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ABSTRACT 

SIDE-CHANNEL LEAKAGE FROM THE ADVANCED ENCRYPTION 
STANDARD ON FIELD PROGRAMMABLE GATE ARRAYS 

Kaden Makechnie-Hardy 

Electrical and Computer Engineering  

Bachelor of Science 

 As field programmable gate arrays (FPGAs) perform increasingly critical cryptography, 

researchers study the safety of these computations. One such compromise on the safety of 

cryptography is the side-channel attack. These attacks exploit sources of information called 

leakage that escape a cryptographic system in ways the original design did not intend. One 

dimension of a successful side-channel attack is the collection of leakage. This research 

configures the Advanced Encryption Standard (AES) on an FPGA and demonstrates strategies 

for collecting three types of side-channel leakage: power consumption, temperature emissions, 

and ring oscillations. 
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I. Introduction 

 Cryptography is the study of secret communication, often in the presence of adversaries. 

Cryptography is a foundation for trust that underpins critical systems and day-to-day activities. 

Things from global financial markets to text messaging depend on trusted cryptography. 

Anciently, cryptography shifted letters in war messages to preclude enemy spying [1]. These 

ciphers are simple enough that kids use them for fun. The algorithmic specification of this kind 

of cryptography can be as simple as “shift each letter three spots forward in the alphabet.” For 

example, the input message “abc” becomes the encoded message “def”. A more complex input 

like “attack at dawn” becomes “dwwdfn dw gdzq”. This cryptographic algorithm is called 

Caesar’s Cipher. While cryptography has historically aided war efforts, modern cryptography 

propagates into healthcare, education, transportation, and other corners of our lives. Increasingly, 

we trust cryptography to secure our communication, navigation, diaries, photos, medical 

histories, banking information, and digital lives. 

 Today, cryptography requires the expertise of mathematicians, computer scientists, and 

computer engineers. Indeed, most cryptography is performed by computers at speeds an ancient 

general would envy. While the specification of Caesar’s cipher takes one sentence, modern 

cryptographic algorithm specifications can take dozens of pages and require years of research. 

These algorithms are formal specifications of the precise steps necessary to convert plaintext into 

ciphertext (encryption) and ciphertext into plaintext (decryption). While mathematicians have 

verified these cryptographic algorithms, the formal specification is different from the 

implementation. Consider the relationship between a recipe and the product of the recipe. A 
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culinary expert may specify exact instructions for combining and preparing ingredients with a 

well-tested recipe. However, the recipe guarantees little about what happens in the kitchen. 

 Real implementations of cryptographic algorithms often introduce vulnerabilities 

unrelated to the formal specification. These vulnerabilities exploit side channels like sound, 

temperature, electromagnetic emanations, power consumption, and others. “A side channel is a 

potential source of information flow from a physical system to an adversary, beyond what is 

available via its abstract model” [2]. Another word for side-channel leakage is physical leakage 

information (PLI) [3]. Sometimes, these side channels even reveal secret details about the 

algorithm’s state. That may be enough to compromise the system’s security, giving adversaries 

access to otherwise encrypted secrets. A side-channel attack happens when adversaries exploit 

flaws in the implementation (not the original algorithm) and reveal secrets. 

 Rightfully, researchers study, verify, and validate cryptographic algorithms. 

Mathematicians and cryptographers at universities, research institutes, governments, and 

businesses work together to formally specify correct cryptographic algorithms (recipes). Then, 

implementors create software and hardware (kitchens) where the steps in the algorithm to 

produce plaintext and ciphertext are followed. Implementors put cryptography into television 

remotes, social messaging apps, keyless door locks, digital signature software, and many other 

places. In some places, packaged software implements the steps of cryptographic algorithms. In 

other places, dedicated instructions on a CPU implement the steps of cryptographic algorithms. 

 This research investigates side-channel leakage from one implementation of the 

Advanced Encryption Standard (AES) on a Field Programmable Gate Array (FPGA). This 

implementation is an open-source contribution by Homer Hsing [4]. Other researchers have 

2



demonstrated side-channel attacks and analysis on FPGAs against other implementations of AES 

[5], [6], [7], [8]. The novel contribution of our research is in studying the unique combination of 

this AES implementation and the PYNQ-Z2 FPGA. Our findings indicate the importance of AES 

implementation selection and the influence implementation details have on side channels. 

