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ABSTRACT 

 

 

 

COMPARISON OF THE UNWEIGHTED LOG-RANK AND  

WEIGHTED PRENTICE-MODIFIED WILCOXON TESTS  

WITH LEFT-TRUNCATED DATA 

 

 

 

Ellen Wight 

Statistics Department 

Bachelor of Science 

 

 In survival analysis, there is a potential interaction between left-truncated 

data and rank test procedures for the difference between two groups that has not yet been 

investigated in depth. This study explores the effect of left truncation on the absolute and 

relative performance of the unweighted log-rank test and the weighted Prentice 

modification of the Gehan-Wilcoxon test. Resulting power from simulation study 

replications revealed that while left truncation does not affect which test performs better 

overall, it does affect the relative difference between the tests. It significantly worsens the 

individual performance of the Prentice-modified test, likely because of left truncation on 

the survival curve by which the test is weighted. Left truncation was also associated with 

an unusual decrease in power with increasing sample size for the log-rank test under non-

proportional hazards. 
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1 INTRODUCTION 

Survival analysis is a branch of statistics that models how long it takes for an 

event to occur, commonly death in biostatistics or machine failure in reliability analysis. 

More specifically, it estimates the probability of surviving up to a certain time and 

considering both observed and incomplete data, the latter of which arises due to study 

limitations such as loss to follow-up or delayed entry. The most common form of 

incomplete data is right censoring, in which researchers only know that a subject survived 

sometime after a certain point. Hypothesis testing for the significance of a difference 

between two groups, generally a control and treatment, is a common application of the 

resulting model. The effect of right censoring on the inferential power of survival 

analysis has been studied extensively, unlike the other major form of incomplete data in 

survival analysis: left truncation. This research seeks to fill that gap. 

The premise of left truncation states that subjects are only included in a study 

because they survived long enough to enter said study (Moore 2016). For example, 

patients generally enter a medical research study upon diagnosis. However, if their 

records need to be transferred to another institution, they are at risk for the event before 

they can be formally enrolled in the study. If they were to recover or die before records 

were transferred, they may never be recorded. Thus, their inclusion is conditional on the 

probability of them surviving long enough to enter the study. If such a study were to 

ignore left truncation, bias is be introduced into analyses. 

As an example of the need to consider left truncation, survival analysis has 

recently been applied to linguistics to study the factors affecting the survival of language 

(Rosemeyer 2014; van de Velde and Keersmaekers 2020); however, these studies didn't 
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appear to consider the inherent left truncation involved in linguistics. When studying 

language change, a corpus of recorded words in books and other media captures the 

common tongue of the time period of interest. If a word was used in the vernacular for a 

time but never recorded, it didn't survive long enough to enter a linguistics study and is 

considered lost. If these words aren't theoretically considered when constructing a 

survival curve, linguists may incorrectly conclude which factors most affect language 

change. 

The practical effect of incorporating left truncation lies in how subjects enter and 

exit the study and therefore the risk set, which is the number of subjects at risk for the 

event at a given time. Under a model without left truncation, the presence (or rather 

absence) of those "lost" subjects is never considered. The hypothetical study begins with 

all subjects at time zero, and only the time to event for each subject is considered (Fig. 

1A). This requires the assumption that the probability of a subject surviving long enough 

to enter the study is one. For example, a study on treatments to quit smoking likely 

wouldn't involve left truncation because all patients quit at time zero, with no risk of 

relapsing before the study because they hadn't yet quit. When left truncation is included, 

however, we condition each subject's survival on the fact that they survived up to the 

entry time, which theoretically includes missing subjects even though they are still never 

in the risk set. We consider not only when a subject experienced the event, but also when 

they became at risk of the event relative to the other subjects (Fig. 1B, with lost subjects 

in grey). This requires that we know when the subject was first exposed to the risk of the 

event, that is, the start time upon which we condition their survival to entry into the study 

(Guo 1993). 
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Figure 1: Sample data to illustrate the presence vs. absence of left truncation. (A) A study 

where left truncation is not considered. Subjects enter both the timeline and the 

study at time zero, which is also when they presumably become at risk for the 

event. At each subject's time to event or censoring, they exit the study. (B) A 

study where left truncation is considered. Subjects enter the timeline when they 

become at risk for the event, enter the study at time zero, and exit the study 

when they either experience the event or are censored (that is, they experience 

the event sometime after but are lost to follow-up, etc.). Time of entry and exit 

are both considered in building a model. Lost subjects, marked in grey, 

represent unobserved patients that are theoretically accounted for through left 

truncation. 

 

The difference in risk set calculation due to left truncation then affects the 

calculation of the survival curve. An analysis that didn't involve left truncation would 

simply consider time from diagnosis to death. The risk set would begin at time zero with 

all subjects in the study and constantly decrease through either censoring or events, as 

shown by the 𝑛𝑖 column in Table 1. Under left truncation, on the other hand, the size of 
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the risk set is dependent on how many subjects are in the study at each event time; those 

who have already exited the study and those who have not yet entered are not included. 

As shown in Table 2, this results in a risk set that can both increase and decrease. While 

the survival curve remains a nonincreasing function in either case, the estimate of the 

survival curve 𝑆𝑖 differs because of the change to the risk set. 

Table 1: Kaplan-Meier estimate of the survival function without left truncation. The size 

of the risk set 𝑛𝑖 begins with all subjects and constantly decreases. See Figure 

1A for a visual representation of these data. 

𝒕𝒊 𝒏𝒊 𝒅𝒊 𝒒𝒊 =
𝒅𝒊

𝒏𝒊
 𝑺𝒊 = ∏(𝟏 − 𝒒𝒊) 

1 8 1 0.125 0.8750 

4 6 1 0.166̅̅̅̅  0.7292 

7 5 1 0.2 0.5833 

10 3 1 0. 33̅̅̅̅  0.3889 

15 1 1 1.0 0.0000 

 

Table 2: Kaplan-Meier estimate of the survival function with left truncation. The size of 

the risk set 𝑛𝑖 is calculated at each event time 𝑡𝑖 according to which subjects are 

in the study based on entry and exit times (see Fig. 1B), which means that it 

increases and decreases. 

𝒕𝒊 𝒏𝒊 𝒅𝒊 𝒒𝒊 =
𝒅𝒊

𝒏𝒊
 𝑺𝒊 = ∏(𝟏 − 𝒒𝒊) 

4 6 1 0.166̅̅̅̅  0.8333 

5 5 1 0.2 0.6667 

7 6 1 0.166̅̅̅̅  0.5556 

8 5 1 0.2 0.4444 

11 1 1 1.0 0.0000 

 

An analysis that incorrectly omitted left truncation would be biased and 

potentially lead to different conclusions than an analysis that included left truncation. 

