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ABSTRACT 

 

ELUCIDATING THE ROLE OF AGING IN PROTEIN MISFOLDING AND  

THE AMYLOID CASCADE IN TRANSTHYRETIN AMYLOIDOSIS 
 

Chad D. Hyer 

Department of Microbiology and Molecular Biology 

Bachelor of Science 
 

 Transthyretin Amyloidosis (ATTR) is a disease characterized by the misfolding 

and aggregation of a thyroid hormone transporter protein, transthyretin (TTR). 

Misfolding and aggregation of TTR is strongly correlated with aging and amyloidogenic 

mutations in TTR, but the pathogenesis of ATTR remains largely unknown. As a result, 

many ATTR patients remain undiagnosed and untreated until irreversible damage has 

occurred and until treatment methods become less effective. Traditional approaches to 

studying ATTR either do not approach TTR misfolding from a structural perspective or 

rely on methods that do not accurately probe changes in TTR structure under 

physiological conditions. As a result, little is known about how or why aging promotes 

TTR misfolding or the amyloid cascade. 

This study investigates the role of aging in the pathogenesis of ATTR using the 

Iodine Protein Stability Assay (IPSA) on blood serum samples from a cohort of one 

hundred individuals aged 18-85 and overcomes limitations in previous studies by 

approaching TTR misfolding from a structural perspective, on a proteomic scale, and 

under physiological conditions in human subjects. Here we report on our preliminary 

findings in twenty subjects. Our findings suggest that aging increases proteolytic activity 

by reducing the effectiveness of serine protease inhibitors (SPIs) which then encourages 

TTR cleavage and misfolding, triggering the amyloid cascade. We also identify an 

unexpected axis of instability in TTR with aging that challenges existing models of TTR 

tetramer collapse. Additionally, we examine the role of protein folding stability (PFS) on 

protein turnover rates (TR) and amyloid clearance in six individuals and propose a model 

explaining the role of aging and protein stability in amyloid deposition and clearance. 

 Our study represents to our knowledge the first proteomic census of PFS in serum 

across age cohorts, and our preliminary findings shed light on the role of aging in the 

pathogenesis of ATTR and suggest a model explaining how protein misfolding and 

aggregation is promoted by age. Our findings showcase the strengths of IPSA for 

studying PFS across the proteome, particularly in the context of aging and amyloid 

diseases. We propose that quantifying PFS could serve as a diagnostic tool for proteome 

health and disease risk, and our approach introduces a new dimension and crucial 

perspective to studying the pathogenesis and pathophysiology of disease. 
 

Keywords: transthyretin amyloidosis, aging, protein folding stability, protein misfolding, 

protein homeostasis, IPSA, turnover rate, structural proteomics, mass spectrometry 
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Introduction 

All forms of life are composed of proteins that perform most biological functions. 

Proteins are macromolecules composed of chains of amino acids that fold into complex 

structures that determine their functions. Protein folding is essential to the proper 

function of proteins and to maintaining homeostasis, and misfolding can contribute to the 

aggregation of protein amyloids and disruption of proteostasis.1 

As humans age, levels of misfolded proteins increase.2 Protein misfolding with 

age has been extensively studied and has been attributed to a variety of causes such as 

oxidative damage, chaperone dysfunction, proteolysis dysregulation, and other factors,3 

but much of protein misfolding and aggregation is still not understood.4 This increased 

propensity of misfolding with age has been implicated in the development of many 

diseases such as Alzheimer’s, Parkinson’s, type 2 diabetes, and transthyretin 

amyloidosis.1 

One such example of misfolding disease, transthyretin amyloidosis (ATTR) is 

characterized by the misfolding and aggregation of a thyroid hormone transporter protein, 

transthyretin (TTR, Uniprot Accession: P02766 | TTHY_HUMAN). Previously assumed 

to be a rare disease, diagnoses of ATTR are becoming more common due to increased 

recognition of its pathology, but diagnosis is still difficult and can be invasive, leading to 

later diagnosis, irreversible damage, and decreased treatment effectiveness.5 ATTR 

dramatically lowers quality of life and is typically fatal, and early diagnosis is essential 

for effective treatment.6 Hence, improvements in diagnostic methods and our 

understanding of ATTR are essential to treating this disease. 
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The mechanisms and pathogenesis of ATTR, however, are not well understood. 

Aging and a variety of amyloidogenic mutations have been linked to increased risk of 

developing ATTR, but much about the mechanisms of these risk factors remains 

unknown.7 Currently, there are two prevailing models for the proposed mechanism of 

ATTR pathogenesis, the kinetic instability model and the proteolytic cleavage model 

(Figure 1). An important note to make for the discussion throughout this paper is that all 

references to residue numbers will be done based on canonical Uniprot FASTA residue 

numbers. Within much ATTR literature, the first twenty amino acids are removed from 

the numbering scheme as they are cleaved after translation (Ex: Uniprot K68 → 

Literature K48). 
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Figure 1: ATTR Models. (A) Kinetic Instability Model: TTR tetramers dissociate along 

the axis of the homodimer interface (red) into dimers that can further dissociate into 

monomers that are prone to misfolding and aggregation.8 (B) Proteolytic Cleavage 

Model: TTR tetramers are cleaved at K68 (yellow) by serum proteases encouraging 

dissociation into the 69-147 fragment (blue) and 1-68 fragment (tan) that are prone to 

misfolding and aggregation.9 TTR structures were obtained from Protein Data Bank 

(PDB) entry 1BM7.10 

 