II. Definitions 

 We will discuss what AES and FPGA mean in turn. In 2001, the National Institute of 

Standards and Technology specified AES in FIPS 197 [9]. AES is a symmetric cipher, which 

means the key for encryption is the same as the key for decryption. To start encryption, AES 

requires two inputs: a plain text message and a key. At the end of encryption, the algorithm has 

produced ciphertext. Symmetrically, AES takes ciphertext and uses the same secret key to 

calculate the plain text. This key may be 128, 192, or 256 bits long, which requires 10, 12, or 14 

rounds for computation, respectively. A round represents a repeatable unit of steps in the 

algorithm. Longer keys are more secure, and adding more rounds requires more computing time. 

AES is a block cipher, which means it operates on a fixed length of bits called a block. With 

AES, the block is always 128 bits long, regardless of key size. Thus, input and output are always 

128 bits long. The word size is 32 bits. Word size is another useful grouping of bits like bytes or 

nibbles. Figure 1 is John Savard’s visual representation of AES. 
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Figure 1 
John Savard’s Representation of AES 

 The block, or the state, is where all operations happen. Encryption performs operations 

called SubBytes, ShiftRows, MixColumns, and AddRoundKey on the state. Figure 1 illustrates 

how the state changes through each of these four operations. Decryption performs operations 

called InvShiftRows, InvSubBytes, InvMixColumns, and AddRoundKey. These methods have 

different properties in different implementations while producing the same output. These are the 

steps that side-channel attacks try to reveal. Understanding these methods is important because 

abstracting these methods helps researchers build models of expected side-channel leakage to 

compare against real side-channel leakage. This is an essential early step in exploiting side-

channel leakage and accomplishing a side-channel attack. 

 FPGAs are reprogrammable hardware that approach the performance efficiency of 

dedicated hardware without the upfront design and manufacturing costs of dedicated hardware. 

We placed AES on the FPGA pictured in Figure 2.  
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Figure 2 
PYNQ-Z2 Board Featuring a ZYNQ Field Programmable Gate Array (FPGA) 

 FPGAs are relatively inexpensive, easy to reprogram, and power efficient. FPGAs are 

particularly popular for cryptography because they offer the performance benefits of dedicated 

hardware and the reprogrammable flexibility of software development. FPGAs can be 

reprogrammed to implement arbitrarily complex devices, even as complex as microprocessors 

[10]. The reprogrammable part is called the programmable logic (PL) or the fabric. Figure 3 

shows one example of programmable fabric.  

 

Figure 3 
ZYNQ XC7Z020-1CLG400C SoC Featuring Dual ARM® Cortex®-A9 MPCore™ and Zynq®-7000 Artix™-7 FPGA 
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 When a designer takes a high-level representation of behavior, like a cryptography 

algorithm, and FPGA tooling converts it to low-level functionality, we call that synthesis [10]. 

Synthesis creates a netlist, representing connections between logic gates [11]. On the fabric, 

those logic gates are represented by lookup tables, which map certain inputs to certain outputs 

[10]. These are the logical operations that side-channel analysis attempts to observe. These 

operations each consume certain amounts of power, emit certain amounts of heat, and cause 

certain electromagnetic emanations. A careful understanding of how these gates represent the 

high-level steps of the algorithm is the first step toward performing a bona fide side-channel 

attack. 

 Many computers are sequential instruction executors. In contrast, FPGAs have no 

concept of sequential instruction execution [10]. This makes precise control of input and output 

simpler than with other types of computers [12]. Implicit assumptions in FPGA specification 

may inadvertently influence implementation [11]. Without sequential instruction execution, 

information leaked through the side channels comes from combinatorial logic—not sequential, 

individual instructions. 

 Why would a designer work with FPGAs instead of other embedded computers like 

Application-specific Integrated Circuits (ASICs), as shown in Figure 4? On one hand, ASICs are 

great for specialty computing needs. However, ASICs are not reprogrammable. Per unit, ASICs 

are cheaper to fabricate than FPGAs but the upfront costs of ASICs can be large compared to 

FPGAs. While the per-unit cost of an FPGA is higher than an ASIC, an individual can get started 

with FPGA development for the cost of a board. It can also be costly to mass-produce ASICs and 

later realize a flaw in the design. These flaws are trivial to fix on FPGAs and impossible to fix on 
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ASICs. FPGAs are great for prototype and production embedded systems where ASICs are too 

expensive [10]. However, FPGAs have expanded to mainstream production because FPGAs 

deliver faster time-to-market and easy reprogrammability [11]. Figure 5 shows the cost-to-scale 

relationship between FPGAs and ASICs. 