Figure 2 plots the example data from Table 1 in grey and Table 2 in black. When left 

truncation is not considered, the resulting survival curve has a more gradual decline 

compared to a curve with left truncation, even though the probability of survival begins 

to drop earlier. It also has a median survival time of 10 compared to 8 from a model that 
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includes left truncation. If researchers did not account for left truncation, they would 

generally overestimate the probability of survival. 

 

Figure 2: Comparison of survival curves with and without considering left truncation. In 

grey is the estimated survival curve without left truncation from Table 1; in 

black is the estimated curve with left truncation from Table 2. Note that 

including left truncation results in an overall steeper curve and a shorter 

timeline for survival. 

 

After missing data have been considered and an appropriate survival curve built, 

rank test procedures test the difference between two independent groups. The null 

hypothesis of 𝑆1(𝑡) = 𝑆0(𝑡) is posited against a Lehman alternative of 𝑆1(𝑡) = [𝑆0(𝑡)]𝜓, 

suggesting that the control group is different from the treatment by a constant proportion. 

The difference is known as the proportional hazards assumption. (The hazard function is 

another way to represent survival by estimating the risk or hazard of experiencing the 

event at any given time.) This reduces to the one-sided test 𝐻0: 𝜓 = 1 and 𝐻𝐴: 𝜓 < 1. 
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With this, we now test whether group 1 has a uniformly lower hazard or survival curve 

than group 0. 

At each event time 𝑡𝑖, the expected value and variance of the number of events 

from the control group 𝑑0𝑖 is calculated. 𝑑0𝑖 follows a hypergeometric distribution with 

observed parameters 𝑛0𝑖, 𝑛𝑖, and 𝑑𝑖 (the size of the risk set for each group and the total 

number of events at each event time) (Moore 2016). The expected value and variance of 

𝑑0𝑖 at each event time 𝑡𝑖 are therefore 

𝑒0𝑖 =
𝑛0𝑖𝑑𝑖

𝑛𝑖
  and  𝑣0𝑖 =

𝑛0𝑖𝑛1𝑖𝑑𝑖(𝑛𝑖 − 𝑑𝑖)

𝑛𝑖
2(𝑛𝑖 − 1)

. 

To construct a test statistic, these values are summed over all observed event 

times. Broadly, 𝑈0 is the aggregated difference between the expected number of events 

𝑒0𝑖 and observed number of events 𝑑0𝑖 for group 0. 𝑉0 is the aggregated variance 𝑣0𝑖 of 

group 0. The resulting test statistic with its distribution is 

𝑈0

√𝑉0

∼ 𝑁(0,1)  or  
𝑈0

2

𝑉0
∼ χ1

2. 

The difference between the rank tests lies in the calculation of 𝑈0 and 𝑉0. Two of 

the most common variations, which will be explored in this study, are the log-rank test 

and the Prentice modification of the Gehan-Wilcoxon test, also known as the Peto-Peto 

test (Peto and Peto 1972). The former is an unweighted rank test, meaning that all event 

times are weighted equally. It generally performs the best compared to other tests under 

proportional hazards but rapidly loses power when that assumption is violated. Its test 

statistic calculation is 

𝑈0 = ∑(𝑑0𝑖 − 𝑒0𝑖)

𝑁

𝑖=1

  and  𝑉0 = ∑ 𝑣0𝑖

𝑁

𝑖=1

. 
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The Prentice-modified test, on the other hand, is weighted by the Kaplan-Meier 

estimate of the survival curve 𝑆̂(𝑡) (Kaplan and Meier 1958). Since the survival curve is 

strictly nonincreasing, this test places greater weight on early event times. This is done 

with the presupposition that the risk set will be largest at these early times so that the 

most information (or the greatest number of subjects) with which to weight the test will 

be present at the beginning. It generally performs best when hazards are not proportional 

and the two survival curves have greater differences early in the timeline (Chen et al. 

2020). Its test statistic calculation is instead calculated as 

𝑈0(𝑤) = ∑ 𝑤𝑖(𝑑0𝑖 − 𝑒0𝑖)

𝑁

𝑖=1

  and  𝑉0(𝑤) = ∑ 𝑤𝑖
2

𝑁

𝑖=1

𝑣0𝑖 

where  𝑤𝑖 = 𝑆̂(𝑡𝑖). 

There is a potential yet largely unexplored interaction between left-truncated data 

and rank tests. As mentioned earlier, the Prentice-modified test assumes that the most 

information is present at early event times, which is always true in the absence of left 

truncation. However, when dealing with left-truncated data, the risk set is no longer 

strictly decreasing; the risk set could be largest in the middle of the survival curve rather 

than the beginning. This doesn't invalidate the use of the Prentice-modified test, but it 

does call into question whether it would still perform better than the log-rank given data 

with left truncation and non-proportional hazards. 

While preliminary exploration of the effect of left truncation on rank tests has 

been carried out by Pan (1998), only one left truncation pattern was considered, albeit 

with interval censoring and a variety of differences between groups. Apart from Pan's 

research, rank test comparison research generally focuses on the effect of various 
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censoring patterns or extreme non-proportional hazards (Demirhan et al. 2009; Karadeniz 

and Ercan 2017; Karrison 2016; Özen et al. 2021; Royston and Parmar 2020; Teniola et 

al. 2022). We propose that the effect of left truncation on rank tests merits further 

exploration. This simulation study compares the log-rank and Prentice-modified tests 

under a variety of left truncation patterns, types of differences between groups, and target 

sample sizes. This will provide a guideline for future research by determining which test 

most accurately detects differences between groups given a study that involves left 

truncation. 
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2 METHODS 

2.1 Simulation Design 

We used a Monte Carlo simulation study (n = 10,000 replications per scenario) to 

explore scenarios in which left truncation and rank tests could have a significant 

interaction (see Appendix B for full simulation code). For all simulations, subjects were 

randomly assigned to one of two groups and became at risk for the event (e.g., received a 

diagnosis) at time zero. Each patient's entry, event, and censoring times were simulated 

from Weibull distributions. A subject was censored if their simulated censoring time was 

less than their event time (lost to follow-up before the event) and was "lost" if their event 

time was less than their entry time (experienced the event before entry). For each 

simulation, the proportion of subjects censored was approximately 25%. The three factors 

of the study were the left truncation pattern, the difference between groups, and the target 

sample size of each group, the exhaustive combinations of which were simulated and 

applied to each rank test. 

Two left truncation patterns — discrete uniform and exponential — were 

compared to a reference scenario without left truncation. For both truncation patterns, 

50% of subjects entered the study at time zero. This ensured that the risk set would 

remain populated for the remainder of the study. Under discrete uniform truncation, 25% 

each entered the study at time 7 and time 28. Under exponential truncation, the remaining 

50% entered the study along an exponential distribution with rate λ =  0.1. Due to subject 

loss from left truncation, the true sample size of each simulation was always slightly 

lower than the target sample size (25, 50, and 100 per group) under each left truncation 

pattern. 
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The various differences between groups included in the study were designed to 

definitively favor one of the two tests in the absence of left truncation (Fig. 3). As a 

starting point, a scenario with no difference between groups (ψ = 1) was simulated.  