 Both models are reported in the literature and appear to be implicated and 

supported by different amyloidogenic mutations (Figure 2). For example, the kinetic 

instability model is supported by decreases in tetramer stability associated with mutations 

near the homodimer axis such as V142I.11 The proteolytic cleavage model, on the other 

hand, is supported by mutations near the K69 cleavage site such as V50M causing 

A 

B 
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increased susceptibility to proteolysis.12 Both models are plausible and have literature 

support, but it is yet to be known which model plays a greater role in the pathogenesis of 

ATTR and what role aging plays in these mechanisms. 

 

Figure 2: Amyloidogenic Mutations in ATTR. (A) V50M (orange) is located along the 

homodimer interface and putatively increases rates of tetramer dissociation. (B) V142I 

(orange) is near to the K68 cleavage site (yellow) and putatively increases TTR’s 

susceptibility to proteolysis. 

 

 Existing research on these models has struggled to provide conclusive results for 

either model within clinical settings due to various limitations in their methodologies. 

Traditionally, most studies have utilized methodologies that examine abundances of 

biomarkers rather than probing structural differences.13 While tracking biomarker 

concentrations has provided great insight into many diseases, it fails to capture the 

biophysical roots of protein-misfolding diseases. Methodologies from studies that do 

approach amyloid diseases from a structural perspective, on the other hand, have relied 

on subjecting proteins to nonnative conditions that do not accurately represent 

physiological conditions and are usually unable to probe changes in protein structure with 

A B 



5 
 

adequate throughput to understand the impacts of structural changes on a proteomic 

scale.13 

 Recent advances in the field of structural proteomics such as the Iodine Protein 

Stability Assay (IPSA), remedy flaws in existing methodologies by allowing for the 

quantification of protein folding stability (PFS) on a proteomic scale, with residue-

specific resolution, and under physiological conditions.13 Hence, applying IPSA to the 

study of ATTR can potentially elucidate the role of aging and structural differences in 

TTR misfolding and the amyloid cascade and can potentially provide physiologically 

significant insight into the pathogenesis of ATTR, allowing for the development of better, 

clinically-relevant diagnostic and treatment methods. 

 In this study, we demonstrate the use of IPSA on subset of serum samples from a 

cohort of one hundred fifty individuals aged 18-85. We investigate the role of aging in 

the pathogenesis of ATTR by quantifying and comparing the residue-specific PFS for the 

top proteins in the serum proteome, including TTR, across age cohorts. Reported are our 

preliminary findings in twenty subjects. Additionally, we examine the role of PFS on 

protein turnover rates (TR) in six individuals to elucidate the role of protein stability in 

amyloid deposition. 

 Our study represents to our knowledge the first proteomic census of PFS in serum 

across age cohorts and sheds light on the role of aging in the pathogenesis of ATTR and 

suggests a model by which protein misfolding and aggregation is promoted by age. Our 

findings showcase the strengths of IPSA for studying PFS across the proteome, 

particularly in the context of aging and amyloid diseases. We propose that quantifying 

PFS could serve as a diagnostic tool for proteome health and disease risk, and our 



6 
 

approach introduces a new dimension and crucial perspective to studying the 

pathogenesis and pathophysiology of amyloid diseases. 

 

Methods 

Sample Collection and Selection 

Blood serum samples were collected at Brigham Young University (BYU IRB# 

2022-200) from 150 subjects aged 18-85. Study participants were recruited voluntarily 

and randomly to reduce potential bias in the results. We acknowledge, however, that, due 

to constraints in resources for collection, most samples were collected from individuals of 

European descent who live or have lived near Brigham Young University. In future work, 

we intend to include more diversity in sampling.  

Using a questionnaire, we anonymously collected information on age, sex, BMI, 

family history of amyloidosis, and lifestyle factors such as alcohol consumption, tobacco 

use, and prescription drug use. From the 150 individuals sampled, we selected 10 males 

and 10 females from age groups 18-29, 30-39, 40-49, 50-59, 60+ for a total of 100 

participants. The selection was mostly random, but attention was given to history of 

prescription drug use with increased weighting towards individuals taking fewer 

prescription drugs to limit the bias of drug binding effects in our analysis of age-

dependent differences in PFS. 

Serum samples for our protein turnover (TR) comparison were kindly provided by 

Dr. Brad Naylor from previously published work.14 All serum sample protein 

concentrations were determined using a bicinchoninic acid assay (BCA) (ThermoFisher 

#23225) and were diluted to 10 mg/mL in 50 mM Tris (pH 7.4) and aliquoted into 
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volumes that had sufficient protein for use in a single experiment to avoid impacts of 

freeze/thaw cycles on protein structure. All samples were then stored at -80 ºC until used. 