 

Figure 4 
Application Specific Integrated Circuit (ASIC) 

 

Figure 5 
Cost Vs. Scale of FPGAs and ASICs 
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III. Literature Review 

 One of the earliest discovered and simplest forms of side-channel leakage comes from 

measuring how long an operation takes. In other words, the adversary extracts secret information 

about the state of the cryptographic algorithm by precisely measuring the timing of known 

computations. Adversaries measure how long certain inputs take to calculate certain outputs. 

With enough repetition, adversaries build models correlating mere time measurements with 

secrets, then they perform a timing attack. Before it was discovered that timing information 

could reveal secrets, cryptography designers tried to make their algorithms operate as efficiently 

as possible [2]. However, well-defined algorithms with clear timing expectations exacerbate 

vulnerabilities to timing attacks. That led to one defense against timing attacks, which inserts 

random or defined idle time (padding) into the execution of the steps of the algorithm [2]. If the 

adversary can only view the timing of input and output operations, padding is enough to stop the 

adversary from deducing what is being computed. However, delaying output consumes less 

power, which appears on a power trace [13]. This led security researchers to explore measuring 

power and timing information together. This led to the simple power analysis side-channel attack 

[2], pioneered by Paul Kocher. 

 Simple Power Analysis (SPA) is a devastating, strong side-channel attack [2]. SPA 

derives information about the secret key from the shape of the power signal during cryptographic 

execution [2]. This is achieved by sampling the power signal 10 to 100 times per clock cycle [2]. 

This sampling produces a power trace, which represents the side-channel leakage. Why are 

precisely timed, high-resolution power measurements useful? Different operations have different 

power consumptions. For example, a floating-point operation may consume more power than an 
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integer operation or a processor stall from a cache miss may consume less power than active 

computation [13]. Adding 3 and 4 consumes slightly different power than adding 3 and 3. Most 

revealing, “[t]he power consumption of a cryptographic operation often depends on a secret key 

value” [13]. In summary, SPA captures and exploits the unique power consumption of atomic 

steps in a cryptographic algorithm. Paul Kocher developed this kind of attack in 1998. Figure 6 

shows one of Kocher’s original power traces. 

 

Figure 6 
Sample Power Trace 

 Mangard, Oswald, and Popp wrote, “power analysis attacks exploit the fact that the 

instantaneous power consumption of a cryptographic device depends on the data it processes and 

on the operation it performs” [14]. In other words, the peaks and troughs in Figure 6 represent 

information an attacker can use to reveal information about data and operations [13]. These 

traces show the power drawn by boards like those pictured in Figure 2. 

 The next level of sophistication is Differential Power Analysis (DPA), which statistically 

analyses many power traces instead of just one [2]. Hypothesis testing against side-channel 

signals is a core step in this type of side-channel attack [2]. 

9



 Physical access is not necessary for side-channel attacks. Traditional side-channel attacks 

connect a low-impedance resistor in series with the power supply and measure power 

consumption as the voltage drops across the resistor. However, researchers have recently built 

on-fabric power monitors from ring oscillators [13]. These ring oscillators have enough 

resolution and sensitivity to measure the power consumption of other modules on the FPGA 

fabric (including other software programs running on the microprocessor) [13]. The ring 

oscillator frequency is sensitive to variations in voltage, temperature, and even what process is 

running. In other words, the time it takes for the signal to propagate around the loop directly 

depends on what is running nearby. It is no longer necessary to have physical access to a board to 

analyze its side-channel leakage. One impetus for this research is the problem of multi-tenant 

FPGAs in the cloud, where one tenant may run a ring oscillator near another tenant’s legitimate 

computing. However, many cloud providers prohibit these kinds of combinatorial circuits from 

running on multi-tenant FPGAs. 

 Researchers have long exploited side-channel attacks to reveal cryptographic secrets. 

Researchers are even beginning to exploit side-channel attacks to reverse engineer the 

architecture of confidential intellectual property (IP) [15]. (IP is a catch-all term for pre-

packaged designs available for licensing.) Some of the most important research in side-channel 

attacks happens in developing countermeasures that obscure the inner workings of cryptographic 

IP cores [3]. 

