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ABSTRACT 

 

 

 

DUVERGER’S LAW AND POLARIZATION IN A RANKED CHOICE  

CITIZEN-CANDIDATE MODEL 

 

 

 

Bryan Jay Frandsen 

Economics Department 

Bachelor of Science 

 

 

 

This paper expands on a citizen-candidate model of electoral competition under 

both plurality rule and ranked choice voting. The paper finds that ranked choice voting 

nominally avoids Duverger’s Law by accumulating many identical candidates but yields 

fewer viable equilibrium policy positions than plurality rule. Additionally, ranked choice 

voting favors moderate candidates and policies, increasing the probability of their 

implementation compared to plurality rule. This moderate bias leads to lower polarization 

in equilibrium than is possible under plurality rule. 
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Duverger’s Law and Polarization in a Ranked Choice Citizen-Candidate Model 

I. Introduction 

 The electoral system in the United States has come under increased scrutiny in 

recent years, whether such scrutiny is justified or not. Some voters complain about the 

lack of more than two “serious” options. Advocacy groups promote switching the 

electoral system from the traditional plurality rule, where the candidate with the largest 

vote share wins, to alternative voting rules, such as ranked choice voting (RCV). Under 

RCV, voters rank all the candidates from most favored to least favored, after which the 

votes are tallied. Then, using only voters’ top preference, the candidate with the smallest 

vote share is eliminated, and voters who ranked that candidate first have their votes 

transferred to their second choice. This process continues until there is only one candidate 

left, who is the winner. Groups such as FairVote claim that RCV will, among other things, 

allow “more voter choice,” “allow diverse groups of voters … to elect their candidates of 

choice,” and “minimize strategic voting” so that voters don’t “feel the need to vote for the 

‘lesser of two evils’” (FairVote 2023).  

 Most complaints about plurality rule stem from a finding called Duverger’s Law, 

named after the French sociologist who published a book in which he observes that 

plurality rule systems tend to collapse to two options, whether two candidates, two 

parties, or two coalitions (Duverger 1954). Duverger’s Law can be conceived along two 

main lines of thought: the voter perspective and the candidate perspective. From a voter’s 

perspective, Duverger’s Law can hold because voters strategically ignore all candidates 

but the top two, the candidates with the best chance of winning (from this comes the 

complaint of “needing” to vote for the lesser of two evils). From a candidate’s 
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perspective, Duverger’s Law can hold because only the top two candidates should bother 

running, since they are the only ones who are likely to win. In this paper, we will assume 

that voters will vote sincerely (even if they vote for a candidate who is unlikely to win), 

and we will focus on the candidates’ entry and exit decisions. Along with Duverger’s Law 

itself, voters may also feel that the two options they have are too polarized; they would 

rather have a policy in between the two options presented to them. RCV, according to its 

supporters, is supposed to solve or at least mitigate both of these issues. However, 

existing economic literature has not fully explored this point. 

 In order to answer whether RCV can actually accomplish this, we utilize a 

variation of Osborne and Slivinski’s (1996) citizen-candidate model, which is itself a 

variation of the Downsian spatial competition model of elections (Downs 1957). The 

citizen-candidate model utilizes a system where, instead of a candidate choosing a policy 

and entering the election with that policy as a platform, each citizen has her own 

preferred policy and may choose whether or not to enter the election with that policy 

platform. Thus, the set of candidates, their positions, and their entry/exit decisions are 

endogenous to the model. One of the main appeals of this type of model as opposed to a 

more standard Downsian model is the presence of pure-strategy Nash equilibria. The 

main differences in our version of the model are that the policy space is bounded, citizens 

are uniformly distributed, and citizens are purely office motivated in their role as 

candidates. Of course, the most crucial difference is that we also derive the equilibria of 

the model under RCV along with plurality. Our main results are as follows: 

• RCV appears to avoid Duverger’s Law in name only; candidates accumulate, 

but they are nearly always identical to a candidate that has already entered.  
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• RCV restricts the number of policies that are viable in equilibrium to be closer 

to the median compared to plurality rule, generally reducing platform 

polarization. 

• RCV does not significantly increase the range of policy options available to 

voters, compared to what is available to voters under plurality rule. 

• RCV has an intrinsic bias towards moderate policies in situations where 

candidates take three different positions. The median policy is in some cases 

more than twice as likely to succeed in RCV as the most moderate policy in 

plurality rule. 

Other literature in this area of inquiry is scant, but not nonexistent. Peres (2008) 

considers RCV in an analysis of whether various voting rules always select the Condorcet 

winner, finding that RCV is not guaranteed to do so. Miller (2017) considers what is 

called a “monotonicity failure” under RCV, where the candidate that gets the most votes 

in the first round fails to win in the second round. This finding is related to our findings 

that moderate candidates are favored to win, even without getting the most votes initially. 

Dellis (2013) considers the two-party system and Duverger’s Law from the perspective of 

strategic voting under a variety of voting rules, not including RCV. Yonk et al. (2011) 

find that RCV and other voting rules can significantly change the outcomes of multi-

candidate elections.  