Exome Sequencing and Bioinformatic Analysis 

Whole blood samples of the 100 individuals selected were sent to GENEWIZ 

from Azenta Life Sciences for whole-exome sequencing. DNA quantification was 

performed using a Qubit 2.0 Fluorometer (ThermoFisher Scientific). Twist Human Core 

Exome library preparation was then performed. DNA was fragmented using a Covaris 

S220. Fragmented DNA was cleaned up, end repaired, and adenylated at the 3’ ends. 

Illumina Y-shaped adapters were then ligated onto the DNA fragments, and the adapter-

ligated DNA fragments were amplified using limited cycle PCR and quantified using a 

Qubit 2.0 Fluorometer. Adapter-ligated DNA fragments were then hybridized with 

biotinylated baits, and hybrid DNAs were captured using streptavidin-coated beads and 

washed. 

Captured DNAs were then amplified and indexed with Illumina indexing primers. 

Post-captured DNA libraries were validated using an Agilent TapeStation and quantified 

using a Qubit 2.0 Fluorometer and Real-Time PCR (KAPA Biosystems). Next-generation 

sequencing was performed using an Illumina Nova instrument. NovaSeq Control 

software was used for image analysis and base calling. Raw sequence data was then 

converted to fastq files and de-multiplexed using Illumina bclfastq 2.17. Somatic SNVs 

and small indels were then called using Sentieon 202112.01 (TNseq algorithm), and 

generated variant call format (VCF) files were normalized using version 1.13 of the 

bcftools software package.15 Overlapping transcripts were identified for each variant and 

variant effects were predicted using Ensembl VEP 104. 
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Using the VCF files generated by GENEWIZ, we generated custom protein 

FASTAs for each subject using a modified form of SnpEffect produced by the Lloyd 

Smith Group at the University of Wisconsin as part of the Spritz software package.16 

Generated variant sequences for each protein were combined within each subject to 

create one amino acid sequence per protein and were added to the canonical Homo 

sapiens FASTA downloaded from UniprotKB (downloaded in March 2023), replacing 

entries so as to only have one sequence per protein. 

Sample Blocking and Randomization 

 To reduce the impacts of time-dependent instrument drift and imbalanced noise 

due to randomization, we block randomized serum samples from our 100 subjects 

according to methods specified by Burger, et al.17 Samples were blocked into groups of 

four subjects based on sex and age with each sample batch containing an individual aged 

18-34, 35-49, 49-64, and 65+, all of the same sex. Individuals were added to batches at 

random to remove any bias in blocking. 

Iodine Protein Stability Assay (IPSA) and Quantitative Proteomics 

Following the protocol published by Lin, et al.13 with some modifications, we 

performed IPSA on each batch of four subjects and the six turnover rate (TR) samples. 

We also performed a standard proteomics serum digest for quantitative proteomics 

analysis to calculate the relative abundances of proteins in the serum of each subject.  

For IPSA, 10 aliquots of 20 μL of serum (10 mg/mL) from each subject were 

loaded into polymerase chain reaction (PCR) strips. Each aliquot was unfolded using a 

gradient of guanidinium chloride (GdmCl in 50 mM Tris, pH 8.5) concentrations (0, 0.75, 

1.5, 2.25, 3, 3.75, 4.5, 5.25, 6, and 6.2 M). 27.6 μL of GdmCl were added to each sample 
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according to its assigned point in the gradient, and each aliquot was incubated at 37 ºC 

for 30 minutes. 2 μL of iodine (150 mM I2 in 600 mM KI) was then added to each aliquot 

to label surface-exposed amino acids, and samples were incubated at 37 ºC for 15 

minutes. The labeling reaction was then quenched using 50 μL of 150 mM imidazole, and 

samples were incubated at room temperature for 5 minutes. 

After IPSA, 100 μL of 6M GdmCl was then added to each aliquot to fully 

denature each sample.  An additional 20 μL serum (10 mg/mL) aliquot was created at this 

time for quantitative proteomics comparisons between subjects. Only the aliquot slated 

for quantitative proteomics analysis was then reduced and alkylated using 9 μL of 500 

mM tris(2-carboxyethyl)phosphine hydrochloride (TCEP) and 36 μL of 500 mM 2-

chlorocacetamide (CAA), incubated at 100 ºC for 5 minutes, and sonicated in a water 

bath for 5 minutes. 

All samples were then transferred to 30 kDa spin filters. Samples were then 

washed twice using 200 μL 25 mM ammonium bicarbonate (ABC) in 20% acetonitrile 

(ACN) with 30 minutes of centrifuging at 14,000 x g for each wash. Samples were then 

resuspended in 300 μL of ABC wash buffer and 4 μL of liquid chromatography-mass 

spectrometry (LCMS)-grade trypsin protease (1 μg/ μL) (Pierce, Cat# 90058) and were 

incubated at 37 ºC with shaking overnight for protein digestion. Digested peptides were 

then collected by spinning at 14,000 x g for 30 minutes. A second wash using 100 μL 

ABC wash buffer was performed at the same speed. The filtrate was then transferred to 

mass spec (MS) vials and dried in a SpeedVac concentrator (SAVANT SPD131DDA) 

and were then resuspended in 0.1% formic acid in 3% acetonitrile. Samples were then 

stored at -20 °C before MS acquisition. 
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LCMS/MS Acquisition 

 Each batch was submitted to the BYU Mass Spectrometry Core Facility for mass 

spectrometric (MS) acquisition. Within each batch, sample set run order was randomized, 

and run order of each of the 10 aliquots within each sample set was randomized. 