 Side-channel attacks are a popular research area because they present a difficult security 

problem for accelerated computing. How can one secure what does not exist in the “abstract 

model” of a computing system [2]? Two broad types of countermeasures include masking and 
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hiding. Masking obscures the PLI by introducing randomness to prevent an attacker from 

associating PLI with the models of the computation they are attacking [16]. Hiding renders the 

PLI uniform or random to make useful information indistinguishable [3]. Within hiding, there are 

also two types. Vertical hiding influences the amplitude of PLI data and horizontal hiding 

influences the timing of PLI data [3]. The graph of PLI is called a leakage model or leakage 

function [17]. 

 Early developments in side-channel attacks were effective at cracking small keys of 8 or 

16 bits [17]. However, with larger keys like AES’s 128, 192, or 256-bit key, side-channel attacks 

require more sophisticated approaches. The divide and conquer strategy divides the key into sub-

keys and recovers sub-keys before combining the sub-keys to reveal the key. The primary 

enemies of key recovery with non-trivial key sizes are noise and error. Therefore, reliable key 

recovery requires large sample sizes (where individual samples are traces containing thousands 

of trace measurements) and data-driven statistical methods [17]. 

 Another way to categorize side-channel attacks is into profiled and non-profiled. 

Attackers calculate the Hamming Weight and Hamming Distance to perform non-profiled 

attacks. These are called non-profiled because the attacker has no chance to train on the target 

device. Conversely, profiled attacks exploit data-driven model training to divide and conquer. 

Profiling is expensive, and it cannot reasonably recover an AES key without building precise 

leakage models [17]. 

 The essence of side-channel analysis is measuring leakage over an interesting period, like 

during a cryptographic operation [18]. 
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IV. Methods 

 Our research investigates an AES-256 implementation running on the ZYNQ SoC on a 

PYNQ-Z2 board. This board is popular for educational development because it is an open-source 

project that exposes a Python API for the Xilinx platform [19]. Most useful for this research, this 

board offers general-purpose input and output (GPIO) pins, options for SD card booting, and a 

USB connection (used to open a teletype).  

 For our AES implementation, we chose tiny_aes [4]. Homer Hsing wrote tiny_aes in 

2012 with an emphasis on high speed as demonstrated by his highly parallel, synchronous 

implementation. His design sends one 128-bit block through one round of encryption every clock 

cycle, for all 14 rounds of AES-256. This core encrypts constantly, so we built a wrapper around 

it that flags when valid encrypted data has reached the end of round 14. One implication of this 

design choice is that it seems impossible to deduce which discrete step of encryption the state of 

the side channels represents when each round of encryption is running each clock cycle (working 

on 128 bits at a time). Compared with a sequential instruction executor that might step from 

round to round, our core is constantly performing all steps of all 14 rounds, continuously. At the 

beginning of our research, we did not realize how powerful this side-channel leakage obfuscation 

method would turn out to be. 

 As for resolution, let us describe some of the tooling we used. We strived to match or 

exceed the quality of data found in the literature review. The PYNQ-Z2’s system clock is 

configured to run at 125 megahertz. To reach the minimum 10 samples per clock cycle, we must 

have an oscilloscope capable of reading 1.25 gigasamples per second. Our oscilloscope, the 

Keysight InfiniiVision DSOX2012A, recorded 2 gigasamples per second. 
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 To facilitate easier side-channel leakage collection, we developed a series of helper 

methods accessible via the teletype to initiate and control encryption. Users of the cryptographic 

core may run the various methods pictured in Figure 7. These allow users to run tests on the core, 

run the core for a set amount of time, or run an on / off pattern (for example, 1 second on and 1 

second off repeated 20 times).  

 

Figure 7 
Controller Application for Delivering Commands to Cryptography Core 

 We investigated three side channels: power, temperature, and a ring oscillator frequency. 

We selected these three side channels because they appeared commonly among recent side-

channel analysis studies. These data represent individual traces, not the many traces necessary 

for DPA. 

