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ABSTRACT 

IDENTIFYING HIGHLY RESPONSIVE LOCATIONS FOR SPINAL MOTION TRACKING 

SENSORS 

 

Abstract 

Tyler Hutchinson 

Mechanical Engineering Department 

Bachelor of Science 

 

 

 

Tracking spinal motion in the lower back serves as a useful tool for aiding 

diagnostics. This study seeks to determine if a fabric garment with integrated strain 

sensors may provide sufficient information to identify key spinal motion characteristics 

typically manifested in skin strain. Sensors adhered directly to an individual’s skin would 

be the most effective means of capturing such characteristics. However, adhering sensors 

to skin of the lower back is difficult for frequent or everyday application. This research 

aims to integrate a sensor system into a more comfortable and readily user-applied 

device. Here we examine the implementation of such a device, along with the optimal 

placement for strain gauges on a fabric garment to capture key characteristics in a 

differentiable way.  

Leveraging a professional motion capture lab, motion data was collected at both 

the skin and garment surface positions, and analyzed using machine learning techniques. 

The optimality of each sensor position and orientation was based on how much 

information it provided to the best performing models. Our analysis utilized the ability of 

ML models to discriminate between various motion types as an indicator of information 

gained. Models were given strain data from markers adhered to skin and a proposed



 
 

 

 



ii 
 

garment designed for measuring lower back motion. Findings from both models were like 

those in existing literature, in that more sensors typically resulted in better performing 

models (Baker et al., 2023; Gibbons, McMullin, et al., 2021). A set of reasonable strain 

gauge positions and orientations were obtained from modeling and can be applied to 

future versions of the tested garment. 
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Introduction  

 

Tracking the biomechanical response of the human lower back during physical 

activity can produce valuable data. Doing so can provide vital information which 

significantly aids medical diagnostic techniques or enables clinicians to make treatment 

plans with more precision. Biomechanical data can be used to guide rehabilitation in a 

variety of physical disorders. This is especially true in the context of lower back pain 

(Clark, 2022), where individuals and patients may be able to self-locate pain but are 

unlikely to be able to express their biomechanical behaviors which may cause or be 

resultant from this pain.  

Several methods for sensing and tracking these biomechanical behaviors and their 

kinematic expressions have been developed (Mauck et al., 2023; Stickley et al., 2024). 

These methods include visual motion tracking, inertial measurement devices, and strain 

gauges among others. Each method or system will offer differing advantages and 

disadvantages in varying contexts as they capture highly distinct types of biomechanical 

information.  

Recent materials science advances have led some researchers to develop 

nanocomposite strain gauges, or sensors, with significant improvements in width of 

operating range (Baker et al., 2023; Gibbons, Peterson, et al., 2021). These sensors have 

been shown to successfully provide critical information about individual biomechanics 

when used in a system which adheres them to an individual’s skin. One such system, 

shown in figure 1, utilizes an array-type device with several sensors adhered to the lower 

back of individuals (Gibbons, McMullin, et al., 2021; Quirk et al., 2022).  
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Figure 1: Brigham Young University’s SPINE Sense System, applied to the lower back of a researcher 

However, this adherence approach for nanocomposite strain sensors has 

significant limitations in terms of usability and reusability. Due to cross-contamination 

and sanitary concerns, each array device can be adhered only once with a limited number 

of reusable components. The adherence process is also difficult, requiring a trained 

technician to both apply and remove the device from a wearer’s back (Stickley et al., 

2024). Additionally, wearers of this device have expressed discomfort when using it for 

extended periods of time.  

A straightforward approach to address these concerns is to devise a sensor array 

which attaches to an easily removable garment instead of an adhesive array, provided the 

garment and sensors can be shown to adequately track lumbar biomechanics. Initial 

efforts (not reported here) tested several fabrics for garment design to determine which 

most closely followed skin strain in the lower back across a range of exercises. The most 

effective was a fabric belt-style garment, shown in figure 2. When fitted with strain 

sensors, this garment is significantly more comfortable than the adhesive array discussed 

above for extended use, is much easier for individual users to apply to themselves, and is 
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reusable for several applications. However, questions remain concerning the optimal 

position of sensors on this garment and the ability of the sensors to capture biomechanical 

information effectively without direct adherence to skin. 

