Jul 12th, 3:30 PM - 3:50 PM

Iterative Discovery: a Method for Discovering Feasible Interventions and Targets Conjointly Using Uncertainty Visualisations

Baihua Fu
National Centre for Groundwater Research and Training (NCGRT), Australian National University, baihua.fu@anu.edu.au

Joseph Guillaume
Water & Development Research Group (WDRG), Aalto University, joseph.guillaume@aalto.fi

Tony Jakeman
National Centre for Groundwater Research and Training (NCGRT), Australian National University, tony.jakeman@anu.edu.au

Follow this and additional works at: https://scholarsarchive.byu.edu/iemssconference

Part of the Civil Engineering Commons, Data Storage Systems Commons, Environmental Engineering Commons, Hydraulic Engineering Commons, and the Other Civil and Environmental Engineering Commons

Fu, Baihua; Guillaume, Joseph; and Jakeman, Tony, "Iterative Discovery: a Method for Discovering Feasible Interventions and Targets Conjointly Using Uncertainty Visualisations" (2016). International Congress on Environmental Modelling and Software. 44.
https://scholarsarchive.byu.edu/iemssconference/2016/Stream-D/44

This Event is brought to you for free and open access by the Civil and Environmental Engineering at BYU ScholarsArchive. It has been accepted for inclusion in International Congress on Environmental Modelling and Software by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
Iterative Discovery: a Method for Discovering Feasible Interventions and Targets Conjointly Using Uncertainty Visualisations

Baihua Fu*, Joseph Guillaume♭, Tony Jakeman♮

a: National Centre for Groundwater Research and Training (NCGRT) and Fenner School of Environment and Society, Australian National University, Canberra, ACT 0200, Australia, baihua.fu@anu.edu.au
♭: Water & Development Research Group (WDRG), Aalto University, Finland, joseph.guillaume@aalto.fi
♮: National Centre for Groundwater Research and Training (NCGRT) and Fenner School of Environment and Society, Australian National University, Canberra, ACT 0200, Australia, Tony.Jakeman@anu.edu.au

Abstract:
Making environmental management and policy decisions is a complex and difficult task when the problem of interest encapsulates pervasive complexity, dynamism and uncertainty. One category of environmental decision making problems may be referred to as “Planning refinements with difficult-to-define objectives”. By our definition, such problems have the following characteristics:

- a current management intervention is already in place, which is known to have limitations, none of which are considered pressing;
- there are significant uncertainties in the systems and models;
- management targets are too complex to satisfactorily explore with optimization tools;
- management targets need to be set that are dependent on what can be achieved, because trade-offs (e.g. biophysical, socioeconomic, policy) mean that the ideal outcome is not achievable.

This talk presents a recently published generic method, referred to as Iterative Discovery, where the aim is to plan refinements to management interventions with difficult-to-define objectives, often due to system uncertainties and diverse stakeholder positions. The method is initiated by evaluating a scenario describing the current-best intervention. This provides the starting point for three evaluation cycles, focusing on model assumptions, alternative interventions and management targets. The outcome of this method is a list of management targets that can and cannot be achieved, the potential interventions that correspond to these targets, and the assumptions and uncertainties associated with these interventions. This method is applied to a case study for environmental flow management in the Macquarie Marshes, Australia. We identified feasible management targets based on ecological outcomes in flood suitability across different locations, climate conditions and species, and the suitable environmental flow volumes that correspond to these targets.

Keywords: uncertainty; environmental management; visualisation; decision making