Of particular interest is Dellis et al. (2017). They consider RCV in a citizen-

candidate model, though with pure policy motivation in place of hybrid office-policy 

motivation (as in Osborne and Slivinski (1996)). They find, similar to this paper, that 

RCV results in less polarization than plurality rule. However, RCV sustains only one- or 
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two-position equilibria in their model because of policy motivation. There are no 

equilibria with candidates at identical positions for the same reason. It is important to 

further consider pure office motivation because it seems likely that real-world candidates 

place at least some value on winning office, other than the ability to implement their 

preferred policies. Pure office motivation is a relatively standard assumption in the 

literature and is a good first step prior to attempting a hybrid office-policy motivation 

scenario. Additionally, the equilibrium logic with office motivation will be different than 

in Dellis et al. (2017), because candidates will not care about the outcome of the election 

and are therefore willing to risk a worse policy for a chance of winning the election.  

II. Model 

 “Citizens” have preferred policies that are uniformly distributed across a policy 

space [−1,1]. Each citizen can choose to enter the election at her preferred policy or stay 

out of the race. Citizens who choose to enter the election are called “candidates.” All 

citizens and candidates have perfect information, and entry decisions are made 

simultaneously, after which the votes are cast and tallied. “Clone” candidates are 

permitted; there could be any number of candidates who enter with the same preferred 

policy. There is a positive cost of entry 𝑘 > 0, a positive benefit of winning 𝛽 > 0, and 

the benefit is greater than the cost 𝛽 > 𝑘. A candidate is purely “office” motivated before 

and after entry: her utility is affected only by winning or losing the election, not by the 

policy that is enacted after the election. Candidate 𝐴’s expected utility is defined as 

𝐸𝑈𝐴 = P(𝑤𝑖𝑛) 𝛽 − 𝑘.  

Citizens have single peaked preferences over the policy space, which ensures 

transitivity in each citizen’s ranking of candidates. Each citizen votes sincerely: she votes 
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for the candidate whose chosen policy is closest to her own preferred policy. Citizens are 

indifferent both between two candidates running with the same policy platform and 

between multiple candidates running with different platforms that are equidistant from 

the citizen’s own preferred policy. If multiple candidates with the same preferred policy 

enter, all the citizens that would have voted for a single candidate with that platform 

randomize with equal weight among each candidate that entered with that platform, 

because they are indifferent as to which candidate they support. Citizens do the same in 

the case of multiple candidates with platforms equidistant from the citizen’s preferred 

policy. In case of a tie (that is, equal vote shares) between 𝑛 candidates, each candidate is 

assigned 
1

𝑛
 probability to win the tie. A candidate’s platform is denoted with a lowercase 

letter, while the candidate herself is denoted with a capital letter (e.g., candidate 𝐴’s 

platform is 𝑎). The leftmost candidate will be denoted as 𝐴, with the rest of the 

candidates named in alphabetical order from left to right. 

The election rule is either plurality rule or ranked choice voting. Under plurality 

rule, citizens vote as described above, and then the candidate with the largest vote share 

wins (with ties settled as described above). Under RCV, each citizen reports her entire 

ranking of all candidates that have chosen to enter the election. The votes are tallied using 

the citizens’ top preferences and the candidate with the smallest vote share is eliminated. 

The votes of the citizens that ranked the eliminated candidate first are then transferred to 

the second ranked candidate of each citizen. The votes are tallied again, and the candidate 

with the smallest vote share is again eliminated. The process repeats until there are only 

two candidates left. At that point, the candidate with the larger vote share wins the 

election. 
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Figure 1 

III. Plurality Rule Equilibrium Analysis 

Before considering the equilibria that result under RCV, it is useful to consider the 

equilibria of the model under plurality rule, taking insight from Osborne and Slivinski 

(1996). Their conclusions, due to the differences between their model and ours (office 

motivation and uniformly distributed citizens), do not apply exactly here. In this version 

of the model, there are infinitely many possible equilibria, most of which follow a similar 

pattern, which is that candidates are located in evenly spaced “pockets” along the policy 

continuum. Since 𝛽 > 𝑘, there cannot be a no-candidate equilibrium. If no other 

candidates enter, any citizen gains 𝛽 − 𝑘 > 0 by entering and being elected. 

One-candidate equilibrium 

 In the one-candidate equilibrium, the median citizen enters and gains all votes 

(see Figure 1, Position Set 1). To maintain this equilibrium, the condition 𝑘 >
1

2
𝛽 must 

hold. This condition ensures that a clone candidate does not enter. An equilibrium where 

two or more clone candidates at the median enter and split the votes evenly is impossible, 
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Figure 2 

because an additional candidate located just to the left or right of the median could enter 

and gain a plurality. 

Two-candidate equilibria 

Next, there is an infinite set of non-clone two-candidate equilibria where one 

citizen enters at a position 𝑏, where 𝑏 ∈ (0,
2

3
), and another citizen enters at 𝑎 = −𝑏 (see 

Figure 2a, Position Set 1). They split the vote evenly. To maintain this equilibrium, the 

condition 
1

2
𝛽 > 𝑘 must hold, so that each candidate finds it worthwhile to enter. Note that 

a condition ensuring that no other candidates enter, similar to the condition for the one-

candidate equilibrium, is unnecessary for this category of equilibria because no other 

citizen, including a clone of either candidate, could enter and win, provided the 

candidate’s positions are as described. All other citizens will therefore choose to stay out. 