 

Figure 2 : Selected fabric, with hook latching mechanisms and loops (not seen) on the left and right 

This study will investigate whether sensors applied to a fabric waist-belt style of 

garment, rather than an adhered device, may capture sufficient biomechanical 

information to detect key motion characteristics in the lower back. It will also determine 

optimal positions and orientations, referred to generally as locations, for nanocomposite 

strain sensors attached to this fabric belt. The analysis relies upon quantification of the 

increase or decrease of information gained, by adjusting sensor locations toward 

effectively predicting a variety of motion categories when used across a range of 

exercises. The optimization will seek the maximum quantity of information gain. 

In this quantification, skin strains are the key indicators of biomechanical 

response which will be used. As a result, any testing done will need to measure both the 

effectiveness of varying sensor placements, as well as the degree of similarity between 

stretch shown on the fabric belt and the skin of subjects who wear it. This must also be 

done across some sample of exercises which effectively represent the human range of 

motion in the lower back. Collecting results from tests on bare skin alongside the fabric 

belt will allow for a more complete comparative evaluation of sensors placements and 

performance. These considerations were used in developing a testing procedure.  
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Methods 

  

A professional motion capture laboratory was used to capture data for this study. 

To obtain motion data, a set of 8 motion capture markers were placed on the lower backs 

of subjects in an orientation shown in figure 3. A total of 6 subjects provided motion 

capture data. This cohort was composed of BYU students, split equally into male and 

female groups. Each subject was instructed to perform 6 exercises, or motions, chosen to 

cover the range of possible spinal motions. Subjects were also instructed to repeat each 

motion 5 times. The selected motions included lumbar flexion, extension, rotation to the 

right, rotation to the left, side bending to the right, and side bending to the left. Motion 

capture markers were then applied to the fabric belt, at locations equivalent to those used 

for skin motion capture, as shown in figure 4. Markers were applied on the reverse side of 

the silicone alignment patches. Subjects put the fabric belt on, and the motion capture 

process was repeated. This data is also visualized in figure 5. 

 

Figure 3 (left): Spinal markers with labels on one subject’s lower back 

Figure 4 (right): Selected fabric with silicone alignment patches 
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Figure 5: Visualization of collected motion capture data 

While motion capture data is spatial, we obtained deflection information which 

was transformed to use as an analogue to strain collected by strain sensors. Each marker 

on the lower back and waist belt was assigned 3 spatial coordinates by the motion capture 

system and was recorded in time. Strains were computed between each marker point 

when extension was at a minimum and maximum using equations 1 and 2, the change in 

3-dimensional location and definition of strain equations. This process for obtaining 

strain from deflection was done for each repetition of each motion for each subject.  

    Eq. 1 

      Eq. 2 

To make use of the strain information captured, statistical methods were 

employed. This research questions how well sensors can capture information generated in 

motion. To approximate this, motion data can be used to predict the 6 distinct motion 

categories used while collecting data. Classification-type machine learning models are 

especially well suited to predicting classes based on input information, particularly in the 

form created here. Thus, this set of strains obtained were then used to train several 

classification machine learning models. These models were trained with strain data as 

inputs and specific motions as outputs. They were then tested on the same kind of 

information. To ensure models were demonstrating the most realistic possible 

performance, they were cross-validated. Cross validation was done by removing data 
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from 1 of our 6 subjects from the training pool and using it as testing data. This was done 

6 times with model performance being averaged across all 6 training sessions. 

Two important features were extracted from each model after training and testing 

was complete. This study was primarily interested in the accuracy and training weights 

assigned to each model. Features were extracted using built-in functions and methods 

from the python scikit-learn (sklearn) implementations of machine learning models. The 

accuracy, or score, of models were generated using the sklearn score method, which 

returns the subset accuracy or number of correctly predicted labels as a percent of total in 

our dataset. The training weight vectors were obtained by requesting the coefficients of 

models, along with their labels. Accuracies and coefficients formed the primary set of 

quantitative results to be examined. 
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Results 

 

The accuracies and coefficients from 5 machine learning models are depicted in 

figures 6 and 7. The figures capture the performance of the machine learning models 

when applied to data from markers on human skin and markers on the selected fabric. 