Then, three differences followed the proportional hazards assumption (ψ = 0.9, 0.95, and 

0.98) to favor the log-rank test. Two differences involved non-proportional hazards — 

mid and late-crossing survival curves — to favor the Prentice-modified test. Both of these 

scenarios also had an overall difference of ψ = 0.98 so that one group could still be 

considered the higher survival curve overall.  

2.2 Rank Tests 

Both the log-rank and Prentice-modified tests were performed on each simulated 

dataset. To accommodate left truncation, a modified version of the survival::survdiff 

function was used (Appendix A), which performed the following calculations on the data 

set: 

1. At each unique event time 𝑡𝑖, calculate and save 𝑑0𝑖, 𝑒0𝑖, and 𝑣0𝑖 to vectors. 

2. Calculate the Kaplan-Meier estimate of the survival curve 𝑆̂(𝑡) for the entire data 

set, ignoring groups. 

3. Calculate 𝑈0 (∑(𝑑0𝑖 − 𝑒0𝑖)) and 𝑉0 (∑ 𝑣0𝑖), weighted by 1 for the log-rank test 

(unweighted) and by 𝑆̂(𝑡) for the Prentice test. 

4. Using the test statistic for a χ1
2 distribution, calculate the 𝑝-value for a one-sided 

test.  
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Figure 3: Graphs of all differences between groups considered in study with a baseline 

Weibull(8, 30) survival curve. (A) Case 1: no difference between groups. (B–

D) Case 2: Varying degrees of proportional hazards as determined by the 

Weibull scale parameter. The solid line is the baseline; the dashed line is a 

Weibull(8, 30𝜓) distribution. (E–F) Case 3: Varying degrees of non-

proportional hazards as determined by the Weibull shape parameter. The dashed 

line in E follows a Weibull(8 ∗ 0.7, 30 ∗ 0.98) distribution and in F follows a 

Weibull(8 ∗ 0.5, 30 ∗ 0.98) distribution. 
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5. Accept the null hypothesis of no difference between groups when the 𝑝-value is 

greater than 0.5; otherwise, reject the null hypothesis in favor of the alternative 

that one group has a lower survival curve than the other. 

When creating the modified function, resulting test statistics and 𝑝-values from 

sample data were compared to those from the original survival::survdiff function in 

the absence of left truncation (Terry M. Therneau and Patricia M. Grambsch 2000). The 

log-rank test matched exactly, while the Prentice-modified test was slightly different. 

This happened because the modified survival::survdiff function calculates 𝑆̂(𝑡) by 

calling the survfit function, which calculates the Kalbfleisch-Prentice approximation of 

the Kaplan-Meier curve (Kalbfleisch and Prentice 2002). The original function instead 

calculates the Kaplan-Meier curve directly, but the modified function is similar enough to 

use in this study. 

2.3 Comparison Metrics 

When there was no difference between groups, the type I error rate was the 

proportion of simulations that incorrectly identified a difference between the two groups. 

Assuming proper study setup and randomization, the error rate for each replicated 

scenario should be about 0.05 to match the α = 0.05 significance level. When there was a 

difference between groups, the power of each test was the proportion of simulations that 

correctly detected a difference between groups. While there is no standard cut-off value, 

higher power is associated with better performance. Without left truncation, we expected 

that the log-rank would have higher power than the Prentice-modified test under 

proportional hazards. Prentice was expected to have higher power under non-proportional 

hazards. No hypotheses were made about the effect of left truncation on test performance. 
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However, increasing the target sample size and increasing the difference between groups 

were both expected to increase power for both tests and under all left truncation patterns. 
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3 RESULTS 

3.1 No Difference Between Groups (𝛙 = 1) 

As expected, nearly all simulations contained the true α of 0.05 in a 95% 

confidence interval for type I error (Fig. 4). The three exceptions all came from the log-

rank test, one from each left truncation pattern, and from either the 25 or 50 target sample 

size. The confidence intervals of these exceptions were all above 0.05; however, they 

were all within 0.0025 of containing the true significance level (Table 3). The log-rank 

test also had a higher error rate than the Prentice except at the largest sample sizes. 

 

Figure 4: Resulting type I errors with 95% confidence intervals for no difference between 

groups compared to the true significance level of 0.05. Note that while some 

intervals are on the edge of 0.05 or do not contain it, the scale of the 𝑦-axis is 

very small. Any intervals that don't contain 0.05 do so by a small amount. 
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Table 3: Resulting type I error rate with 95% confidence intervals for each test when 

there is no difference between groups (n=10,000). 

 Log-Rank Prentice 

 Sample 

Size 

Lower  

95% CI 

Type I  

Error 

Upper  

95% CI 

Lower  

95% CI 

Type I  

Error 

Upper  

95% CI 

No Truncation 

 25 0.0492 0.0534 0.0580 0.0458 0.0499 0.0543 

50 0.0500 0.0543 0.0589 0.0478 0.0520 0.0565 

100 0.0451 0.0492 0.0536 0.0459 0.0500 0.0544 

Discrete Uniform 

 25 0.0517 0.0560 0.0607 0.0458 0.0499 0.0543 

50 0.0499 0.0542 0.0588 0.0475 0.0517 0.0562 

100 0.0473 0.0515 0.0560 0.0472 0.0514 0.0559 

Exponential 

 25 0.0500 0.0543 0.0589 0.0468 0.0509 0.0554 

50 0.0478 0.0520 0.0565 0.0448 0.0489 0.0533 

100 0.0458 0.0499 0.0543 0.0478 0.0520 0.0565 

 

3.2 Proportional Hazards 

Under proportional hazards, left truncation did not affect which test performed the 

best. The log-rank outperformed the Prentice-modified test at all sample sizes and values 

of ψ regardless of left truncation. As expected, power increased as sample size increased 

and as the difference between groups increased (or as ψ decreased). The smallest 

difference between groups had particularly poor power (0.11 on average across both 

tests). While 95% confidence intervals were calculated (Table 4), they were small with an 

average width of only 0.01, so any visually recognizable differences in Figure 5 are likely 

significant at the 0.05 level. Differences between the tests also increased under left 

truncation. On average, the power of the log-rank test was higher than that of the Prentice 

by 11.7% under no truncation, 14.8% under uniform truncation, and 13.1% under 

exponential truncation. 
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The log-rank and Prentice-modified tests each had slightly lower absolute power 

under left truncation. For both tests, power was highest on average under no truncation, 

followed by exponential truncation, then uniform truncation. On average, the power of 

the log-rank test was only 7% higher and the Prentice only 11% higher under no 

truncation compared to uniform truncation. 