 First, we accomplished power analysis by building the circuit pictured in Figure 8, which 

was patterned after the diagram in Figure 9. This circuit breaks open the power supply 

connection and inserts a shunt resistor between the board and the power source. To take 

measurements, we connected oscilloscope probes to both ends of the resistor. We patterned our 

design after a common exploit used on smart card readers developed by Paul Kocher and 

Starting AES Application
Which tests would you like to run?
1: Hardcoded Test Vectors  

Secworks  
Ting AES HW  
Tiny AES Generated  
NIST Test Suite (KAT, MMT, MCT) NIST Known Answer Test  
NIST Multi-block Message Test  
NIST Monte Carlo Test

2: Repeated run (chose how long you would like to run for)
3: Duty cycle test (chose how long you want it on and off)
4: Duty cycle temperature test (record the temperature during duty 
cycle)

Enter q to quit at any time

Input a number between 1 and 4 for the test you would like to run
Make sure to send a new line (Ctrl + j on putty)
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explained by Mangard, Oswald, and Popp [14]. Each measurement takes place about ground 

truth, which is the definitive start of valid encryption. The ground truth signal is high during 

valid encryption and low when the core is encrypting whatever nonsense is left over. That ground 

truth signal is programmed to come out of the general-purpose input and output pins, as 

connected by the blue wire in Figure 8. With a two-channel oscilloscope, one may measure the 

ground truth and the power consumption concurrently. 

  

Figure 8 
Oscilloscope Connected to Power Analysis Circuit and Ground Truth from FPGA 

 

Figure 9 
Power Analysis Circuit 

 One advantage of this circuit is its price performance. All of the parts can be purchased 

for less than a few American dollars. One disadvantage of this circuit is the quality of the resistor 
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and the precision of our calculations based on that resistor. However, with power analysis, the 

variation is what matters—not the absolute values. Therefore, while more precision may be 

desirable for the sake of high-precision data, it is not necessary. In addition, while Kocher 

measured and worked with millivolts, we converted the measured volts to amps based on the 

shunt resistor’s resistance. 

 Second, we accomplished temperature collection through the XADC (Xilinx Analog-to-

Digital Converter) wizard. This wizard is an interface for System Monitor, which sits on the 

ZYNQ system-on-a-chip (SoC). The SoC is divided into programmable logic (PL) and a 

processing system (PS). The processing system is the Arm core and the programmable logic is 

the FPGA fabric. In ZYNQ series FPGAs, the System Monitor sits on the PL side of the SoC. 

This means our temperature readings are coming from close to the cryptography core, which is 

also located on the PL. (In contrast, power consumption information is measured and generated 

spatially far from the cryptography core while being temporally sensitive to the slightest change 

in computation on the PL. Ring oscillations offer the benefits of both emanating directly from the 

PL and keeping close temporal sensitivity to minuscule changes on the PL. While power 

consumption and ring oscillation are highly sensitive to slight changes, temperature is a broad 

and imprecise measure.) The XADC Wizard, as shown in Figure 10, shows a representation of 

the IP Block responsible for transmitting temperature readings from the programmable logic. 
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Figure 10 
Xilinx Analog-To-Digital Converter Intellectual Property Block 

 Third, we accomplished ring oscillator analysis by adding a ring oscillator to the fabric. 

Ring oscillators are loops of inverters, also called NOT gates. Figure 11 shows what this loop of 

inverters may be conceptualized as. The ring oscillator implemented on the PL has 7 inverters. At 

this stage in the development of a ring-oscillation-based side-channel analysis, the only 

important consideration when deciding how many inverters to place in a ring oscillator is that the 

number must be odd. This is to ensure the inverters uniformly alternate from high to low and 

back again. Future researchers may increase or decrease the number of inverters to tune the 

frequency of oscillation. These looped inversions are sensitive to many kinds of changes, even as 

subtle as moving the board or changes in air movement. We found that jostling the board during 

measurements was enough to introduce changes in the ring oscillator period. The measurements 

taken below were recorded on a classroom-style lab table. For more precise ring oscillation 

measurements, it may be beneficial to experiment with dampening small structural vibrations 

from the building or even preventing regular HVAC airflow. 
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Figure 11 
Ring Oscillator Diagram 

 Why do combinatorial loops produce ring oscillations in the first place? In a perfect 

computer, combinatorial logic (also called time-independent logic) instantly reflects the output of 

its inputs. With real computers, there is a slight delay as the input signals propagate to the 

outputs. A combinatorial loop then feeds those outputs back into the inputs, causing an infinite 

loop. This loop produces interesting electromagnetic emanations as the signal infinitely 

oscillates. It should be noted that combinatorial loops like this are not allowed by most cloud 

FPGA providers because the emanations from these loops are so useful in compromising the 

security of other tenants on shared hardware. FPGA development tools like Xilinx also prevent 

developers from placing a combinatorial loop on the PL. Therefore, it is important to override 

some of the default Xilinx restrictions by including a line that says (*ALLOW_COMBINATIONAL_LOOPS = 

"TRUE" *) in the ring oscillator module. 