If the candidates are too extreme, a third candidate at or near the median could enter and 

potentially win the election (see Figure 2b, Position Set 1). 



8 

 

N-candidate equilibria 

The equilibria for cases with more than two candidates become more complex. 

Since an equilibrium requires firstly that every candidate be satisfied with entering, we 

can lay down a general condition: in equilibrium, the 𝑛 candidates must be distributed 

across the policy space such that they are in an 𝑛-way tie (that is, each candidate’s vote 

share is equal). Given this condition, the benefit-cost condition required for each 

equilibrium with 𝑛 candidates is  
1

𝑛
𝛽 > 𝑘. This means that given determinate values of 𝛽 

and 𝑘, we can determine the maximum number of candidates that can enter in any 

equilibrium. Specifically, if 
1

𝑛
𝛽 < 𝑘, there can be at most 𝑛 − 1 candidates in 

equilibrium. 

We can further deduce from the equal-vote-share condition that whenever a clone 

candidate is included among the set of candidates, there is an opportunity for an 

additional candidate just to the side of the clones to enter and gain a vote share greater 

than or equal to the other candidates. We can be certain of this because the presence of 

clones in a tied election entails that the clones are positioned further away from the other 

candidates in the election. If the clones were closer or the same distance, the clones 

would have smaller vote shares than the other candidates. If an additional candidate can 

enter and win the election, she will do so, which means the initial distribution of 

candidates was not an equilibrium. If the best that the new candidate can do is tie with the 

other candidates, she wins with probability 𝑝 >
1

𝑛
, since the clones have strictly smaller 

vote shares after the new candidate enters and are thus excluded from the tie. In order to 

deter this new candidate from entering, we would need 𝑝𝛽 < 𝑘 to hold. Given that 𝑝 >
1

𝑛
, 
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Figure 3 

𝑝𝛽 < 𝑘 and 
1

𝑛
𝛽 > 𝑘 cannot both be true, which means either that the new candidate is 

not deterred, or at least one of the candidates gains by staying out. Therefore, we can rule 

out all cases with clones.  

The equal-vote-share condition entails an additional property of each equilibrium: 

each candidate can only be located within a certain “pocket” in the policy space. 

Consider the three-candidate case. Each candidate’s vote share must be 
1

3
. Therefore, the 

policy space must be divided into thirds among the candidates. This entails that the 

midpoint between 𝑎 and 𝑏 is −
1

3
 and that the midpoint between 𝑏 and 𝑐 is 

1

3
. If the 

midpoints were any other number, the candidate’s vote shares would not be 
1

3
 each. 
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Therefore, 𝐴’s pocket is the interval 𝑎 ∈ (−1, −
1

3
), 𝐵’s pocket is the interval 𝑏 ∈

(−
1

3
,

1

3
), and 𝐶’s pocket is the interval 𝑐 ∈ (

1

3
, 1). These intervals are non-inclusive 

because a candidate locating at either extreme or any of the midpoints would require 

clones at other positions in order to have equal vote shares, and we have already ruled out 

all clone cases.  

Once one candidate within any pocket is selected to enter, the rest of the 

candidates that will enter in the other pockets in equilibrium can be found 

algorithmically. For example, if 𝑎 = −
2

3
, then in equilibrium 𝑏 = 0, and 𝑐 =

2

3
 (see 

Figure 3, Position Set 1). However, if 𝑎 = −
5

6
, then 𝑏 =

1

6
, and 𝑐 =

1

2
 (see Figure 3, 

Position Set 2). Both of these results are three-candidate equilibria given the condition 

1

3
𝛽 > 𝑘. Any clone who enters splits a vote share with one of the other candidates, so her 

vote share is strictly lower than  
1

3
 and she loses. Any other citizen located between the 

candidates who have already entered captures a vote share strictly lower than  
1

3
 if she 

enters. In the second case, for example, the maximum vote share a fourth candidate could 

obtain is  
1

4
, if the citizen located at  −

1

3
 entered. This would decrease the vote shares of 

𝐴 and 𝐵, but 𝐶’s vote share would still be 
1

3
, causing the new candidate to lose (see Figure 

3, Position Set 3). The small dot for 𝐷 in Figure 3, Position Set 3 means that 𝐷 could not 

win the election if they entered. A similar algorithm can be applied in cases with more 

candidates, after identifying the candidate pockets.  
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Plurality rule equilibria summary 

Under plurality rule there are no zero-candidate equilibria and there is a unique 

one-candidate equilibrium given that 
1

2
𝛽 < 𝑘 holds. There is a continuum of symmetric 

two-candidate equilibria where citizens whose preferred policies have an absolute value 

less than 
2

3
 can enter, given that 

1

2
𝛽 > 𝑘 holds. There are infinite possible 𝑛-candidate 

equilibrium types, each of which is a continuum of equilibria similar to the two-candidate 

continuum. The equilibria for each type (that is, the number of candidates) are fairly 

similar to each other, with candidates always located within their respective pockets. In 

these equilibria, the maximum possible value of 𝑛 will depend on the cost-benefit ratio. 