 

Figure 5: Resulting power with 95% confidence intervals for differences between groups 

that followed proportional hazards. Increasing the target sample size has a 

consistent positive effect on the power of each test, as does the increasing the 

degree of the difference between groups. The log-rank performs better than the 

Prentice-modified test regardless of truncation, but the power for both tests 

decreases slightly under left truncation. 
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Table 4: Resulting power with 95% confidence intervals for each test when the difference 

between groups follows proportional hazards (n=10,000). 

  Log-Rank Prentice 

 Sample 

Size 

Lower 

95% CI 

Type I 

Error 

Upper 

95% CI 

Lower 

95% CI 

Type I 

Error 

Upper 

95% CI 

No Truncation 

0.90 

 25 0.7001 0.7091 0.7180 0.6123 0.6219 0.6314 

50 0.9413 0.9459 0.9503 0.8955 0.9015 0.9073 

100 0.9987 0.9994 0.9998 0.9953 0.9966 0.9976 

0.95 

 

 

25 0.2174 0.2256 0.2339 0.1877 0.1954 0.2033 

50 0.3994 0.4091 0.4188 0.3411 0.3505 0.3599 

100 0.6834 0.6925 0.7015 0.6000 0.6096 0.6192 

0.98 

 25 0.0739 0.0791 0.0846 0.0658 0.0708 0.0760 

50 0.0989 0.1048 0.1110 0.0859 0.0915 0.0973 

100 0.1512 0.1583 0.1656 0.1319 0.1386 0.1455 

Discrete Uniform 

0.90 

 

 

25 0.6142 0.6238 0.6333 0.5106 0.5204 0.5302 

50 0.8895 0.8957 0.9016 0.8081 0.8158 0.8234 

100 0.9953 0.9966 0.9976 0.9803 0.9830 0.9854 

0.95 

 

 

25 0.1952 0.2030 0.2110 0.1601 0.1674 0.1749 

50 0.3355 0.3448 0.3542 0.2801 0.2890 0.2980 

100 0.6167 0.6263 0.6358 0.5200 0.5298 0.5396 

0.98 

 

 

25 0.0708 0.0759 0.0813 0.0621 0.0669 0.0720 

50 0.0890 0.0947 0.1006 0.0787 0.0841 0.0897 

100 0.1429 0.1498 0.1569 0.1216 0.1281 0.1348 

Exponential 

0.90 

 

 

25 0.6759 0.6851 0.6942 0.5810 0.5907 0.6004 

50 0.9379 0.9426 0.9471 0.8862 0.8924 0.8984 

100 0.9973 0.9983 0.9990 0.9921 0.9938 0.9952 

0.95 

 25 0.2197 0.2279 0.2363 0.1847 0.1924 0.2003 

50 0.3842 0.3938 0.4035 0.3260 0.3353 0.3446 

100 0.6673 0.6766 0.6858 0.5845 0.5942 0.6038 

0.98 

 25 0.0799 0.0853 0.0909 0.0688 0.0738 0.0791 

50 0.0982 0.1041 0.1103 0.0840 0.0895 0.0953 

100 0.1549 0.1621 0.1695 0.1354 0.1422 0.1492 
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3.3 Non-Proportional Hazards 

Under non-proportional hazards, the Prentice-modified test outperformed the log-

rank in all simulation scenarios. Like proportional hazards, power increased as sample 

size increased and as the difference between groups increased (more specifically, the 

degree of non-proportionality). Additionally, apparent differences in power (Fig. 6) are 

significant at the 0.05 level due to small 95% confidence interval widths. However, the 

relative difference between the two tests increased dramatically under non-proportional 

hazards, and left truncation did not consistently cause a larger difference between the two 

tests. On average, the power of the Prentice-modified test 290% higher than that of the 

log-rank under no truncation, 249% under uniform truncation, and 294% under 

exponential truncation. Given the violation of proportional hazards, the decrease in power 

of the log-rank test is unsurprising. 

Left truncation again negatively affected the power of each test. Similar to the 

increased relative difference between groups for non-proportional hazards, these 

individual differences also increased when compared to proportional hazards. For both 

tests, power was highest on average under no truncation, followed by exponential 

truncation, then uniform truncation. On average, the power of the log-rank test was 31% 

higher and the Prentice 44% higher under no truncation compared to uniform truncation. 

Unexpectedly, a larger target sample size was not consistently associated with an 

increase in power for the log-rank test under non-proportional hazards. The power of the 

log-rank test was between about 0.05 and 0.1 for all simulations involving non-

proportional hazards, so drops in power were small but at times significant. For the mid-

cross difference between groups in particular, an increase in sample size was always 
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associated with some decrease in power. This was not significant under no truncation, 

that is, the 95% confidence intervals overlapped. There was a significant drop in power 

from a sample size of 25 to 50 (and 25 to 100) in both left truncation patterns at the 0.05 

level, but not from 50 to 100. For the late-cross difference between groups, power either 

increased with sample size or decreased by an insignificant amount at 95% confidence. 

 

Figure 6: Resulting power with 95% confidence intervals for differences between groups 

that did not follow proportional hazards. Increasing the target sample size has a 

consistent positive effect on the power of the Prentice-modified test but has a 

variable effect on the log-rank test. The mid-cross difference compared to late-

cross has an overall higher power for the Prentice-modified test and lower for 

the log-rank. The Prentice-modified test performs better than the log-rank 

regardless of truncation, but the power for both tests decreases slightly under 

left truncation. The decrease in power is more noticeable for the Prentice-

modified test. 
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Table 5: Resulting power with 95% confidence intervals for each test when there is a 

non-proportional difference between groups (n=10,000). 

  Log-Rank Prentice 

 Sample 

Size 

Lower 

95% CI 

Type I 

Error 

Upper 

95% CI 

Lower 

95% CI 

Type I 

Error 

Upper 

95% CI 

No Truncation 

Late Cross 

 25 0.0735 0.0787 0.0842 0.1208 0.1273 0.1340 

50 0.0846 0.0901 0.0959 0.1997 0.2076 0.2157 

100 0.0973 0.1032 0.1093 0.3485 0.3579 0.3674 

Mid Cross 

 

 

25 0.0751 0.0804 0.0859 0.2018 0.2097 0.2178 

50 0.0639 0.0688 0.0739 0.3373 0.3466 0.3560 

100 0.0664 0.0714 0.0766 0.5856 0.5953 0.6049 

Discrete Uniform 

Late Cross 

 

 

25 0.0605 0.0653 0.0703 0.0946 0.1004 0.1065 

50 0.0580 0.0627 0.0676 0.1495 0.1566 0.1639 

100 0.0572 0.0618 0.0667 0.2451 0.2536 0.2622 

Mid Cross 

 