LCMS/MS acquisition was performed according to the parameters specified in the 

“Agilent 6560-LFQ Method” section of the work of Lin, et al.13 
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Protein Identification and Quantification 

Data files generated from MS analysis were analyzed to identify and quantify 

detected peptides and proteins using PEAKS 11 (Bioinformatics Solution Inc). PEAKS 

identification and quantification was performed using the settings and parameters 

specified in the “Identification and Quantification” section of the work of Lin, et al.13 

Custom protein FASTAs described earlier were used as the database for the peptide 

identification in each subject’s sample. Label free quantification (LFQ) of proteins and 

peptides was performed using the LFQ module of PEAKS and associated LFQ files were 

exported for further analysis. 

PFS Calculation 

 LFQ files from PEAKS analysis with relative abundances of detected proteins and 

peptides were analyzed using CHalf v4.2.118 to calculate the PFS (C½ values) of the 

labeled proteins within our first twenty subjects. CHalf settings included individual rep 

analysis, combined analysis, remove outlier analysis, four minimum points for 

calculation, a two standard error cutoff for outliers, label efficiency, and fitting efficiency 

with a 0-3.48 C½ range cutoff, a 0.6 r2 cutoff, and a 0.35 ratio to range confidence interval 

cutoff. Combined Label Sites files for each subject were then exported for later analysis. 

PFS-Age Analysis 

 C½ values for labeled residues within proteins were extracted from each of the 

Combined Label Sites files for each subject. Two forms of PFS analysis were performed. 

A residue-level analysis was performed by averaging C½ values for residues with 

multiple measured C½ values within each subject to produce a subject-specific protein-

residue-number C½ value. Residues with single measurements were also included in the 
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analysis. All residue-level measurements were then associated with the ages of the 

subjects. Each identified C½ value that occurred at the same residue in the same protein of 

each subject was then compared using a Spearman rank correlation test to assess if a 

monotonic correlation existed between age and PFS at each site. Any site with fewer than 

five data points in between subjects was excluded from the analysis. Data points with a p-

value less than 0.05 and a Spearman coefficient greater than 0.25 or less than -0.25 were 

considered significant and were separated for further analysis. 

 A protein-level analysis was also performed by averaging all C½ values measured 

at any residue in a protein within each subject to produce a subject-specific protein C½ 

value. All protein C½ values were then associated with the ages of the subjects. Protein 

C½ values of each subject were then compared using a Spearman rank correlation test to 

assess if a monotonic correlation existed between age and PFS within each protein. Any 

protein with fewer than five data points in between subjects was excluded from the 

analysis. Data points with a p-value less than 0.05 and a Spearman coefficient greater 

than 0.25 or less than -0.25 were considered significant and were separated for further 

analysis. 

Combined PFS-Turnover Analysis 

 C½ values for labeled residues within proteins were extracted from each of the 

Combined Label Sites files for each subject. Protein turnover rates (TR), the rates at 

which proteins are synthesized and degraded within the body, were previously calculated 

by Naylor, et al.14 Subject-specific protein C½ values were calculated by averaging all C½ 

values measured at any residue in a protein within each subject to produce a subject-

specific protein C½ value. Protein C½ values were then paired with protein TRs and 
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compared using a Spearman rank correlation test to assess if a monotonic correlation 

existed between TR and PFS. 
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Figure 3: Subject Shared C½ values and 

Age Distribution. (A) On average, labeled 

residues with quantifiable C½ values were 

shared across four subjects with 30.57% 

being shared by five subjects or more. (B) 

On average, labeled proteins with 

quantifiable C½ values were shared across 

four subjects with 26.33% being shared by 

at five subjects or more. (C) Distribution of 

the ages of subjects. 

Results 

PFS-Age Analysis 

 MS analysis of samples for our PFS-Age analysis within our subcohort of twenty 

individuals identified and quantified 3218 proteins and 9017 unique peptides. CHalf 

analysis calculated PFS in 300 proteins and calculated 1001 unique residue-specific C½ 

values with an average labeling efficiency of 65.85% and an average fitting efficiency of 

26.18%. Generally, quantifiable C½ values were not consistently shared between 

subjects, so we limited analysis to data points shared by at least five subjects (Figure 3). 

 

 

 

 

 

 

 

 

Examining the results of our Spearman correlation tests, we identified seven 

proteins significantly implicated with age (Figure 4A). We also identified twenty-one 
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labeled residues significantly implicated with age (Figure 4B). We also observed a 

general tendency towards decreased PFS with age on both a protein (Spearman=-

0.09586, p=0.0009) and residue-specific (Spearman=-0.05043, p=0.0012) level. This 

tendency was more apparent in protein level analysis than residue level analysis, but this 

was to be expected as different portions of proteins have unique C½ values and can 

experience changes in PFS independent of the whole protein.13 
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Figure 4: Volcano Plots of Impact of Age on PFS: (A) Six proteins are less stable (red) 

whereas one is more stable (blue) with age. (B) Thirteen labeled residues are less stable 

(red) whereas eight are more stable (blue) with age. 

