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 The second primary question in this chapter required different preprocessing.  Sliding 

averages of the derivative, mean, variance, skewness, and kurtosis of each standardized trace 

were recorded.  Anecdotally, these metrics were compared within traces as attempted features to 

differentiate baseline, non-SE-like seizure activity, and SE-like seizure activity.  This analysis 

was not intended to be systematic in its structure, but instead serve as a testing ground for 

hypotheses on the usefulness of these statistical features for further differentiation between 

seizure types.  These results will be discussed and reviewed in the following section. 
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Results 

 

Figure 2 - Boxplot Comparing Banded Power Estimates in Aggregate Across Sample of 
Recordings 

 

 Figure 2 illustrates the results of Tukey’s HSD test and encapsulates our findings on 

question one of this chapter.  Specifically, significant differences between preparation paradigm 

and brain region were found in each frequency band with the exception of the alpha and beta 
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bands.  The striking similarities in percentage of baseline power among alpha and beta rhythms 

across traces is interesting and suggests it may be important to place more emphasis on other 

frequency bands for future analysis of this type.  The 0 Mg2+ paradigm shows a higher 

percentage of baseline power in the low gamma and high gamma bands when compared to the 

4AP paradigm.  This finding is true across the neocortex and hippocampus.  Traces from 

recordings in the hippocampus using the 0 Mg2+ paradigm also show the highest power levels in 

the delta and theta bands.  Across all frequency bands, recordings from the hippocampal region 

prepared using the 4AP paradigm show the lowest percentage of baseline power.  For researchers 

interested in that specific brain region, the 4AP prep style may not lead to satisfactory results 

with high power outputs. 

Figure 2 also illustrates some similarities between the paradigms and brain regions.  

Namely, in both the Delta and Theta bands, more power is found in the 0 Mg2+ samples when 

compared with the 4AP samples.  These observations are interesting because they may aid in the 

experimental design of seizure projects by helping researchers choose a brain region and 

preparation paradigm based on what specific frequency band they are most interested in 

studying. 
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Figure 3 - Compared Traces and Metrics of a Rolling Mean Calculated Over 10 Second 
Windows 
 

 

Figure 4 - Compared Traces and Metrics of a Rolling Variance Calculated Over 10 Second 
Windows 



16 
 

 

Figure 5 - Compared Traces and Metrics of a Rolling Skewness Calculated Over 10 Second 
Windows 

 

Figure 6 - Compared Traces and Metrics of a Rolling Kurtosis Calculated Over 10 Second 
Windows 
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Figures 3-6 tackle question two of this chapter and explore the anecdotal differences 

between statistical features of baseline, non-SE-like seizure activity, and SE-like seizure activity 

in a single channel recording.  In figure 3, we see only small differences between the rolling 

mean of the three different behaviors.  The greatest difference can be seen between the baseline 

and non-SE like seizure activity behaviors.  In figure 4, we see interesting, unpredictable patterns 

appear during all three events.  Specifically, during the non-SE-like seizure activity and the SE-

like seizure activity, the rolling variance approaches very small values.  Interestingly, across the 

larger body of traces anecdotally observed, other traces showed high variance during non-SE-like 

and SE-like activity.  This seems to indicate that this statistical features may be difficult to use in 

future predictive models.  

Larger differences in metric values can be found when using skewness and kurtosis, as 

seen in figure 5 and figure 6.  Interestingly, in this recording, the non-SE-like seizure activity 

appears to be more similar to the baseline activity than to SE-like seizure activity.  This was 

unexpected behavior and perhaps is indicative of some unique characteristic of the signal that 

clearly differentiates seizure types.  While more exhaustive research must be done to systematize 

this statistical feature engineering process, these initial, exploratory calculations are informative 

as we proceed to the next chapter of the thesis. 

Conclusion 

 Chapter 2 of this thesis paints a picture that will set up Chapter 3’s dive into machine 

learning applications on this topic.  In Chapter 2, we reviewed prior uses of signal processing in 

neuroscience and explained how a statistical feature set may be useful for differentiating between 

seizure types.  We introduced the data and how it was collected, as well as explained the specific 

methodology used to analyze it.  We explained how the results of our research in this chapter can 
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be useful to researchers down the road who look to do research on seizure behavior in specific 

frequency bands.  Lastly, we explained how some statistical features may assist in the 

classification of baseline, non-SE-like seizure activity, and SE-like seizure activity. 
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CHAPTER 3 – EXPLORING MACHINE LEARNING ON LFP RECORDINGS AND 

METHODS FOR SEIZURE CLASSIFICATION 

In this chapter, we will examine the efficacy of tree-based supervised machine learning 

algorithms employing statistical features for the classification of SE-like events in LFP 

recordings. Additionally, we will review relevant literature on unsupervised changepoint 

detection and discuss its potential uses for SE classification. 