Generally, if the cost-benefit ratio is such that 
1

𝑛
𝛽 > 𝑘 >

1

𝑛+1
𝛽, then there are an infinite 

number of 𝑛-candidate equilibria, where the 𝑛 candidates are located within the 𝑛 evenly 

spaced pockets, but there cannot be an equilibrium with 𝑛 + 1 candidates. For that same 

cost-benefit ratio, however, there are still an infinite number of (𝑛 − 1)-, (𝑛 − 2)-… 

candidate equilibria, where the candidate positions are as described above. 

IV. Ranked Choice Voting Equilibrium Analysis 

One-position equilibria 

Under RCV, there cannot be a zero-candidate equilibrium by the same reasoning 

as plurality rule. A one-candidate equilibrium, with the median citizen entering, can also 

be sustained with the same condition, 
1

2
𝛽 < 𝑘. However, unlike plurality rule, if this 

condition does not hold and a clone enters, a two-candidate equilibrium where both 

candidates are median-clones can also be maintained. If a citizen slightly to the right or 
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left of the median entered, she would “survive” (avoid elimination in) the first round, and 

one of the clones would be eliminated. However, the new candidate would then lose the 

election to the remaining candidate located at the median. If a third clone entered, she 

would survive the first round with probability 
2

3
. She would then tie and win the election 

with probability 
1

2
. Her conditional probability of winning is therefore 

2

3
∙

1

2
=

1

3
. Thus, in 

order to maintain the two-candidate median-clone equilibrium, the condition 
1

2
𝛽 > 𝑘 >

1

3
𝛽 must hold. The left side of the inequality ensures that both clones find it worthwhile 

to enter, while the right side of the inequality deters the third clone from entering. 

Generally, an 𝑛-candidate one-position equilibrium can be maintained provided 
1

𝑛
𝛽 >

𝑘 >
1

𝑛+1
𝛽 (see Figure 1, Position Set 2). Since the upper bound of the next equilibrium is 

the lower bound of the previous equilibrium, given determinate values of the parameters 

𝛽 and 𝑘, only one median-clone equilibrium will be possible, with the number of 

candidates depending on the ratio between the parameters.  

Two-position equilibria 

Next, we consider whether there can be a two candidate non-median-clone 

equilibrium. Similar to plurality rule, infinitely many two-candidate two-position 

equilibria can be maintained. However, the interval of possible policies is smaller. As 

before, candidate positions must be symmetric (ensuring that vote shares are equal and 

neither candidate regrets entering) and 
1

2
𝛽 > 𝑘 must hold. One candidate enters at a 

position 𝑏, where 𝑏 ∈ (0,
1

2
] and another citizen enters at 𝑎 = −𝑏. If candidates locate at 

positions with an absolute value greater than 
1

2
, then a candidate located either at the 
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median or just to the right or left of the median can enter, survive the first round, and 

potentially win the election (See Figure 4a, Position Set 1). If candidates locate at 

positions with an absolute value of  
1

2
 or less, then a candidate located between them 

cannot enter and win the election (see Figure 4b, Position Set 1). As before, the small dot 

in Figure 4b, Position Set 1, indicates that 𝐵 cannot win that election. However, 

regardless of the location of the candidates, a clone can enter and tie with the original 

candidate in the first round. The clone then survives the first round with probability 
1

2
, 

after which she ties the final round and wins the election with probability 
1

2
. The 

conditional probability of the clone winning is therefore 
1

2
∙

1

2
=

1

4
. Therefore, in order to 

deter the clone from entering, the condition  𝑘 >
1

4
𝛽 must hold. This condition is 

compatible with the previous condition, yielding the inequality 
1

2
𝛽 > 𝑘 >

1

4
𝛽 as the 

complete condition for this set of two-candidate two-position equilibria.  

Suppose that a clone enters at either 𝑎 or 𝑏. In order for each candidate to be 

satisfied with entry, 
1

4
𝛽 > 𝑘 must hold, since 

1

4
𝛽 > 𝑘 entails 

1

2
𝛽 > 𝑘 (the cloned 

candidates win with probability 
1

4
 and the single candidate wins with probability 

1

2
). 

However, an additional clone could enter at the other position and win with probability 
1

4
. 

In order to deter entry from this clone, 
1

4
𝛽 < 𝑘 would also have to hold. 

1

4
𝛽 > 𝑘 and 

1

4
𝛽 < 𝑘 cannot hold at the same time, so there cannot be an equilibrium with two clones 

on one side and one candidate on the other. This holds generally, so that there cannot be a 
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two-position equilibrium with 𝑛 clones at one position and 𝑚 clones at the other position 

when 𝑚 < 𝑛. 

