Jul 12th, 10:30 AM - 10:50 AM

Water resources decision support under deep uncertainty: a classification of model-based frameworks and challenges for scenario discovery

J. Herman
University of California, jdherman@ucdavis.edu

P. Reed
Cornell University

H. Zeff
University of North Carolina at Chapel Hill

G. Characklis
University of North Carolina at Charlotte

Follow this and additional works at: https://scholarsarchive.byu.edu/iemssconference

Part of the [Civil Engineering Commons](https://scholarsarchive.byu.edu/civilengineering), [Data Storage Systems Commons](https://scholarsarchive.byu.edu/datasystem), [Environmental Engineering Commons](https://scholarsarchive.byu.edu/environmental), [Hydraulic Engineering Commons](https://scholarsarchive.byu.edu/hydraulic), and the [Other Civil and Environmental Engineering Commons](https://scholarsarchive.byu.edu/otherbuildings)

Herman, J.; Reed, P.; Zeff, H.; and Characklis, G., "Water resources decision support under deep uncertainty: a classification of model-based frameworks and challenges for scenario discovery" (2016). *International Congress on Environmental Modelling and Software*. S1. https://scholarsarchive.byu.edu/iemssconference/2016/Stream-D/51

This Event is brought to you for free and open access by the Civil and Environmental Engineering at BYU ScholarsArchive. It has been accepted for inclusion in International Congress on Environmental Modelling and Software by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
Water resources decision support under deep uncertainty: a classification of model-based frameworks and challenges for scenario discovery

J. Herman, P. Reed, H. Zeff, G. Characklis
(a) University of California, Davis (jherman@ucdavis.edu), (b) Cornell University, (c) University of North Carolina, Chapel Hill

Abstract: Recent work in water systems planning has focused on exploratory “bottom-up” decision support frameworks, which aim to identify robust solutions capable of withstanding deviations from the conditions for which they were designed. Here we organize these frameworks according to their methods of (1) alternative generation, (2) sampling of states of the world, (3) quantification of robustness measures, and (4) machine learning and sensitivity analysis methods to identify influential uncertainties. We demonstrate these methods using an urban water portfolio planning problem in North Carolina, a region whose water supply faces both climate and population pressures. The task of scenario sampling poses particular challenges for water supply systems, because the frequency and severity of droughts must be modified while respecting historical streamflow statistics. To address this challenge, we introduce a modified synthetic streamflow generation technique and compare the generated drought scenarios to climate model projections. By exploring the implications for reliability and cost under increasingly severe scenarios, results indicate that methodological choices lead to the selection of substantially different planning alternatives. In light of these differences in decision support outcomes, this work highlights several recommendations: (1) alternatives should be generated via computational search rather than prespecified; (2) dominant uncertainties should be discovered via sensitivity analysis methods rather than assumed prior to the analysis; and (3) that an elicited multivariate satisficing measure of robustness provides an opportunity to achieve problem-specific performance requirements. This work emphasizes the importance of an informed problem formulation for systems facing challenging performance tradeoffs, and provides a common vocabulary to link the robustness frameworks widely used in the field of water systems planning.

Keywords: Water resources planning, deep uncertainty, climate adaptation