 

 Examining the functions of proteins with significantly different PFS as well as 

proteins associated with labeled residues impacted by aging based on their Uniprot 

accessions, we identified six groupings of proteins with similar functions and compared 

how aging impacted PFS within each group (Figure 5). Proteins that compose each group 

can be found in Table 1. 
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Figure 5: Proteins Grouped by 

Function. 

 

(A) Proteins significantly impacted 

by age were grouped into six groups 

based on their function: 

amyloidogenic proteins (AP, n=3), 

extracellular matrix proteins (ECM, 

n=2), serine protease inhibitors (SPI, 

n=7), transport proteins (TP, n=4), 

complement system proteins (CS, 

n=2), and other proteins (n=2).  

 

(B) Examining the trends within each 

protein group, APP, ECM, and SPI 

tended to be less stable with age (red) 

while TP tended to be more stable 

with age (blue). CS and other did not 

appear to exhibit a specific trend. 

Proteins in groups with mixed 

response (purple) experienced both 

increases and decreases in stability of 

labeled residues across different 

domains. 

 

Stability trends of proteins within 

each group were examined within the 

context of ATTR. Future discussion 

will focus on AP, ECM, and SPI due 

to connections to ATTR pathology 

and mechanisms. We leave further 

discussion of other groups for future 

work as it is not within the scope of 

this paper. 
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AP SPI ECM TP CS Other 

P02766|TTHY P01009|A1AT Q15149|PLEC P06727|APOA4 P08603|CFAH P02765|FETUA 

P01857|IGHG1 P01011|AACT P02751|FINC P02647|APOA1 P05155|IC1 P04217|A1BG 

P0DOX5|IGG1 P19652|A1AG2  P04114|APOB   

 P19652|ITIH1  P02787|TRFE   

 P19823|ITIH2     

 Q14624|ITIH4     

 P01023|A2MG     

 

Table 1: Protein Groups Composition. Uniprot accessions of proteins that composed 

each protein group (defined in Figure 5A) as well as their stability trends. Decreased 

stability is in red, increased stability is in blue, and mixed response is in purple. Proteins 

were manually assigned to groups based on annotated functions in the Uniprot database. 

 

Transthyretin 

 Examining proteins changed with age from the AP group, transthyretin (TTR, 

Uniprot: P02766 TTHY) experienced significant decreases in stability with age on both a 

protein and residue-specific level (Figure 6). Other implicated proteins from AP, IGHG1 

and IGG1, were also significantly less stable with age. IGHG1 and IGG1, are associated 

with heavy chain amyloidosis (AH), a different amyloid disease, so further discussion 

will not include these proteins as they are out of the scope of this paper. TTR is the 

primary protein involved in ATTR, so this discussion will focus on changes in PFS 

observed in TTR. We do find it interesting to note, however, that proteins implicated in 

amyloid diseases exhibit a trend of decreased stability in the serum soluble fraction with 

age and intend to perform deeper analysis on AP implicated proteins in future work as we 

continue this study. 
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Figure 6: Impacts of Age on TTR PFS. (A) Residue H110 in TTR experiences 

significant decreases in stability with age with a Spearman coefficient of -0.766 

(p=0.00979, n=10). (B) Residue H108 in TTR also experiences a significant decrease in 

stability with age with a Spearman coefficient of -0.714 (p=0.04653, n=8). (C) H108 and 

H110 (red) lie along the monomer interface within TTR dimers suggesting that age 

encourages tetramer instability along the dimer (vertical) axis. (D, E) Residue Y134 

(pink) on the homodimer interface has no significant change in PFS with age with a 

Spearman coefficient of -0.3 (p=0.62384, n=5). Y136 (cyan), also at the homodimer 

interface, did not have enough points for a robust analysis but also had no change in 

stability with age, suggesting no change in stability along the homodimer (horizontal) 

axis. Hence, TTR dimers appear to experience decreased stability with age whereas 

homodimer stability appears to be unchanged. 
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Serine Protease Inhibitors 

Proteases have previously been implicated in the pathogenesis of ATTR.9 

Supporting these literature observations we also observe significant age-dependent 

changes in PFS of serine protease inhibitors (SPIs) in our data. Examining the impact of 

age on SPIs, we overwhelmingly observed significant decreases in PFS of various SPIs at 

both a protein and residue-specific level (Table 2). To interpret the residue-specific 

changes in PFS structurally, we used AlphaFold19, 20 and experimental protein structures 

which showed that residues with decreased stability were generally located in protease-

binding sites of SPIs, within bait regions, or were residues that interacted with bait 

regions post-protease-SPI complex formation (Figures 7 and 8). Notably, SPI inhibitory 

efficiency is determined by the ability of the bait region to insert into middle-strand 

positions, post-protease-cleavage (Figure 7C ).21 Decreases in PFS within these regions 

with age hence likely have functional significance. 
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A

B  

Figure 7: Impact of Age on PFS in A1AT. 