Suppose further that an additional clone enters at the other position. The vote 

shares are equal at 
1

4
 per candidate. Each candidate has three possible outcomes in the 

first round: with 
1

4
 probability she is eliminated, with 

1

4
 probability her clone is eliminated, 

and with 
1

2
 probability one of the other candidates is eliminated. If her clone is eliminated, 

then her vote share becomes 
1

2
, the outcome of the second round is irrelevant to her, and 

she ties the final round, winning the election with probability 
1

2
. If one of the other 

candidates is eliminated, then she ties the second round with her clone, winning with 

probability 
1

2
. If she survives the second round, she ties the final round, winning the 

election with probability 
1

2
. Her overall probability of winning is therefore (

1

4
∙

1

2
) +

(
1

2
∙

1

2
∙

1

2
) =

1

4
. So, in the case where there are two clones located at each of two 

symmetric policies, each candidate wins with probability 
1

4
. A fifth clone could also enter, 

bringing the total number of candidates at one position to three. This new clone survives 

the first round with probability 
2

3
. After the first round, the game collapses into the 

previous game where there were only two candidates located at each policy. Therefore, 

the fifth clone has a conditional probability 
2

3
∙

1

4
=

1

6
 of winning the entire election. This 

means that if 𝑘 >
1

6
𝛽 holds, this additional clone is deterred from entering. The set of 

equilibria with two clones at each symmetric position in the interval (0,
1

2
] can therefore 

be maintained if 
1

4
𝛽 > 𝑘 >

1

6
𝛽 holds, ensuring that each of the four clones finds it 
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Figure 4 

worthwhile to run, but the fifth clone is deterred from entry. The pattern continues with 

parallel reasoning: an 𝑛-candidate symmetric two-position equilibrium (with 

1

2
𝑛 candidates at each position) can be maintained if 

1

𝑛
𝛽 > 𝑘 >

1

𝑛+2
𝛽 holds (see Figure 

4b, Position Set 2). With determinate values for the parameters, only one set of these 

equilibria will be possible, dependent on the ratio of the parameters. Any pair of 

symmetric policies with an absolute value less than or equal to 
1

2
 is a possible 𝑛-candidate 

two-position equilibrium for any values of 𝛽 and 𝑘 (given 
1

𝑛
𝛽 > 𝑘 >

1

𝑛+2
𝛽). 
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Three-position equilibria 

Consider now a case with three candidates located at different positions. Unlike 

plurality rule, vote shares and win probabilities need not be equal. An easily seen 

condition is that each candidate must at least have a positive probability to survive the 

first round (otherwise, she would always be initially eliminated). For example, if 𝑎 =

−
2

3
, 𝑏 = 0, and 𝑐 =

2

3
, each candidate survives the first round with 

2

3
 probability. If 𝐴 or 𝐶 

is eliminated, 𝐵 always wins. If 𝐵 is eliminated, 𝐴 and 𝐶 tie the final round and each 

wins the election with probability 
1

2
. Overall, 𝐵 wins with 

2

3
 probability and 𝐴 and 𝐶 win 

with 
1

6
 probability each. If 𝑎 were instead −

2

3
− 𝜀, where 𝜀 > 0, 𝐴 would always be 

eliminated in the first round and would therefore not enter. However, simply guaranteeing 

that each candidate can survive the first round is not sufficient. Consider also the same 

alternate policy set as before, 𝑎 = −
5

6
, 𝑏 =

1

6
, and 𝑐 =

1

2
. In this case, each candidate still 

survives the first round with probability 
2

3
. As before, if 𝐴 or 𝐶 is eliminated, 𝐵 always 

wins. However, if 𝐵 is eliminated, 𝐶 now always wins. 𝐴 has no chance of winning 

overall, despite potentially surviving the first round, and would therefore choose to stay 

out (see Figure 5a, Position Set 1). The small dot in the figure again indicates that 𝐴 

cannot win. Therefore, in order to have an equilibrium with three or more positions, 

candidates located in each position must have a positive probability to win overall. 

Returning to the 𝑎 = −
2

3
, 𝑏 = 0, and 𝑐 =

2

3
 case, we see that 𝐴 and 𝐶 have a 

lower probability of winning overall (
1

6
) than 𝐵 (

2

3
). To ensure that each candidate is 

willing to enter, 
1

6
𝛽 > 𝑘 must hold. Then, to determine whether this position set is an 
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equilibrium, we must also determine whether a fourth candidate will enter. If a candidate 

entered at any other position, she may be able to survive the first round, but would always 

be eliminated in a later round or lose in the final round. If a clone located at 𝑎 or 𝑐 

entered, she would survive the first round with probability 
1

2
, after which she would 

eventually win with probability 
1

6
. Therefore, her conditional probability of winning 

would be 
1

2
∙

1

6
=

1

12
. If a clone located at 𝑏 entered, she would survive the first round with 

probability 
1

2
, and then win with probability 

2

3
. Her conditional probability of winning 

would be 
1

2
∙

2

3
=

1

3
, which is higher than the clone at the outer position. Therefore, in order 

to deter clone entry, 
1

3
𝛽 < 𝑘 must hold. 