 Once the ring oscillator was on the fabric, we sent its emanations out through one of the 

GPIO pins. We recorded the ring oscillations as a voltage trace with the oscilloscope, similar to 

the power trace. The ring oscillation data has a distinct period, so for ease of analysis, we 

converted the oscillating voltage data into periodic data. That process takes the sinusoidal 

oscillation trace and finds the time stamps of the zero-crossings. 
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V. Results 

 For the ring oscillator (RO), we found the period to change between 5 and 6 

nanoseconds. Figure 12 shows this change. This oscillation is caused by a wide variety of 

electromagnetic emanations. It is difficult to correlate changes in the RO period with specific 

steps or computations in AES without more advanced analysis. For now, this research 

demonstrates the viability of placing a RO on the fabric near a cryptographic core and taking 

traces from the RO. 

 

Figure 12 
Ring Oscillator Trace 

 For the temperature, we found steadily rising temperatures as encryption continued 

(shown in Figure 13). However, the temperature trace is more imprecise and less sensitive than 

the power trace or the ring oscillator trace. Although it would be more formidable to steal keys or 
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text from even many temperature traces, this trace may give insights into how intensely the core 

is working or how long the core has been running. 

 One serious risk with access to temperature data happens when an attacker tries to force 

the board to run outside its safe operating temperature range and freeze the board [20]. This is 

one way to cause a denial-of-service attack, where legitimate computing is stopped. 

 

Figure 13 
Temperature Trace 

 For power, we found increasing frequency in the current oscillations. The same data is 

shown in Figures 14 and 15 at different zoom levels. The darker color represents the power trace 

and the lighter color represents a ground truth marker of when valid encryption has begun. 

Because the core is constantly encrypting (ground truth only indicates valid data going into the 

core), we can only correlate the increased frequency with the valid inputs and outputs—not 

encryption generally. Some researchers have noticed a dip in power at the beginning of each AES 

round similar to the dips we see in these traces [17]. 
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 Additionally, it is difficult to separate this consumed power from the power consumed by 

other hungry devices. Other power-consumption-heavy logic components like the direct memory 

access (DMA) engine exist spatially near the cryptography core and add noise to the side-

channel leakage. From the current data, it is too early to say if the increasing frequency we see is 

from the cryptography core, the DMA engine, or even the Arm microprocessor. 

 

Figure 14 
Power Trace 

 These ambiguities demonstrate the importance of differential power analysis (DPA), 

where statistical methods are employed to analyze a large sample size of traces. These methods 

allow researchers to separate the change in power caused by the cryptography core from the 

changes in power caused by other components on the board. 
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Figure 15 
Power Trace (Zoomed) 

VI. Key Findings  

 Our research has shown three strategies for collecting side-channel leakage from an AES 

cryptographic core running on a Pynq-Z2 FPGA. Collecting leakage information from the power, 

temperature, and ring oscillation side channels demonstrates the necessity of countermeasures 

and one perspective on the state of hardware security. 

 We found the resolution in our measurements to match that of other researchers—the 

fidelity was there. For example, for the two oscilloscope measurements (power and ring 

oscillator), our sample rate satisfied the literature expectation of 10 to 100 times per clock cycle. 

 We discovered certain dimensions of security that rely on the implementation details of 

the IP that are hard to know in advance of actually collecting that implementation’s side-channel 
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leakage. For example, there are no obvious steps to encryption because this implementation does 

not use sequential instruction execution. Many researchers study side-channel leakage on 

sequential instruction executors. Our research is novel because it studies highly parallelized 

combinatorial logic. (The implication of this fundamental feature is that if one side-channel 

attacks a sequential instruction executor, one finds a different trace of side-channel leakage than 

if one attacks a combinatorial logic device. The traces collected in this research all demonstrate 

the latter characteristics of combinatorial logic gates changing state—not a sequential stream of 

instructions.) 

 We also learned that efforts to interface with IP (like the DMA engine or the program for 

controlling encryption) contribute their own leakage and it is difficult to discern the 

cryptographic leakage from the noise contributed by the other modules. These two traits of our 

system contribute to a higher level of security against side-channel attacks by introducing noise 

and a logic wall around the sensitive, cryptographic IP. 