Performance scores are listed at the top of each subplot of each figure. The coefficients 

used to train all models are also sorted by significance along the y-axis of plots, showing 

that different models weight the importance of different data collected for predicting 

exercise category labels.  These extracted features also show some features are 

consistently more important than others, though exact rankings may differ. 

 

Figure 6: Performance of ML models predicting categories from skin-attached marker motion data 

 

Figure 7: Performance of ML models predicting categories from fabric-attached marker motion data 
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Following sorting, extracted features of least significance were then iteratively 

removed. This process included steps to train and cross-validate a new model, determine 

the least significant feature for the model, remove the feature from the training dataset, 

and was repeated until only a fraction of the initial data were left for training and testing. 

This process slowly removed interfering locations for strain sensors, allowing models to 

approach a physically realistic array design. As features were removed, changes in model 

scores were tracked to ensure the best combination of model and array were preserved. 

Score changes relative to strain sensor removals are shown in figure 8.  

 

Figure 8: Fabric model performance reductions when dropping sensors of lowest information gain, starting 

from an initial 16 sensors 

Applying this approach to marker strains on the selected fabric type, the typical 

gain of information was quantified by model scores. This also provides insight into the 

most optimal set of physical strain sensor locations in a geometrically reasonable pattern. 

However, removing sensors is a double-edged sword. As seen in figure 8, several models 

rapidly lose fidelity when sensors are removed. This analysis was run for the best 

performing model types and the results are shown in figure 9. A visual representation of 

these same results is presented in figure 10.  
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Figure 9: Selected best-performing ML models after score reduction 

 

Figure 10: Proposed 8-sensor arrays given fig. 9 
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Analysis 

 

An evaluation of results provides a few key insights to answer vital questions. 

First, whether fabric-mounted strain sensors can provide similar quantities of information 

to skin-adhered sensors, second, the connection between biomechanical motion and 

discrete exercise types discussed throughout this paper, and third, what an optimal 

arrangement of sensors on some fabric garment will be to obtain a maximum quantity of 

information. A comparison of the information presented in figures 6 and 7 shows a high 

degree of similarity between the predictability of exercise categories from data collected 

from skin and fabric-mounted strain values. In every model type there is a drop in 

prediction accuracy ranging from 0-2% when using fabric mounted sensors rather than 

skin mounted sensors. The minimal loss observed between sensor applications carries 

highly positive implications, highlighting the advantageous tradeoffs of utilizing fabric-

applied sensors over those adhered directly to the skin. This is particularly significant 

given the substantial simplifications it offers for clinicians, patients, research subjects, 

and users when applying an array of sensors. 

The prediction accuracy, however, refers specifically to discrete exercise or 

motion categories. Briefly mentioned in methods, these exercise categories were selected 

to cover the range of common motions exhibited in the human lower back. Since exercise 

categories encompass this wide range of motion, experimenting with data collected using 

these exercises is an effective means of testing whether a device might adequately 

monitor the human range of biomechanical motion in the lower back. Where this research 

exists in a context of chronic low back pain, there is extra care taken to ensure motions 

were performed accurately so applications of this research can extend to more eccentric 

forms of the same motions exhibited by those with low back pain, or those who may soon 

develop low back pain. The high degree of similarity between skin and fabric-attached 

sensors, along with the high accuracy of models in predicting motion classes provides 

confidence the tracking capabilities of a sensor system designed with following 

arrangement recommendations will be adequate for distinguishing biomechanical motion 

characteristics of chronic low back pain. 
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Further, with regards to the prediction accuracy of modeling, findings of the study 

indicate that every additional sensor added to this array tends to produce significant 

quantities of meaningful information. Referring to figure 9, it is clear removing just one 

or two results in non-trivial degradation of information gained for every model. 

Removing additional sensors provided mixed results, with varying magnitudes of 

downward slopes for all. Thus, retaining up to 14 of the original 16 sensor placements is 

recommended. Using 14 sensors in the array provides accuracy up to 90% in 

classification modeling. Adding more sensors will have diminishing returns and requires 

examination of alternative placement locations. 

This result comes after observing the impacts of reduced quantities of information 

and their influences on model performance. No model type started from a poor position. 