1

6
𝛽 > 𝑘 and 

1

3
𝛽 < 𝑘 are incompatible given 𝛽 >

0, so this set of candidates cannot be an equilibrium. The pattern continues, with clones 

located at the median entering until the probability of one of the median clones winning 

is the same as the probability of one of the outer candidates winning. This occurs when 

there are four clones at the median. At this point, a median-clone’s probability of 

surviving the first round is 
3

4
, after which she survives the second round with probability 

2

3
, and then survives the third round (becoming the only median candidate) with 

probability 
1

2
. Her probability of winning is then 

2

3
, which means that her conditional 

probability of winning overall is 
3

4
∙

2

3
∙

1

2
∙

2

3
=

1

6
. Therefore, every candidate in the election 

wins with probability 
1

6
. At this point, 

1

6
𝛽 > 𝑘 is still necessary to ensure that every 

candidate is satisfied with entry. If a clone located at one of the sides enters, her 

conditional probability of winning is still 
1

12
. If a fifth clone located at the median enters, 
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her conditional probability of winning is 
4

5
∙

3

4
∙

2

3
∙

1

2
∙

2

3
=

2

15
, which is greater than  

1

12
 but 

less than 
1

6
. Therefore, clone entry at either position is deterred when 

2

15
𝛽 < 𝑘. This is 

compatible with 
1

6
𝛽 > 𝑘. Therefore, a six-candidate three-position equilibrium can be 

sustained with 𝑎 = −
2

3
, 𝑏, 𝑐, 𝑑, 𝑒 = 0, and 𝑓 =

2

3
, given 

1

6
𝛽 > 𝑘 >

2

15
𝛽 (see Figure 5b, 

Position Set 1).  

If a sixth clone located at the median enters, her conditional probability of 

winning is 
5

6
∙

2

15
=

1

9
. 

1

9
 is less than 

1

6
, but greater than 

1

12
, so median clones are still better 

off entering than outer clones, but median clones who have already entered now have a 

lower probability of winning than any of the outer candidates. Therefore, 
2

15
𝛽 > 𝑘 >

1

9
𝛽 

must hold to both deter additional entry and make entry worthwhile for the seven 

candidates that have entered. Therefore, given this condition, a seven-candidate three-

position equilibrium can be sustained. By parallel reasoning with the condition 
1

9
𝛽 > 𝑘 >

2

21
𝛽, an eight-candidate three-position equilibrium can be sustained, as can a nine-

candidate three-position equilibrium with the condition 
2

21
𝛽 > 𝑘 >

1

12
𝛽. At this point, 

however, clones entering at the median have the same probability of winning as do clones 

entering at the outer positions, 
1

12
. Therefore, in order to have a ten-candidate three-

position equilibrium, we would need 
1

12
𝛽 > 𝑘 in order for the tenth candidate to stay in 

but also 
1

12
𝛽 < 𝑘 to deter an additional clone from entering. There is therefore no ten-

candidate three-position equilibrium, nor is there an eleven-candidate three-position 
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Figure 5 

equilibrium. However, if the set of candidates is 𝑎, 𝑏 = −
2

3
, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ, 𝑖, 𝑗 = 0, and 

𝑙, 𝑚 =
2

3
, then a twelve-candidate three-position equilibrium can be sustained, as follows.  

Each candidate wins the election with probability 
1

12
. A ninth median-clone’s 

probability of winning is 
8

9
∙

1

12
=

2

27
, while a third outer-clone’s probability of winning is 

2

3
∙

1

12
=

1

18
, which is lower than the median-clone’s probability. Therefore, to both keep all 

twelve candidates in and deter additional entry, the condition 
1

12
𝛽 > 𝑘 >

2

27
𝛽 must hold.  
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The pattern continues in that manner, until the probability of winning for a new 

outer-clone is equal to a new median-clone, at which point a new outer-clone on both 

sides and several new median-clones must enter before a new equilibrium is reached. 

There are infinitely many possible equilibria with this identical three-position position set 

(any other position set leads to one candidate certainly losing), with the general feature 

that if there are 𝑛 outer-clones there must be at least 4𝑛 median-clones (see Figure 5b, 

Position Set 2). If 𝛾 is defined as the number of median-clones, the probability that a 

median-clone wins the election is 
2

3𝛾
. Then, the general equilibrium condition is 

2

3𝛾
𝛽 >

𝑘 >
2

3(𝛾+1)
𝛽. Note that a condition concerning an outer-clone’s probability of winning is 

unnecessary, since the only points at which that probability would matter are when it is 

equal to the median-clone’s probability of winning. Since the lower bound of each 

equilibrium condition is equal to the upper bound of the next condition, given a 

determinate value of the parameters 𝛽 and 𝑘 only one of these many 𝑛-candidate three-

position equilibria will be possible, depending on the ratio of the parameters. The number 

of candidates will be the number of median-clones plus the number of outer-clones, so 

𝑛 =  𝛾 + 2 ∙ 𝑡𝑟𝑢𝑛𝑐 (
𝛾

4
), where the 𝑡𝑟𝑢𝑛𝑐 function returns the value of its argument (in 

this case, the quotient of 𝛾 divided by 4) truncated to a whole number. 𝑡𝑟𝑢𝑛𝑐 (
𝛾

4
) is the 

number of outer-clones at each outer position. 

Equilibria with more than three positions 

No other multi-candidate or multi-position equilibrium exists. To see this, 

consider four candidates positioned along the policy space. Taking the evenly spaced 
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Figure 6 

case, 𝑎 = −
3

4
, 𝑏 = −

1

4
, 𝑐 =

1

4
, and 𝑑 =

3

4
, we see that it begins with a four-way tie in the 

first round. If 𝐴 or 𝐷 is eliminated, all her votes go to 𝐵 or 𝐶, respectively. Then, 𝐵 and 𝐶 

tie to win the election. If 𝐵 is eliminated, half her votes go to 𝐴, and the other half go to 

𝐶. 𝐷 is then eliminated, at which point 𝐶 always wins. Parallel reasoning applies for 𝐶′𝑠 

elimination, with 𝐵 always winning the election. Therefore, this position set (and any 

other set that begins with a four-way tie) cannot be an equilibrium, because 𝐴 and 𝐷 

cannot win in any scenario (see Figure 6, Position Set 1). The small dots in this figure 

indicate that 𝐴 and 𝐷 cannot win. 