VII. Next Steps 

 One weakness of our ring oscillator collection strategy is that the GPIO may not be fast 

enough to reflect high-frequency oscillations. Future researchers may simply write oscillation 

data to a file. 

 An original aspiration of this research was to perform a real side-channel attack and 

recover cryptographic secrets. The two main types of DPA, correlation power analysis (CPA) and 

differential frequency analysis (DFA) have proven successful in many other research scenarios 

[21] and may be able to bring statistical rigor to the next steps in researching what is possible in 

side-channel analysis against combinatorial cryptography.  
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 Another possible next step that takes us closer toward other research and away from 

studying the combinatorial logic would be selecting a cryptographic core that sequentially steps 

through each step in each round of encryption without performing a step in parallel. Although 

this is much slower and less secure, future research may benefit from collecting side-channel 

leakage from a cryptographic core that is less parallel than tiny_aes. 

 Any efforts to quiet the side-channel leakage of other components would also help 

researchers study the purer leakage of the IP under test. For example, our DMA controller is 

made up of 10 to 15 times more logic gates than the AES implementation. Side-channel leakage 

is just as much a product of these memory management routines as it is of the AES routines. The 

side-channel analysis would be a different story if we were collecting from an 8-bit 

microcontroller with a clock speed of 12 megahertz as opposed to our highly-parallelized 128-

bits per clock cycle implementation running at 125 megahertz. The more isolated the steps for 

computation are, the easier it is to correlate leaked traces with expected values in the model. Our 

cryptography core works on 128-bit blocks in parallel each clock cycle. 

 Additionally, future researchers would ideally build a system to control the core such that 

the core can sit idly, consuming little power while not encrypting, and jump to higher power 

consumptions when valid encryption has begun. They should then build leakage models based on 

steps in the algorithm like SubBytes, ShiftRows, MixColumns, and AddRoundKey. Comparing 

these models with actual leakage models would be the beginning of the aforementioned 

differential side-channel analysis. 
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VIII. Conclusion 

 In many cases, preventing attackers from stealing side-channel leakage can be as simple 

as implementing physical security measures like placing the computer behind locked doors. In 

other cases, where physical security is lowered, hardware-level measures may be taken. Two 

popular ways to prevent side-channel leakage from spilling out of cloud FPGAs include 

disallowing combinatorial loops (to prevent someone from planting a ring oscillator) and 

building ‘logic walls’ around sensitive computation cores. These logic walls add noise and 

entropy to any trace a side channel may leak. However, with multi-tenant cloud FPGAs, it is still 

difficult to detect suspicious behavior, gauge the accuracy of suspicious behavior detection 

strategies, and even assign responsibility for scanning against suspicious behavior [22].  

 Some researchers have proposed other countermeasures like inserting dummy cycles 

(where the cryptography core performs no calculations) and false cycles (where the cryptography 

core operates on falsified data) between legitimate computations [23]. Other researchers have 

proposed countermeasures that, where possible, randomize the order of computation. This is 

called shuffling [24]. Both proposed countermeasures (and those discussed in the literature 

review) vitiate the leakage models attackers build for comparison against real trace data.  

 Broadly, we observed that countermeasures can be divided into two categories: ones that 

disturb the timing of trace measurements and ones that disturb the instantaneous trace 

measurements themselves. Our research found that having increased combinatorial logic 

executing in parallel within a clock cycle makes the instantaneous trace measurements difficult 

to tie back to any model for encryption. In addition to the parallelism within the cryptography 
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core, the direct memory access (DMA) controller helps obscure power consumption by noisily 

consuming power in parallel with the cryptography core. 

 Broadly, as programmers and computer scientists grow distant from the hardware that 

runs their software and algorithms, they risk exposing their otherwise good designs to hardware-

level vulnerabilities. In other words, working at a higher level of abstraction makes it easy to 

forget what is happening in the hardware. It is not enough to find a good recipe. The kitchen 

must be sanitary and staffed by cleanliness-minded cooks. Just as humans are safer eating food 

from a kitchen that understands how germs spread and prevents that spread, computation is safer 

when its designers understand how hardware can be spied on through its side channels. 

 We recommend that cryptographers do not merely validate their algorithms but consider 

the implementations as well. For an algorithm to be safe, its hardware must be safe too. As Alan 

Kay said, “People who are really serious about software should make their own hardware” [25]. 

For those of us who cannot make our own hardware, writing good software requires mindfulness 

of best practices at the hardware level. 
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