(A) H286 exhibits decreased PFS with age 

with a Spearman coefficient of -0.8126 

(p=0.0013, n=12). (B) In unbound A1AT, 

H286 (red) is surface exposed and far 

from the 368-392 bait region (blue) (AF-

P01009), whereas (C) binding of elastase 

(green) to A1AT leads to the tucking of 

the cleaved bait region into the domain 

surrounding H286, decreasing H286 

surface accessibility and increasing PFS.22 

Decreased PFS with age suggests 

decreased A1AT binding efficiency with 

target proteases. 
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Figure 8: Impact of Age on PFS in AACT. (A) 

Y312 exhibits decreased PFS with age with a 

Spearman coefficient of -1 (p=1.4 × 10-24, n=5). 

(B) In unbound AACT, Y312 (red) is surface 

exposed and is part of a beta sheet interacting 

with the 369-394 bait region (blue) (AF-

P01011), whereas (C) binding of a protease leads 

to the conversion of Y312 to a loop domain23 

interacting with a separate portion of the cleaved 

bait region and the formation of an ultra-stable 

AACT-protease complex.24 Decreased PFS with 

age suggests decreased AACT binding to target 

proteases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Accession Location Spearman p-value n ΔPFS 

Q14624|ITIH4 Protein level -0.4088 0.0148 15 ↓ 

P19827|ITIH1 Protein level -0.5212 0.0154 12 ↓ 

P19652|A1AG2 Protein level -0.5087 0.0185 10 ↓ 

P01011|AACT Y312 -1 1.4 × 10-24 5 ↓ 

P01009|A1AT H286 -0.8126 0.0013 12 ↓ 

P19823|ITIH2 M85 -0.9 0.0374 5 ↓ 

P01023|A2MG 

Y138 -0.685 0.0098 12 ↓ 

Y708 0.937 0.0019 7 ↑ 

Y1104 0.9 0.0374 5 ↑ 

 

Table 2: Impacts of Age on PFS of Serine Protease Inhibitors. Red text represents 

decreases in stability, blue text represents increases in stability, and purple text represents 

a mixed response. SPIs overwhelmingly experience decreases in PFS with age with only 

A2MG being the exception with a mixed response. Structural analysis did not provide a 

conclusive explanation for the mixed response in A2MG due to limitations in existing 

bound and unbound A2MG PDB structures, but we hypothesize that the mixed response 

is a result of differential protease binding with age and different domains in A2MG 

experiencing different conformational changes with protease binding.  
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Extracellular Matrix 

 We observed significant decreases in stability for two ECM proteins, fibronectin 

(Uniprot: P02751|FINC, Spearman=-0.7109, p=0.0009, n=5) and plectin (Uniprot: 

Q15149|PLEC, Spearman=-0.9, p=0.0374, n=5). ECM proteins are implicated in 

ATTR,25 aging,26 and serum protease activity,27 so it is interesting that we observed 

significant decreases in ECM PFS. Consistent with literature findings, fibronectin 

stability decreases with age.28 Instability and increased proteolytic cleavage of fibronectin 

is also associated with degeneration and other amyloid diseases such as Parkinson’s and 

Alzheimer’s.29, 30 Similarly, increased plectin cleavage and dysfunction is associated with 

age and sarcopenias that can contribute to muscular dystrophies that can occur with aging 

and ATTR.31-34 Considering the role of proteolysis in ECM degradation, we posit that 

changes in ECM PFS can act as a proxy metric of proteolytic activity. Hence, we 

hypothesize that the observed decreases in PFS of ECM proteins with aging are a result 

of increased proteolytic activity due to decreased SPI binding efficiency. 

PFS-TR Analysis 

 Comparing the PFS data obtained from performing IPSA on serum samples 

provided by Dr. Brad Naylor with published turnover rate (TR) data14 obtained from 

these same samples, we found a significant negative correlation between TR and PFS for 

blood proteins (Figure 9). 
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Figure 9: Turnover Rate vs Protein 

Folding Stability. PFS is negatively 

correlated with TR (Spearman=-0.35, 

p=0.0034). Using a robust linear 

regression, we find a relationship of 

𝐶½ = 1.877 − 1.483(𝑇𝑅) (intercept 

p=1.84E-8, slope p=0.003). This finding 

suggests that more stable proteins are 

either synthesized or degraded at a 

slower rate than less stable proteins. 

 

Within the context of amyloid diseases, previous work has demonstrated that 

amyloids are thermodynamically more stable than native folding states and experience 

decreased degradation rates.35, 36 Most forms of protein degradation rely on the surface 

accessibility of targetable residues37 or on ATP-mediated unfolding of proteins before 

degradation38, we hypothesize that slower TR with increased PFS can most probably be 

attributed to decreased rates of degradation. 

 Previous work has also demonstrated that proteins with higher turnover rates tend 

to have increased propensity for aggregation and amyloid formation.39 Decreased PFS 

has also been correlated with increased propensity for aggregation and amyloid 

formation.40 Combining our finding of decreased TR and increased PFS reinforces the 

idea that amyloid accumulation could be primarily due to the misfolded protein resisting 

unfolding and proteolytic degradation. We hypothesize that PFS plays a major role in 

maintaining proteostasis by controlling both the propensity of a protein to form amyloids 

and the ability of the body to clear out amyloids using proteolytic maintenance 

mechanisms. This finding has not previously been demonstrated and challenges the 

prevailing assumption that PFS only plays a minor role in TR.41 Applying this finding 

within the context of ATTR, we observed a mean C½ value of 1.307 M GdmCl and an 
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average TR of 0.2425 for healthy TTR. Extrapolating based on our experimental data and 

trendline, we expect a C½ value of 1.699 M GdmCl for amyloid TTR, assuming a 

conservative 50% decrease in TTR degradation rates with amyloid deposition. 