Consider further a position set that begins with only a two-way tie, such as 𝑎 =

−
1

2
, 𝑏 = −

1

4
, 𝑐 =

1

4
, and 𝑑 =

1

2
. With this set, only the inner two candidates, 𝐵 and 𝐶, tie 
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in the first round, but the inner candidate that survives cannot gain enough votes to 

survive the second round. Thus, neither 𝐵 nor 𝐶 wins in any scenario (see Figure 6, 

Position Set 2). The small dots in this figure indicate that 𝐵 and 𝐶 cannot win. A different 

four-position set such that there is a two-way tie among outer candidates in the first round 

proceeds in an analogous manner, because if 𝐴 is eliminated in the first round, all her 

votes go to 𝐵 and 𝐷 is eliminated in the second round. Parallel reasoning applies if 𝐷 is 

initially eliminated. In this case, 𝐴 and 𝐷 cannot win in any scenario. 

Finally, consider a four-position set such that there is a three-way tie in the first 

round, such as 𝑎 = −
2

5
, 𝑏 = 0, 𝑐 =

2

5
, and 𝑑 =

4

5
. If 𝐵 is eliminated in the first round, 𝐷 

will then be eliminated, and then 𝐴 and 𝐶 will tie to win the election. If 𝐶 is eliminated in 

the first, 𝐵 and 𝐷 tie in the second round. If 𝐵 is then eliminated in the second round, 𝐴 

wins, and if 𝐷 is eliminated in the second round, 𝐵 wins. If 𝐷 is eliminated in the first 

round, 𝐵 will be eliminated in the second round, and then 𝐴 and 𝐶 will again tie to win 

the election. Thus, there is no scenario where 𝐷 can win the election (see Figure 6, 

Position Set 3). The small dot in this figure indicates that 𝐷 cannot win. As before, none 

of these cases can be equilibria, because there are candidates that always lose and would 

therefore gain by staying out. Any 𝑛-position set where no candidates are immediately 

eliminated will either be or eventually collapse to one of these cases (a four-, three-, or 

two-way tie in the third-to-last round), meaning that at least one candidate will certainly 

lose in any of these position sets. Therefore, there cannot be an equilibrium with four or 

more positions under RCV.  
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RCV equilibria summary 

 Under RCV there is no zero-candidate equilibrium, and for any cost-

benefit ratio, there is one 𝑛-candidate one-position equilibrium where all candidates are 

clones at the median. 𝑛 will depend on the cost benefit ratio, such that 𝑛 clones enter if 

the ratio is such that 
1

𝑛
𝛽 > 𝑘 >

1

𝑛+1
𝛽. There are infinite symmetric 𝑛-candidate two-

position equilibria where 𝑛 ≥ 2. In these equilibria 
1

2
𝑛 clones enter at a position with an 

absolute value less than or equal to 
1

2
, 

1

2
𝑛 candidates enter at the symmetric position, and 

𝑛 again depends on the cost-benefit ratio such that 𝑛 candidates enter if the ratio is such 

that 
1

𝑛
𝛽 > 𝑘 >

1

𝑛+2
𝛽. Thus, for a given cost-benefit ratio only one continuum of 

equilibria will be possible. For a given cost-benefit ratio, there is one 𝑛-candidate three-

position equilibrium where 𝑛 ≥ 6. 𝛾 clones enter at the median, and 𝑡𝑟𝑢𝑛𝑐 (
𝛾

4
) clones 

enter at each outer position, so that 𝑛 =  𝛾 + 2 ∙ 𝑡𝑟𝑢𝑛𝑐 (
𝛾

4
). 𝛾 depends on the cost-benefit 

ratio such that 𝛾 median-clones enter if the ratio is such that 
2

3𝛾
𝛽 > 𝑘 >

2

3(𝛾+1)
𝛽. There 

are no equilibria with more than three positions. 

V. Conclusion 

 Comparing the results under plurality rule and RCV is interesting in the context of 

Duverger’s Law. Under plurality rule we see that, depending on the relative values of 𝛽 

and 𝑘, the benefit and cost of running respectively, there can be many equilibria with 

more than two candidates, none of which can be clones. This implies a wider variety of 

options for voters to choose from. Under RCV, candidates (in the form of clones) start to 

multiply, but policy positions do not. For example, comparing the one-candidate plurality 



24 

 

equilibrium with the 𝑛-candidate one-position RCV equilibria yields the insight that RCV 

does not change the outcome for voters in this case. Either way, the implemented policy 

will be 0. The same idea holds for the two-candidate plurality equilibria and the 𝑛-

candidate two-position RCV equilibria. RCV might allow for equilibria with more than 

two candidates, but they still only have two positions, which might end up being the same 

positions that obtain under plurality. In fact, the range of potential symmetric positions is 

smaller under RCV than under plurality rule. The most interesting case, however, is the 

comparison between the three-candidate plurality equilibria and the 𝑛-candidate three-

position equilibria. Here RCV’s tendency to multiply clones can be clearly seen, as 

clones, especially median-clones, start to accumulate in the various equilibria. Under 

plurality rule, if there are three positions, there are three candidates, but under RCV, if 

there are three positions, there are at minimum six candidates. However, voters are still 

choosing between the same three policies. Further, RCV cannot support higher numbers 

of positions, while plurality rule supports as many different positions as the cost-benefit 

ratio allows. Thus, RCV may nominally avoid Duverger’s Law through the accumulation 

of clone candidates, but in principle the range of options for voters to choose from is the 

same, or even restricted when plurality equilibria with a greater number of positions are 

considered. 