We will begin by reviewing previous attempts to utilize tree-based supervised machine 

learning algorithms for classifying seizures in LFP and EEG recordings. This will include an 

investigation into feature engineering and methods for assessing the reliability of these 

approaches, as well as an exploration of the challenges they present and potential solutions. 

Following this, we will examine several changepoint detection models, discussing their 

respective advantages and disadvantages. We will then describe the methods and tests employed 

to evaluate a Random Forest model. Finally, this chapter will conclude with a discussion of the 

results from our Random Forest model tests and outline future steps for employing machine 

learning methods. 

Prior Research on Machine Learning with LFP and EEG Recordings 

 Supervised machine learning tasks require both input features and output labels of a 

dataset, and can be divided into two primary tasks, prediction and classification.  One common 

method for classification tasks is to use tree based algorithms, such as the random forest 

algorithm.  The random forest algorithm is an ensemble method that relies on multiple simple 

decision trees (the number is specified by the researcher) to vote and reach a conclusion.  Each 

simple decision tree is straightforward to interpret and utilize, however, they can be inaccurate 
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on their own.  Combining the decision trees into a ‘forest’ increases its accuracy.  The forest is 

more accurate than the individual trees because it introduces randomness through bootstrap 

sampling (sampling with replacement) and the consideration of a random subset of features at 

each branch in the decision tree.  Based on the sample and features associated with a decision 

tree in the random forest, the tree will cast a vote as to what class an observation belongs to.  The 

random forest algorithm has many hyperparameters that researchers can tune to influence how 

many features are included in the random subset at tree branches, how many trees are trained, 

what level of impurity is required to warrant another branch, and more.  This gives researchers 

more control and influence on the algorithm and makes it flexible. 

 Previously the random forest algorithm has been used for time-series classification tasks 

and has even been used on EEG data akin to what was cited in Chapter 2 of this thesis.  In 2021, 

researchers used a random forest classifier to classify generalized and local seizures in EEG 

scalp recording data with an average accuracy of 96% and an F-measure of over 90% (Basri and 

Arif).  In this study, power in specific frequency bands were used as features for the model, using 

the Fourier Transform over mutually exclusive 10 second windows to calculate these features.  

This study also noted that to reach high accuracy levels, it was important to over-sample the 

seizure classes to reduce the class imbalance present in the dataset.  

Earlier in 2019, Wang, et. al., implemented a “random forest model combined with grid 

search optimization” to classify seizures.  In this research, Wang fed the “mean energy, standard 

deviation, and high amplitude gamma frequency” as processed by a short time Fourier transform 

into a principal component analysis to form the features for the random forest.  Compared to 

other machine learning models, Wang points to the following advantages of the random forest 

algorithm; namely that the random forest model is parallelizable and efficient, it can handle large 
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features sets, and it can perform multi-class classification.  This research produced a model with 

a 96.7% accuracy and an area under the Receiver Operating Curve of 99.0%, indicating excellent 

performance (Wang, et. al.). 

The random forest algorithm also has some disadvantages that may impact its suitability 

for this classification task.  First, because it has so many tunable parameters, it is necessary to do 

intensive tuning, which can be difficult and time-consuming.  Also, the random forest algorithm 

does not inherently incorporate time-series information as part of its feature selection process.  

For an LFP recording, it is logical to assume that data points that are temporally correlated will 

likely belong to similar classes, and this would be important to encode in the model.  It is 

important to keep these constraints in mind during any use of the random forest classifier. 

In summary, previous research into seizure classification with tree-based algorithms has 

shown how the random forest algorithm can produce very accurate results when the proper 

feature selection and sampling methods are used.  This research sets up a strong foundation for 

the research we conduct introduced later in the chapter.  Our research differs in our feature set 

selection, and in the seizure type we are classifying. 

While supervised machine learning requires labeled data, unsupervised machine learning 

is applicable when data lacks labels. This is particularly advantageous in scenarios like ours, 

where manually labeling large LFP datasets is challenging and time-consuming.  Unlike 

supervised learning, unsupervised learning is not used for classification or prediction but is 

instead employed for tasks such as clustering, anomaly detection, and changepoint detection in 

time-series data. Next, we will briefly review literature on changepoint detection methods and 

explore their potential use case in detecting transitions from baseline activity to SE-like activity. 
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Offline changepoint detection refers to analyzing a time-series to find changepoints after 

all the data has been collected.  Offline changepoint detection methods rely on a cost function 

and a search function.  Cost functions can be parametric or non-parametric, and search functions 

can be exact or approximate.  Truong, et. al., published a review of changepoint detection 

methods and various cost functions in 2020 that explains the implementations of these methods.  