Acknowledging limitations, these results are preliminary and are only demonstrated 

within six individuals. As a result, we intend to perform further experiments to validate 

these findings. 
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Discussion 

A Biophysical Model of Protein Homeostasis 

Using these findings, we propose a biophysical model of protein homeostasis that 

explains how changes in PFS modify protein dynamics and amyloid formation.  This 

model also identifies potential mechanisms by which age contributes to the amyloid 

cascade in ATTR. Our model enables the quantification of relative abundances of 

different structural proteoforms using quantified protein concentrations obtained using 

traditional proteomics and PFS values obtained using assays like IPSA (Figure 10).42  
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Figure 10: Quantifying Folding States Using Protein Abundances and PFS. (A) The 

equilibrium between folded (Pn) and misfolded proteins (Pm) can be simplified using the 

assumption that unfolded proteins exist as a transient state and rapidly fold into properly 

folded or misfolded states. (B) Using this simplification, the standard change in free 

energy at equilibrium equation, and the equation for total protein concentrations, the 

formula for concentrations of properly folded and misfolded proteins can be derived. 

Calculating these concentrations then only requires quantifying the total concentration of 

a protein (Ptotal) using traditional quantitative proteomics and ΔGfolding which can be done 

using IPSA as C½ values are proportional to ΔG.13
 

 

In this model, PFS is the average of an equilibrium between different structural 

proteoforms which are established in part due to different PFS-dependent degradation 

rates (Figure 11).  This is because unfolding rate constants between misfolded and 

properly folded proteins are not the same as evidenced by increased thermodynamic 

stability of amyloids.43 
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Figure 11: Protein Turnover Models. (A) The traditional model of protein turnover 

ignores protein folding, focusing on simplified rates of synthesis and degradation. (B) 

Factoring in protein folding and different protein folding states, the expanded model of 

protein turnover highlights different degradation rates for different structural 

proteoforms, consistent with our PFS-TR data. Unlike the traditional model, this model 

explains how amyloid deposits evade degradation. 
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 Utilizing this model, as PFS of native proteins states decrease, allowing for more 

unfolding, relative concentrations of amyloid proteins increase, consistent with literature 

findings.40 Considering that amyloid formation occurs through a process of nucleation 

and polymerization, this model is also able to account for differing rates of amyloid 

formation with age (Equation 1). 

𝑑[𝑃𝑚]

𝑑𝑡
= 𝑘𝑓𝑜𝑙𝑑,𝑚([𝑃𝑚])[𝑃∗] − 𝑘𝑢𝑛𝑓𝑜𝑙𝑑,𝑚[𝑃𝑚] 

𝑑[𝑃𝑚]

𝑑𝑡
= 𝑘𝑓𝑜𝑙𝑑,𝑚

∗ [𝑃𝑚][𝑃∗] − 𝑘𝑢𝑛𝑓𝑜𝑙𝑑,𝑚[𝑃𝑚] 

[𝑃𝑚] = 𝑐1 exp ((𝑘𝑓𝑜𝑙𝑑,𝑚
∗ [𝑃∗] − 𝑘𝑢𝑛𝑓𝑜𝑙𝑑,𝑚)𝑡)  

𝑃𝑚 + 𝑃∗ ⇌ 2𝑃𝑚 

𝑃∗ ⇌ 𝑃𝑛 

 Amyloid acts as a nucleation site and catalyst for new amyloid formation as 

indicated in Equation 2.  Therefore in our model, the amyloid formation rate is dependent 

on the current concentration of amyloid (𝑃𝑚)  and the unfolded form of the protein (𝑃∗),44 

we will denote the rate constant for misfolding as the function, 𝑘𝑓𝑜𝑙𝑑,𝑚([𝑃𝑚]) where rate 

is dependent on amyloid concentrations, [𝑃𝑚].    We can express the rate of amyloid 

formation as 𝑘𝑓𝑜𝑙𝑑,𝑚
∗ [𝑃𝑚][𝑃∗] because initial velocities of enzymatic reactions increase 

proportionally to increases in enzyme concentration and [𝑃∗] remains at a small 

equilibrium value with fast protein folding kinetics.45, 46 Factoring in [𝑃∗], this model is 

also able to explain observed trends of increased rates of aggregation at higher 

concentrations of aggregation-prone proteins as increases in protein concentrations 

impact equilibrium concentrations of folding intermediates.47 As regulated degradation of 

aberrant proteins is also impaired with age,48 𝑘𝑢𝑛𝑓𝑜𝑙𝑑,𝑚 decreases with age, meaning that 

(Equation 1) 

(Equation 2) 
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aging and amyloid formation are an aggressive positive feedback loop. Solving the first 

order ordinary differential equation presented, we find that amyloid concentrations 

inherently increase with age, matching existing literature.49 

A Biophysical Mechanism for ATTR Pathogenesis  

Applying our model to ATTR with our results from our in-vivo census of PFS 

with age, we propose a novel mechanism for age-dependent ATTR pathogenesis (Figure 

12).  

