Informing Adaptive Strategies for the Colorado Basin

David Groves
RAND, groves@rand.org

Robert Lempert
RAND, lempert@rand.org

Jordan Fischbach
RAND, jordanf@rand.org

Evan Bloom
Capital One, evanopolis195@gmail.com

Follow this and additional works at: https://scholarsarchive.byu.edu/iemssconference

Part of the Civil Engineering Commons, Data Storage Systems Commons, Environmental Engineering Commons, Hydraulic Engineering Commons, and the Other Civil and Environmental Engineering Commons

Groves, David; Lempert, Robert; Fischbach, Jordan; and Bloom, Evan, "Informing Adaptive Strategies for the Colorado Basin" (2016).
International Congress on Environmental Modelling and Software. 49.
https://scholarsarchive.byu.edu/iemssconference/2016/Stream-D/49

This Event is brought to you for free and open access by the Civil and Environmental Engineering at BYU ScholarsArchive. It has been accepted for inclusion in International Congress on Environmental Modelling and Software by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
Informing Adaptive Strategies for the Colorado Basin

David Grovesa, Robert Lempertb, Jordan Fischbachc, Evan Bloomd
a RAND (groves@rand.org)
b RAND (lempert@rand.org)
c RAND (jordanf@rand.org)
d Capital One (evanopolis195@gmail.com)

Abstract: The Colorado River is the single most important source of water in the southwestern United States, providing water and power for nearly 40 million people and water to irrigate more than five million acres of farmland across seven states and for 22 Native American tribes. A vast physical and institutional infrastructure exists to provide water, as well as hydropower, recreational opportunities, environmental services, and other benefits to all these users. However, increasing demand, a decade of drought, and expectations of a significantly changing future climate have put the system under significant and deeply uncertain stress. This paper employs and extends Robust Decision Making (RDM) to support to Basin planners as they create, evaluate, and deliberate about adaptive strategies. The work builds on, but goes beyond the 2012 Colorado River Basin Supply and Demand Study developed in collaboration by the seven Colorado Basin States and the U.S. Bureau of Reclamation, with technical support from RAND. This new analysis places the challenge facing these decision makers into a formal structure of adaptive strategies, explores choices that planners may make when considering how to respond to new information and tradeoffs between alternative responses. The study employs planning scenarios generated by scenario discovery methods, which identify the conditions under which specific near-term actions or contingencies are necessary and long-term implementation schedules perform well. The study also employs a naive-Bayes' model to assist planners in integrating new information with their current beliefs, providing guidance on what information in the next decade may cause them to adjust the strategy. Finally, the approach allows decision makers to consider the extent to which the current options under consideration may prove sufficient, and the extent to which they may need to consider transformational strategies.

Keywords: water management, deep uncertainty, adaptive strategies, robust decision making, Colorado Basin, climate change