 

25 0.0659 0.0709 0.0761 0.1434 0.1504 0.1576 

50 0.0556 0.0602 0.0650 0.2257 0.2340 0.2424 

100 0.0517 0.0561 0.0608 0.3721 0.3816 0.3912 

Exponential 

Late Cross 

 

 

25 0.0705 0.0756 0.0810 0.1135 0.1198 0.1263 

50 0.0747 0.0799 0.0854 0.1826 0.1903 0.1981 

100 0.0879 0.0935 0.0994 0.3212 0.3304 0.3397 

Mid Cross 

 

 

25 0.0686 0.0736 0.0789 0.1784 0.1860 0.1938 

50 0.0579 0.0626 0.0675 0.2928 0.3018 0.3109 

100 0.0529 0.0574 0.0621 0.4936 0.5034 0.5132 
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4 DISCUSSION 

The simulations involving no difference between groups or no truncation both 

established proper study design and setup, suggesting that any differences between tests 

under left truncation are accurately represented by this study. While the log-rank test had 

higher type I errors on average under no difference between groups, this was likely due to 

randomization in the study. Under no truncation, the superiority of one test over the other 

followed expected patterns (log-rank for proportional hazards, Prentice for non-

proportional hazards) given the theoretical basis and strengths of each test. When 

introducing left truncation, this superiority remained constant for all simulation scenarios. 

While left truncation does not affect which test performs the best, it does affect 

the degree to which the tests differ. Under proportional hazards, left truncation is 

consistently associated with greater differences between the power of the two tests, 

although differences remain relatively small compared to when the hazards are not 

proportional. Under non-proportional hazards, there is more variation in the effect of left 

truncation on the relative difference, but the Prentice still outperforms the log-rank 

regardless of left truncation. 

Left truncation is associated with a change in the relative power between the tests 

because the power of the Prentice-modified test decreases more under left truncation than 

the log-rank test. Under proportional hazards, it becomes even worse than the log-rank; 

under non-proportional hazards, the gap between the Prentice and log-rank is smaller or 

about the same. This effect on the Prentice test is unsurprising because left truncation 

affects both the expected value and variance of 𝑑0𝑖 at each event time, and the estimate of 

the survival curve. The former is used in both tests, while the latter is used only by the 
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Prentice to weight the test. Essentially, the calculation of the Prentice test is affected 

twice by left truncation, whereas the log-rank test is only affected once. 

Under left truncation and non-proportional hazards, the log-rank test is rendered 

almost useless with power consistently close to the significance level of 0.05. Increasing 

the target sample size from 25 either raises power insignificantly or decreases it 

significantly. By contrast, the power of the Prentice test always improves with sample 

size under both proportional and non-proportional hazards. Using the log-rank test on 

data that do not have proportional hazards will almost always result in a conclusion that 

misrepresents the true difference between groups. 
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5 CONCLUSION 

Left truncation does not appear to affect the superiority of the Prentice-modified 

test over the log-rank given non-proportional hazards (and vice-versa under proportional 

hazards). Studies involving left truncation that are about certain whether hazards will be 

proportional will not need to consider this form of missing data when deciding which test 

of the two will best detect the true differences between groups in their analysis. However, 

either test will need to be performed with the understanding that the power is lower due 

to left truncation and with the knowledge of how non-proportional hazards could affect 

which test is more representative. Additionally, if researchers are not certain whether the 

data will follow proportional hazards, the Prentice-modified test will be the better option 

as the log-rank is rendered useless under non-proportional hazards and left truncation. 

Future exploration of the interaction between left truncation and rank tests could 

extend to either extreme cases of left truncation, other types of rank tests. Left truncation 

in this study was limited to 50% of subjects to ensure the risk set was populated at each 

event time. Increasing the proportion of subjects who are truncated, within reasonable 

bounds of expected left truncation in applied research, could increase the effect of left 

truncation on rank test performance. Other rank tests that could be included in future 

studies, which have been considered by past research involving right censoring, include 

the Fleming-Harrington family of tests, the Gehan Generalized Wilcoxon test, the Tarone-

Ware test, and partitioned log-rank tests, among others (Karadeniz and Ercan 2017; Özen 

et al. 2021). 

If future exploration were to conclude that left truncation does decrease the power 

of all currently developed rank tests (see Chen et al. 2020 for a list of known rank tests), a 



24 
 

new rank test specifically developed for left truncation may be needed. One potential way 

to handle left truncation in a rank test is to somehow consider the size of the risk set as a 

random variable since subjects becoming at risk for an event (receiving a diagnosis) is 

more random than subjects being enrolled in a study (conditional upon diagnosis or 

planned as an experiment). By developing a new rank test for left-truncated data, 

researchers could be more certain about their choice of rank test if they were uncertain 

whether data would follow proportional hazards. 

(R Core Team 2022; Wickham 2022) 
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APPENDICES 

Appendix A. Modified survdiff Function 

The original survdiff  function was not compatible with left truncation due to the 

algorithm used to iterate through the event times. Its algorithm assumed that the size of 

the risk set was nonincreasing. In other words, it looped through a while statement that 

stopped when the number of subjects accounted for by the algorithm, which constantly 

increased, was equal to the number of subjects in the study. The new algorithm to work 

with left truncation therefore had to iterate through all unique event times rather than rely 

on the size of the risk set to determine if all subjects had been accounted for. 

The survdiff source code called a function called survdiff.fit, which in turn 

called a function called Csurvdiff2. As the name suggests, it was written in C, a 

language with which the author is not familiar. As such, we rewrote the algorithm in R, 

removing any calls to other functions (including survdiff.fit). Since code outside of 

Csurvdiff2 did primarily error checking, significant revisions to the code were made. 

The strata and offset functionality in the original function were removed since they were 

not considered in the study, but the function can now handle both untruncated and left 

truncated data. The author is currently working to add those features back in to submit to 

the survival package. The modified code used in this study is shown on the next page. 
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library(survival) 

 

## source code: survdiff, survdiff.fit, and Csurvdiff2 

# survdiff 

# https://rdrr.io/cran/survival/src/R/survdiff.fit.R 

# https://github.com/cran/survival/blob/master/src/survdiff2.c 

 

## Major changes: 

# Removed error check that only accepted right censor 

# Removed all strata/offset functionality (not considered in study) 

# Removed survdiff.fit (and thus Csurvdiff2) 

# Calculated test statistic by looping through unique event times 

  # (original function looped through risk set until n = 0) 

 

survdiff.mod <- function (formula, data, subset, na.action,  

                          rho = 0, timefix = TRUE) { 

  # get elements from function input 

  call <- match.call() 

  m <- match.call(expand.dots = FALSE) 

  m$rho <- NULL 

   