 

Figure 12: Age-dependent Pathogenesis of ATTR. Decreases in protease inhibitor 

efficiency with age promote protease activity as measured by changes in ECM stability. 

Increases in protease activity leads to increased proteolytic cleavage of TTR, promoting 

instability, misfolding, and amyloid formation. 

 

Our results suggest that TTR amyloid formation is exaggerated by increased 

proteolytic activity due to age related decreases in SPI efficiency. The age-dependent 
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decrease in PFS of TTR along the dimer axis as opposed to the homodimer axis suggests 

that proteolytic cleavage introduces increased instability at the interface between 

monomers along the dimer axis. Hence, age does not appear to directly encourage kinetic 

dissociation along the homodimer axis. Instead, TTR cleavage into amyloidogenic 

fragments triggers the amyloid cascade by introducing nucleation sites. These nucleation 

sites can then interact with other TTR fragments or kinetically dissociated homodimers to 

form amyloid plaques. Increased stability of these amyloid plaques and impaired 

degradation pathways with age result in decreased degradation rates, preventing amyloid 

clearing. As a result, TTR deposition is progressive with age and leads to irreversible 

effects. 

Increased proteolytic cleavage of ATTR with age potentially explains decreased 

effectiveness of kinetic stabilizer treatments at preventing amyloid formation in 

advanced-stage ATTR and after long-term treatment50 as propensity of cleavage is 

independent of kinetic stabilization and can promote amyloid seeding, leading to 

increased rates of aggregation independent of tetramer dissociation rates. As a result, 

kinetic stabilizer treatments can only slow aggregation of dissociated tetramers but 

cannot prevent other sources of amyloid formation. 

Conclusions 

Imbalances in protein homeostasis associated with aging play a major role in the 

development of many currently untreatable diseases.51 Protein misfolding and formation 

of aggregates are hallmarks of many of these diseases such as ATTR and are inherent 

with aging,49 but their causes and mechanisms are still not well understood due to 

limitations in traditional methodologies.4  
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In this study, we set out to identify how protein folding stability contributes to 

protein dynamics, aging pathology, and ATTR. We initiated the first-ever to our 

knowledge census of PFS on a proteomic scale in human serum from individuals across a 

wide range of ages and used IPSA to overcome limitations in previous studies by probing 

age-dependent changes in protein folding under physiological conditions. Additionally, 

we examined the role of PFS in protein homeostasis by directly comparing PFS and 

experimentally determined turnover rates.  

We demonstrated that PFS plays an important role in TR and protein dynamics 

with important implications for amyloid formation and degradation. We have also 

identified a potential source of protease dysregulation with age due to structural 

differences in SPIs and have identified regions of TTR that display instability due to 

aging. Using these findings, we have proposed a model explaining the pathogenesis of 

age-dependent ATTR and a biophysical model of protein homeostasis that explains why 

amyloids form with age and are not degraded. 

Regarding the limitations of these findings, our results displayed are preliminary. 

Our current sample size is twenty individuals for the PFS-age portion of the study and six 

individuals for the PFS-TR portion of the study. We have also largely sampled from 

individuals of European descent with connections to Brigham Young University. 

Furthermore, improvements can still be made to the resolution and coverage of PFS 

measurements in many of our samples. We also acknowledge that our findings do not 

explain why protease inhibitor efficiency decreases with age and that more targeted 

assays must be performed to explain the underlying mechanism. 



33 
 

Despite these limitations, our findings are compelling and tie together many 

observations from existing literature, warranting further investigation. As such, we aim to 

continue our PFS-age portion of the study, expanding our sample size to 150 individuals 

and aim to perform a larger-scale PFS-TR study within a mouse model. In the future, as 

our sampling limitations decrease, we aim to include samples from a more diverse 

population. We also intend to examine the role of mutations identified from our exome 

sequencing and other lifestyle factors collected in our sampling in PFS and ATTR. 

In conclusion, our study provides novel insight into disruptions of protein 

homeostasis with age and introduces new insight into how ATTR and other aging 

pathologies can be remedied. Understanding which proteins experience pathogenic 

changes in stability with age allows for the development of targeted treatment methods to 

remedy folding-associated aging pathology and prevent the genesis of misfolding 

diseases. Our findings also highlight the benefits of introducing the dimension of PFS 

into the study of disease. Measuring changes in protein folding is essential to 

understanding the biophysical roots of many of today’s most impactful diseases such as 

Alzheimer’s and Parkinsons, and we have demonstrated that IPSA can be readily applied 

in human cohorts under physiological conditions to provide biologically significant 

insight into disease pathogenesis and pathophysiology. Hence, future application of IPSA 

within the context of other diseases is warranted, and we invite other researchers to 

introduce the essential dimension of PFS to their studies using IPSA and similar methods. 

Doing so will illuminate a more complete picture of protein homeostasis and will 

empower a greater understanding of human health, disease mechanisms, and drug and 

intervention development. 
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