 RCV also changes the lotteries that voters face in three-position equilibria. Under 

plurality rule, each three-candidate equilibrium is an equally weighted lottery of three 

fairly evenly spread policies. Under RCV, every three-position equilibrium skews heavily 

towards the middle policy, which is the median voter’s position. This result comes about 

because of the structure of the voting rule. No matter what, every election will end with 
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exactly one candidate competing for votes against exactly one other candidate. Therefore, 

the candidate closer to the median voter is victorious. This confers an advantage on 

moderate candidates. Under RCV, the middle policy is more than three times as likely to 

be the outcome as one of the side policies in the three-position equilibria. Further, RCV 

cannot sustain an equilibrium with more than four policies on the table. The reason for 

this is again because of the intrinsic moderate bias within RCV that this analysis suggests 

is present. Since candidates closer to the median are favored in the final round, any 

candidate who must enter at a more extreme side position in order to survive the first few 

rounds sacrifices victory in the final round, which is the one that matters most. 

Meanwhile, plurality rule in this model is able to sustain equilibria with a comparatively 

large number of candidate positions, each of which has an equal chance of being 

implemented. RCV, in contrast to plurality rule, reduces the number of viable positions. 

 There is also something interesting to be said about citizen preferences over 

different voting rules. Intuitively, it seems likely that citizens with more extreme 

preferred policies might prefer plurality rule over RCV, because plurality rule allows for 

more extreme policy positions in equilibrium. Citizens with moderate preferred policies 

might prefer RCV for a similar reason. However, depending on the loss function of the 

citizens, their risk tolerances will change. For example, in a three-candidate or -position 

scenario, if the loss function were linear (that is, the citizen is risk neutral), an extreme 

citizen would be indifferent between the equally-weighted lottery between their preferred 

policy, the median policy, and the other extreme policy that would result under plurality 

rule, and the median-weighted lottery that results under RCV. Alternatively, however, an 

extreme citizen with a concave loss function (that is, the citizen is risk averse) will prefer 
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RCV (and thereby a higher chance of getting the median policy) over plurality rule, to 

reduce the likelihood of the other extreme policy being implemented. Finally, if the 

citizen’s loss function were convex (that is, the citizen is “risk loving”), they will prefer 

plurality rule, because they are closer to being indifferent between the median policy and 

the other extreme policy, and therefore want to maximize the chance that their preferred 

policy is implemented. If citizens are risk neutral or averse, a social planner would 

choose to implement RCV. In the risk neutral case, RCV makes moderate citizens better 

off without making extreme citizens worse off. In the risk averse case, everyone is better 

off under RCV. The risk loving case is more ambiguous, however, because social welfare 

would depend on the exact spacing of the candidates and the exact form of the loss 

function. 

 Considering our results in conjunction with those of Dellis et al. (2017) yields a 

few interesting comparisons. Candidate behavior in equilibrium varies widely between 

the two models, with office-motivated candidates willing to take larger risks than their 

policy-motivated counterparts with respect to the policy outcome of the election. This is 

reflected in the fact that Dellis et al. find that candidates at the more extreme positions 

will drop out to allow the moderate candidate to win if they are policy motivated, but we 

find here that these candidates are willing to stay in the race under office motivation. This 

explains why under office motivation RCV can support three-position equilibria, while 

RCV can support only one- or two-position equilibria under policy motivation. However, 

whether candidates are policy- or office-motivated, we find with Dellis et al. that RCV 

reduces polarization and restricts the number of viable policy positions in equilibrium 

compared to plurality rule. 
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 There are a few limitations to these results. First, in this paper we have 

concentrated on strategic candidates, but Duverger’s Law can also be considered from the 

perspective of strategic voting. Future research could examine what occurs under RCV 

with strategic voters. Next, this paper utilized a spatial competition model, but there are 

other ways of modeling elections. Future research could examine these alternate models 

under RCV. Finally, we have assumed pure office motivation and Dellis et al. (2017) have 

already explored pure policy motivation, so future research could concentrate on a hybrid 

policy/office motivation scenario (candidates care about the policy that is implemented, 

but there are also “perks” or benefits to winning, which is how Osborne and Slivinski 

(1996) originally specified the citizen-candidate model). It seems likely that such results 

would depend on the relative size of the benefit of winning compared to the cost of 

running. Where a candidate might exit in order to get her second-choice policy for certain 

under pure policy motivation, perks of office may induce her to enter (despite the risk of 

a worse policy), if the office perks were sufficiently large.
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