  ## ## ## ## ## ## 

  ## error checking 

  ## ## ## ## ## ## 

   

  # from original survdiff function 

  if (!inherits(formula, "formula"))  

    stop("The 'formula' argument is not a formula") 

  Terms <- if (missing(data))  

    terms(formula, "strata") 

  else terms(formula, "strata", data = data) 

  m$formula <- Terms 

  m[[1L]] <- quote(stats::model.frame) 

  m <- eval(m, parent.frame()) 

  y <- model.extract(m, "response") # Surv object 

  if (!inherits(y, "Surv"))  

    stop("Response must be a survival object") 

  ny <- ncol(y) # 2 (w/o left truncation) or 3 (w/ left truncation) 

  n <- nrow(y) # number of observations 

  if (!is.logical(timefix) || length(timefix) > 1)  

    stop("invalid value for timefix option") 

  if (timefix)  

    y <- aeqSurv(y) 

  ll <- attr(Terms, "term.labels") 

  if (length(ll) == 0)  
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    stop("No groups to test") 

  else groups <- strata(m[ll]) # group for each observation 

 

  ## ## ## ## ## 

  ## rank test 

  ## ## ## ## ## 

   

  # move untruncated to left truncation "format" with all entry = 0 

  if (ny == 2) { 

    times <- data.frame(entry = rep(0, n), 

                        exit = y[,1], 

                        cens = y[,2]) 

  } 

   

  # left truncation stays in the same format 

  else { 

    times <- data.frame(entry = y[,1], 

                        exit = y[,2], 

                        cens = y[,3]) 

  }  

   

  if (nrow(y) !=n | length(groups) !=n) stop("Data length mismatch") 

  if (length(unique(groups)) < 2) stop ("There is only 1 group") 

   

  # format group as numeric 0 or 1 

  if (inherits(groups, "factor")) times$groups <- as.numeric(groups) - 1 

  else times$groups <- match(groups, unique(groups)) 

   

  # initialize vectors and i 

  e0i_all <- c() # expected value 

  v0i_all <- c() # variance 

  d0i_all <- c() # number of events in control group 

  i = 1 

   

  # create vector of all unique event times (exclude censoring) 

  event_times <- sort(unique(times[times$cens == 1,]$exit)) 

 

  # at each observed event time t: 

  for (t in event_times) { 

     

    # number in risk set 

    n0i <- nrow( 

      times[(times$entry <= t) & (t <= times$exit) & (times$groups == 0),] 

      ) 

    n1i <- nrow( 
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      times[(times$entry <= t) & (t <= times$exit) & (times$groups == 1),] 

      ) 

    ni <- n0i + n1i 

     

    # number of events 

    d0i <- nrow( 

      times[(t == times$exit) & (times$groups == 0) & (times$cens == 1),] 

      ) 

    d0i_all[i] <- d0i 

    d1i <- nrow( 

      times[(t == times$exit) & (times$groups == 1) & (times$cens == 1),] 

      ) 

    di <- d0i + d1i 

 

    # E(d0i) and Var(d0i) 

    e0i <- (n0i * di) / ni 

    e0i_all[i] <- e0i 

    v0i <- (n0i * n1i * di * (ni - di)) / ((ni^2) * (ni - 1)) 

    v0i_all[i] <- v0i 

 

    i = i + 1 

  } 

   

  # Kaplan-Meier S(t) at each event, ignoring group 

  # note: survfit uses the Kalbfleisch-Prentice approximation 

  sf <- survfit(Surv(entry, exit, cens) ~ 1, data = times, type="kaplan-

meier") 

  surv <- data.frame(time = sf$time, event = sf$n.event, surv = sf$surv) 

   

  # raise S(t) to the rho power (equivalent to FH(p)) 

  weights_rho <- (surv[surv$event > 0,]$surv)^rho 

   

  # calculate chi-sq test statistic and p-value 

  U <- sum(weights_rho*(d0i_all - e0i_all), na.rm=TRUE) 

  V <- sum((weights_rho^2) * v0i_all, na.rm=TRUE) 

  chi <- (U^2)/V 

  pval <- pchisq(chi, 1, lower.tail = FALSE) 

   

  # both test statistic and p-value for comparison with survdiff 

  # return(c(paste("test statistic:", round(chi,4)), 

  #          paste("p-value:", round(pval,4)))) 

   

  return(pval) 

} 
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Appendix B. Simulation Code 

The following three subsections display code used to simulate data for each of the three 

left truncation patterns. The main difference between each subsection is the sim.each 

function, which controlled truncation. 

No Truncation 

library(survival) 

source("modified survdiff.R") 

 

# Pattern: No left truncation for comparison 

 

sim.ref <- function(size, ph, hr, cr) { 

  sim.each <- function(size, ph, hr, g) { 

    # event times 

    event <- rweibull(size, 8*ph, 30*hr) 

    # censor times 

    c <- rweibull(size, 8*ph, 30*cr) 

     

    # for the stop time, take the minimum of death and censored time 

    stop <- pmin(event, c) 

    # 0 as start time 

    start <- 0 

    # censoring vs. event indicator 

    cens <- as.numeric(event < c) 

     

    # gather into full dataframe  

    set <- data.frame(start, stop, cens) 

    # set group 

    set$group <- g 

     

    # return final dataset 

    set 

  } 

  # simulate control and treatment 

  set <- rbind(sim.each(size, 1, 1, "control"),  

               sim.each(size, ph, hr, "treatment")) 

   

  # rank tests 

  lr.p <- survdiff.mod(Surv(start, stop, cens)~group, data=set) 

  wlr.p <- survdiff.mod(Surv(start, stop, cens)~group, data=set, rho=1) 
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  # return simulated dataset: 

  # return(set) 

   

  # if interested in seeing % censored and nrow: 

  # return(c("cens" = mean(set$cens == 0), "nrow" = nrow(set))) 

   

  # return p-values 

  return(c("LR" = lr.p, "WLR" = wlr.p)) 

} 

 

## n=25 

# PH 

write.csv(data.frame(t(replicate(10000, sim.ref(25, 1, 1, 1.125)))),  

          "results/ref21.csv", row.names=FALSE) 

write.csv(data.frame(t(replicate(10000, sim.ref(25, 1, .98, 1.115)))),  

          "results/ref298.csv", row.names=FALSE) 

write.csv(data.frame(t(replicate(10000, sim.ref(25, 1, .95, 1.11)))),  

          "results/ref295.csv", row.names=FALSE) 

write.csv(data.frame(t(replicate(10000, sim.ref(25, 1, .9, 1.105)))),  

          "results/ref290.csv", row.names=FALSE) 

# non-PH 

write.csv(data.frame(t(replicate(10000, sim.ref(25, 0.7, 0.98, 1.15)))),  

          "results/ref2987.csv", row.names=FALSE) 

write.csv(data.frame(t(replicate(10000, sim.ref(25, 0.5, 0.98, 1.2)))),  

          "results/ref2985.csv", row.names=FALSE) 