Some of these methods are implemented in the Python package “ruptures.” 

 Unsupervised changepoint detection can be used for real time or online monitoring of 

EEG signals.  Using a publicly available EEG database, researchers found favorable results using 

an auto-regressive (AR) linear model to model observed data and detect changes between 

baseline and seizure activity (Gao, et. al.).  These researchers used statistical moments calculated 

across a sliding window as the features of the AR model, which fed into a randomized power 

martingale to make the decision as to whether there was a regime shift.  These unsupervised 

methods resulted in very rapid identification of changepoints and achieved precision of 96.97% 

and recall of 97.66% (Gao, et. al.). 

 Both offline and online changepoint detection have a particularly interesting use case in 

the specific task of detecting transition from baseline to SE-like activity.  Online changepoint 

detection clearly has valuable clinical applications that could save lives.  With pharmacoresistant 

seizures, such as SE, response time is critical to preventing death or permanent injury, and high-

performing online methods can significantly reduce response times.  Offline changepoint 

detection methods have a different, albeit also important use case in SE classification.  While 

standard clinical definitions exist for SE, much research is still being done on the diagnosis of SE 

and its definition in an EEG signal.  Zafar and Aljaafari conducted a review on “EEG criteria for 

diagnosing nonconvulsive status epilepticus” and concluded that, “despite advances in EEG 
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technology, the diagnostic dilemma of [SE] remains.”  A robust offline changepoint detection 

algorithm could be a powerful tool in helping to resolve this dilemma.  The combination of this 

type of algorithm and the trained eye of a professional to help with tuning it could yield new 

insights into the statistical or time-frequency components of SE-like activity in EEG recordings, 

and result in more standardized methods for diagnosing it.  This application would then enable 

easier labeling of EEG recordings and make the application of supervised machine learning 

methods a simpler task.   

Methods 

 To answer the primary questions posed in this chapter, we will use the same collection of 

100Hz downsampled EEG recordings as used to answer the second question in Chapter 2.4  Each 

single channel recording used was labeled by research assistants for testing the supervised tree 

based methods.   

 First, we will discuss the methods used to engineer features for the data and prepare it for 

tree based modeling.  A random forest model was fit with 24 time-series of training data selected 

randomly from the body of labeled time-series.  Each single channel time-series was scaled to 

have a mean of 0.  The model initially included features for the sliding mean, variance, 

skewness, and kurtosis of the scaled time-series over ten second windows.  Initial iterations of 

the model tested the use of polynomial features, and found that the squared mean, skewness, and 

kurtosis were also helpful for model performance.  The model was then used to predict the 

probability of an SE-like event at each sample point in the remaining six test time-series.  With 

those probabilities, the area under the Receiver Operating Curve (ROC) was calculated and the 

 
4 See page 12 for more details on these traces. 
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optimal threshold was chosen to maximize the distance between the true positive rate and the 

false positive rate.  This threshold was used to generate an intermediary label for each sample 

point.  A Hanning window was applied across a 10 second window of these intermediary labels 

and the mean was calculated at each sample point.  This final mean was then compared to a 

tuned threshold value to yield the final classification as SE-like behavior or non-SE-like 

behavior.  This final step allowed information about sample points that were temporally 

correlated to increase the probability that they were of the same class.  Due to performance 

constraints, grid search hyperparameter tuning was not feasible.  Accuracy, precision, and recall 

were deemed appropriate measures for assessing the performance of the random forest model. 

Results 

 Initial testing with the Random Forest model seemed promising.  When the model was 

trained on a randomly selected sample from one time series and used to classify test data from 

the same time series, the model performed with 99.58% accuracy, 98.76% precision, and 99.52% 

recall.   

 As the training set for the model was expanded to include more time-series, its 

performance worsened significantly, performing with only a 64.97% accuracy, a 71.83% 

precision, and less than a 5% recall.  This poor performance and serious digression from early 

success may be the result of a few factors.  First, seizure-like activity, in particular, SE-like 

seizure activity, in EEG data can vary significantly in character between single channel time 

series.  In chapter 2, we noted how preparation paradigm and brain region result in significantly 

different power outputs in certain frequency bands, which can have large impacts on the 

manifestation of SE-like activity.  Besides this, EEG recordings are very noisy, and all this 

variability can seriously impact a supervised machine learning model’s ability to learn the true 
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behavior.  Also, due to computational constraints, this model took longer than 12+ hours to train 

on the larger body of traces.  This made tuning the model particularly difficult.  Lastly, further 

measures could have been taken with this model to oversample the minority SE-like behavior 

class, which likely would have improved its performance.  