With all sensor positions available for testing and training, every model type was able to 

predict the correct motion category from fabric data more than 92% of the time with 

some models reaching 96-97% accuracy. However, as sensors were removed the 

reduction in predictive capacity varied dramatically for different models. While Support 

Vector Machine and Logistic Regression models had significant score reductions as strain 

sensor locations were removed, the remaining models fared far worse, leading us to use 

only Support Vector Machines for final determinations. The specific outcomes from 

Support Vector Machine models point us to eliminate only the physically impossible 

sensors from our design.  

The overlapping strain sensors, shown in figure 11, include sensor 1-4 and 2-3, 

and 1-6 and 2-5. Since sensors 2-3 and 2-5 do not appear on either of the best performing 

models, seen in figure 9, it is recommended these and only these are removed from the 

final fabric design as presented in figure 12. However, these recommendations should be 

tempered with additional considerations. This study does have limitations which could 

have improved model performance had they been tested further. 
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Figure 11 (left): Overlapping strain regions resulting in impossible geometry, marked in orange 

Figure 12 (right): Proposed strain sensor locations on a fabric belt 

One of the notable limitations was our relatively low sample size, which likely 

impacted model performance and may influence generalizability. Motion repetitions were 

used to offset model performance limitations but could not have solved the problem 

entirely, especially given our cross-validation approach, which limited the models to 

seeing, effectively, 5 very refined versions of a motion rather than 25 highly distinct 

versions. This low sample size could also skew to over-represent the small demographic, 

or to not represent some demographics at all. Despite this limitation, the study's findings 

highlight the surprising accuracy of some machine learning models in predicting motion 

patterns based on strain. 

Additionally, optical motion capture and strain gauge sensors do not have a 1:1 

ratio for resolution. Each sensor system will have variations in resolution which will 

require adjustment and tuning of both collection and analysis systems. The motion 

capture system used in this study had sub-millimeter spatial resolution and was able to 

track the several marker points at 100hz. Other systems may sample far less frequently or 

have less absolute certainty in spatial dimensions. Computing strains from motion capture 

spatial coordinates serves as an effective analogue to strain sensors, though, perhaps with 

higher resolution than novel nanocomposite strain gauges can offer just yet. 

These findings are in alignment with similar validation research done for BYU’s 

SPINE Sense system, seen in figure 13. While the models lose effectiveness far faster 

than the SPINE sense system, it is clear removing sensors from either would result in a 
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loss of meaningful motion data. It is also clear the combined power of nanocomposite 

strain gauges and machine learning models unlocks a potential future of unreasonably 

effective biomechanical monitoring and testing tools for home and clinical use. 

 

Figure 13: Data from SPINE Sense classification accuracy analysis, using arrays with varying numbers of 

sensors, starting at 16 and being reduced by both worst predictors (LoME) and at random 
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Conclusions  

 

This study draws a few primary conclusions regarding the biomechanical tracking 

ability of a fabric garment, placement and number of strain sensors in a suggested final 

design, and comparisons with other systems. The first is that a removable fabric garment 

in the presented waist-belt form factor appears to be capable of tracking the biomechanics 

of the human lower back. Support Vector Machine models had equivalent performance 

between skin and fabric data, with both correctly classifying 96% of the cross-validation 

tests when run with 16 sensors. It is expected the resolution of these strain gauges will be 

less than the resolution of the motion capture lab and that applying strain gauges to the 

fabric belt may slightly alter the belt’s deformation properties during human motion, 

however these impacts are not anticipated to significantly impact the findings of this 

study.  

To do this, the findings presented here suggest as many sensors as reasonable 

should be used in validation. Given the information tested here, 14 sensors as arranged in 

figure 12 are considered optimal. This retains the maximum amount of information found 

with higher numbers of sensors while allowing for a real device to be constructed. 

Further reduction in the number of sensors used tends to severely hamper any ability of 

machine learning models to predict exercise or motion categories, indicating there is not 

enough information to build an effective connection between strain and motion type. This 

finding is comparable to observations of the SPINE Sense system, which also uses 16 

strain sensors. When removing sensors, first by least significant, then at random, the 

SPINE Sense system saw noteworthy reductions in performance on tested machine 

learning classification models. Differences in the quantity of training and testing data, 

along with other previously discussed factors are expected to explain differences beyond 

shared trends. Overall, proceeding to design a fabric-based strain sensor system is an 

effective way to solve some existing problems with adhesive array systems, allowing for 

longer tracking use as well as significantly improved user-friendliness 
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