 

## n=50 

# PH 

write.csv(data.frame(t(replicate(10000, sim.ref(50, 1, 1, 1.125)))),  

          "results/ref51.csv", row.names=FALSE) 

write.csv(data.frame(t(replicate(10000, sim.ref(50, 1, .98, 1.115)))),  

          "results/ref598.csv", row.names=FALSE) 

write.csv(data.frame(t(replicate(10000, sim.ref(50, 1, .95, 1.11)))),  

          "results/ref595.csv", row.names=FALSE) 

write.csv(data.frame(t(replicate(10000, sim.ref(50, 1, .9, 1.105)))),  

          "results/ref590.csv", row.names=FALSE) 

# non-PH 

write.csv(data.frame(t(replicate(10000, sim.ref(50, 0.7, 0.98, 1.15)))),  

          "results/ref5987.csv", row.names=FALSE) 

write.csv(data.frame(t(replicate(10000, sim.ref(50, 0.5, 0.98, 1.2)))),  

          "results/ref5985.csv", row.names=FALSE) 

 

## n=100 

# PH 

write.csv(data.frame(t(replicate(10000, sim.ref(100, 1, 1, 1.125)))),  
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          "results/ref11.csv", row.names=FALSE) 

write.csv(data.frame(t(replicate(10000, sim.ref(100, 1, .98, 1.115)))),  

          "results/ref198.csv", row.names=FALSE) 

write.csv(data.frame(t(replicate(10000, sim.ref(100, 1, .95, 1.11)))),  

          "results/ref195.csv", row.names=FALSE) 

write.csv(data.frame(t(replicate(10000, sim.ref(100, 1, .9, 1.105)))),  

          "results/ref190.csv", row.names=FALSE) 

# non-PH 

write.csv(data.frame(t(replicate(10000, sim.ref(100, 0.7, 0.98, 1.15)))),  

          "results/ref1987.csv", row.names=FALSE) 

write.csv(data.frame(t(replicate(10000, sim.ref(100, 0.5, 0.98, 1.2)))),  

          "results/ref1985.csv", row.names=FALSE) 

 

Uniform Truncation 

library(survival) 

source("modified survdiff.R") 

 

# Pattern: 50% not truncated, 25% truncated at first week,  

#          25% truncated at fourth week 

 

sim.unif <- function(size, ph, hr, cr) { 

  sim.each <- function(size, ph, hr, g) { 

    # event times 

    event <- rweibull(size, 8*ph, 30*hr) 

    # truncation times 

    trunc <- sample(c(0, 7, 28), size=size,  

                    replace=TRUE, prob=c(.5, .25, .25)) 

    # censor times 

    c <- rweibull(size, 8*ph, 30*cr) 

     

    # stop: minimum of event and censored times 

    stop <- pmin(event, c) 

    # start: minimum of the stop and truncation times 

    start <- pmin(stop, trunc) 

    # censoring vs. event indicator 

    cens <- as.numeric(event < c) 

     

    # gather into full dataframe  

    set <- data.frame(start, stop, cens) 

    # set group 

    set$group <- g 

    # observations that aren't observed will have the same start/stop time  

    set <- set[set$start != set$stop,] 
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    # return final dataset 

    set 

  } 

  # simulate control and treatment 

  set <- rbind(sim.each(size, 1, 1, "control"),  

               sim.each(size, ph, hr, "treatment")) 

   

  # rank test results 

  lr.p <- survdiff.mod(Surv(start, stop, cens)~group, data=set) 

  wlr.p <- survdiff.mod(Surv(start, stop, cens)~group, data=set, rho=1) 

   

  # return simulated dataset: 

  # return(set) 

   

  # if interested in seeing % censored and nrow: 

  # return(c("cens" = mean(set$cens == 0), "nrow" = nrow(set))) 

   

  # return p-values: 

  return(c("LR" = lr.p, "WLR" = wlr.p)) 

   

} 

 

## n=25 

# PH 

write.csv(data.frame(t(replicate(10000, sim.unif(25, 1, 1, 1.125)))),  

          "results/unif21.csv", row.names=FALSE) 

write.csv(data.frame(t(replicate(10000, sim.unif(25, 1, .98, 1.115)))),  

          "results/unif298.csv", row.names=FALSE) 

write.csv(data.frame(t(replicate(10000, sim.unif(25, 1, .95, 1.11)))),  

          "results/unif295.csv", row.names=FALSE) 

write.csv(data.frame(t(replicate(10000, sim.unif(25, 1, .9, 1.105)))),  

          "results/unif290.csv", row.names=FALSE) 

# non-PH 

write.csv(data.frame(t(replicate(10000, sim.unif(25, 0.7, .98, 1.15)))),  

          "results/unif2987.csv", row.names=FALSE) 

write.csv(data.frame(t(replicate(10000, sim.unif(25, 0.5, .98, 1.2)))),  

          "results/unif2985.csv", row.names=FALSE) 

 

## n=50 

# PH 

write.csv(data.frame(t(replicate(10000, sim.unif(50, 1, 1, 1.125)))),  

          "results/unif51.csv", row.names=FALSE) 

write.csv(data.frame(t(replicate(10000, sim.unif(50, 1, .98, 1.115)))),  

          "results/unif598.csv", row.names=FALSE) 
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write.csv(data.frame(t(replicate(10000, sim.unif(50, 1, .95, 1.11)))),  

          "results/unif595.csv", row.names=FALSE) 

write.csv(data.frame(t(replicate(10000, sim.unif(50, 1, .9, 1.105)))),  

          "results/unif590.csv", row.names=FALSE) 

# non-PH 

write.csv(data.frame(t(replicate(10000, sim.unif(50, 0.7, .98, 1.15)))),  

          "results/unif5987.csv", row.names=FALSE) 

write.csv(data.frame(t(replicate(10000, sim.unif(50, 0.5, .98, 1.2)))),  

          "results/unif5985.csv", row.names=FALSE) 

 

## n=100 

# PH  

write.csv(data.frame(t(replicate(10000, sim.unif(100, 1, 1, 1.125)))),  

          "results/unif11.csv", row.names=FALSE) 

write.csv(data.frame(t(replicate(10000, sim.unif(100, 1, .98, 1.115)))),  

          "results/unif198.csv", row.names=FALSE) 

write.csv(data.frame(t(replicate(10000, sim.unif(100, 1, .95, 1.11)))),  

          "results/unif195.csv", row.names=FALSE) 

write.csv(data.frame(t(replicate(10000, sim.unif(100, 1, .9, 1.105)))),  

          "results/unif190.csv", row.names=FALSE) 