Future Directions 

 Moving forward there is much exciting research to be done in the task of classifying SE-

like activity.  While tree based modeling for this task underperformed, there are other supervised 

machine learning techniques that have worked well for multiclass seizure classification or other 

similar tasks.  For example, a hidden Markov model (HMM) is a statistical model used to 

describe observable events depending on internal factors that are not observable.  When 

optimized with human learning, researchers have used HMMs to detect seizure like activity with 

greater than 92% accuracy, sensitivity, and specificity across multiple datasets (Chavan, et. al.).  

HMMs do require a signal to be stationary (i.e., the probability of transition from one state to 

another is independent of time), which may be a difficult assumption to prove true with this type 

of data.  The largest advantage of an HMM is its ability to handle hidden states.  In the context of 

EEG recordings, the true phenotypical state of the brain (pre-seizure, seizure, post-seizure) is not 

directly observable but can be inferred from the EEG signal.       

Other researchers have found great success using long short-term memory (LSTM) 

neural networks as the primary engines for seizure-like activity classification.  LSTM networks 

are especially powerful because they were built for time-series data and can capture temporal 

dependencies and patterns over a prolonged period.  Khan, et. al, used a LSTM to perform binary 

and multiclass seizure-like activity classification on the EEG data, and achieved a 100% 

accuracy for the binary classification, and greater than 90% accuracy for the multiclass task.  
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This is particularly promising because the task of classifying SE-like activity must either be 

undertaken as a multiclass problem, or a series of binary classification steps.    

Lastly, more research should be conducted on offline changepoint detection methods and 

its potential for introducing a more standard definition for SE-like activity in EEG recordings. 

Conclusion 

 In Chapter 3, we reviewed the use of tree based models with time-frequency features to 

perform seizure classification tasks, and found literature suggesting excellent performance.  We 

discussed other types of machine learning and how they could prove useful for future research.  

We found that a tree based model with a statistical feature set may work well for classification 

tasks constrained to one time-series, but does not generalize to larger datasets very well.  

Potential weaknesses with the model were investigated, and potential remedies to improve the 

model and fix said weaknesses were proposed.   
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CHAPTER 4 - CONCLUSION 

 In this thesis, we thoroughly examined how LFP data can be processed to extract time-

frequency components and inform decisions on different types of seizure-like activity, such as 

SE.  We reviewed common signal processing methods, and their applications on traces from 

MEA data collected in the Parrish Lab at BYU.  Specifically, we compared the power found in 

different frequency bands during seizure-like events between different preparation paradigms 

and brain regions.  We found significant differences between the 4AP and 0 Mg2+ paradigms in 

both the neocortex and hippocampus.  Our findings suggest that researchers interested in 

studying the hippocampus should avoid the 4AP paradigm.  We also concluded that the 0 Mg2+ 

paradigm was strongly suited for obtaining high power in the low and high gamma frequency 

bands.  While further research may be necessary to confirm these findings, they are informative 

for future researchers interested in studying power levels using these preparation methods.  In 

chapter 2 we also explored statistical differences between select LFP signals displaying SE-like 

seizure activity, non-SE-like seizure activity, and baseline activity.  We concluded that the largest 

differences between SE-like activity and non-SE-like activity could be found using moving 

metrics of skewness and kurtosis.  This analysis also requires further validation to confirm its 

findings but was informative in the exploration of machine learning methods for seizure 

classification in chapter 3 of this thesis. 

 In chapter 3 we explored how tree-based machine learning methods with statistical 

features classified SE-like activity.  Prior research suggested favorable performance, and a 

random forest model was fit to single trace EEG recordings and tested in two different test 

scenarios.  While it performed well when used to predict seizure activity in the same trace that 

some of its sample data came from, it struggled with entirely new traces.  This finding confirms 
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our hypothesis that the highly variable nature of LFP data between traces is a serious challenge.  

Further testing using more advanced methods of noise reduction, standardization, and 

oversampling of the minority class is necessary to try and mitigate said challenge.  New methods 

of using unsupervised machine learning methods to learn more about SE-like activity and 

classify it were explored.  This thesis recommends a more detailed investigation of these 

unsupervised machine learning methods, including changepoint and anomaly detection methods, 

as next steps to consider in future projects.   
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