# non-PH 

write.csv(data.frame(t(replicate(10000, sim.unif(100, 0.7, .98, 1.15)))),  

          "results/unif1987.csv", row.names=FALSE) 

write.csv(data.frame(t(replicate(10000, sim.unif(100, 0.5, .98, 1.2)))),  

          "results/unif1985.csv", row.names=FALSE) 

 

Exponential Truncation 

library(survival) 

source("modified survdiff.R") 

 

# Pattern: 50% not truncated, 50% following exp 

 

sim.exp <- function(size, ph, hr, cr) { 

  sim.each <- function(size, ph, hr, g) { 

    # event times 

    event <- rweibull(size, 8*ph, 30*hr) 

    # randomly sample half as untruncated, half as 1 (placeholder) 

    trunc <- sample(c(0, 1), size=size, replace=TRUE) 

    # truncation times 

    trunc[trunc == 1] <- rexp(length(trunc[trunc == 1]), 1/10) 

    # censor times 

    c <- rweibull(size, 8*ph, 30*cr) 
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    # stop: minimum of event and censored times 

    stop <- pmin(event, c) 

    # start: minimum of the stop and truncation times 

    start <- pmin(stop, trunc) 

    # censoring vs. event indicator 

    cens <- as.numeric(event < c) 

     

    # gather into full dataframe  

    set <- data.frame(start, stop, cens) 

    # set group 

    set$group <- g 

    # observations that aren't observed will have the same start/stop time  

    set <- set[set$start != set$stop,] 

     

    # return final dataset 

    set 

  } 

  # simulate control and treatment 

  set <- rbind(sim.each(size, 1, 1, "control"),  

               sim.each(size, ph, hr, "treatment")) 

   

  # rank test results 

  lr.p <- survdiff.mod(Surv(start, stop, cens)~group, data=set) 

  wlr.p <- survdiff.mod(Surv(start, stop, cens)~group, data=set, rho=1) 

   

  # return simulated dataset: 

  # return(set) 

   

  # if interested in seeing % censored and nrow: 

  # return(c("cens" = mean(set$cens == 0), "nrow" = nrow(set))) 

   

  # return p-values 

  return(c("LR" = lr.p, "WLR" = wlr.p)) 

} 

 

## n=25 

# PH 

write.csv(data.frame(t(replicate(10000, sim.exp(25, 1, 1, 1.125)))),  

          "results/exp21.csv", row.names=FALSE) 

write.csv(data.frame(t(replicate(10000, sim.exp(25, 1, .98, 1.115)))),  

          "results/exp298.csv", row.names=FALSE) 

write.csv(data.frame(t(replicate(10000, sim.exp(25, 1, .95, 1.11)))),  

          "results/exp295.csv", row.names=FALSE) 

write.csv(data.frame(t(replicate(10000, sim.exp(25, 1, .9, 1.105)))),  
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          "results/exp290.csv", row.names=FALSE) 

# non-PH 

write.csv(data.frame(t(replicate(10000, sim.exp(25, 0.7, .98, 1.15)))),  

          "results/exp2987.csv", row.names=FALSE) 

write.csv(data.frame(t(replicate(10000, sim.exp(25, 0.5, .98, 1.2)))),  

          "results/exp2985.csv", row.names=FALSE) 

 

## n=50 

# PH 

write.csv(data.frame(t(replicate(10000, sim.exp(50, 1, 1, 1.125)))),  

          "results/exp51.csv", row.names=FALSE) 

write.csv(data.frame(t(replicate(10000, sim.exp(50, 1, .98, 1.115)))),  

          "results/exp598.csv", row.names=FALSE) 

write.csv(data.frame(t(replicate(10000, sim.exp(50, 1, .95, 1.11)))),  

          "results/exp595.csv", row.names=FALSE) 

write.csv(data.frame(t(replicate(10000, sim.exp(50, 1, .9, 1.105)))),  

          "results/exp590.csv", row.names=FALSE) 

# non-PH 

write.csv(data.frame(t(replicate(10000, sim.exp(50, 0.7, .98, 1.15)))),  

          "results/exp5987.csv", row.names=FALSE) 

write.csv(data.frame(t(replicate(10000, sim.exp(50, 0.5, .98, 1.2)))),  

          "results/exp5985.csv", row.names=FALSE) 

 

## n=100 

# PH  

write.csv(data.frame(t(replicate(10000, sim.exp(100, 1, 1, 1.125)))),  

          "results/exp11.csv", row.names=FALSE) 

write.csv(data.frame(t(replicate(10000, sim.exp(100, 1, .98, 1.115)))),  

          "results/exp198.csv", row.names=FALSE) 

write.csv(data.frame(t(replicate(10000, sim.exp(100, 1, .95, 1.11)))),  

          "results/exp195.csv", row.names=FALSE) 

write.csv(data.frame(t(replicate(10000, sim.exp(100, 1, .9, 1.105)))),  

          "results/exp190.csv", row.names=FALSE) 

# non-PH 

write.csv(data.frame(t(replicate(10000, sim.exp(100, 0.7, .98, 1.15)))),  

          "results/exp1987.csv", row.names=FALSE) 

write.csv(data.frame(t(replicate(10000, sim.exp(100, 0.5, .98, 1.2)))),  

          "results/exp1985.csv", row.names=FALSE) 
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Appendix C. Error and Power from Simulations 

This code extracted the type I error and power from simulations and compiled those 

findings into a dataframe with each line representing a unique combination of rank test, 

truncation pattern, difference between groups, and sample size, as indicated by the file 

name. 

library(stringr) 

 

# list files by goal (error rate vs. power) 

results <- list.files("Results") 

results.error <- results[lapply(results,  

                                function(x) str_sub(x, -5, -5)) == 1] 

results.power <- results[lapply(results,  

                                function(x) str_sub(x, -5, -5)) != 1] 

 

# set up empty dataframes (2 rank tests per file) 

df.error <- data.frame(matrix(ncol=0, nrow=2*length(results.error))) 

df.power <- data.frame(matrix(ncol=0, nrow=2*length(results.power))) 

 

## ## ## ## ## 

## Functions 

## ## ## ## ## 

 

# get target sample size 

get.size <- function(x) { 

  num <- str_extract(x, "([0-9])") 

   

  if(num == 2) {return(25)}  

  else if(num == 5) {return(50)}  

  else {return(100)} 

} 

 

# get type of difference 

get.diff <- function(x) { 

  num <- str_extract(x, "([0-9]+)") 

 

  if(str_length(num) == 3) { 

    return(paste("PH (.", str_sub(num, 2), ")", sep="")) 

  } else { 

    return(paste("non-PH (.", str_sub(num,2,3), ", .",  

                 str_sub(num, 4), ")", sep="")) 
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  } 

} 

 

# read in file and get type I error rate/se 

get.error <- function(user_file) { 

  df <- read.csv(paste("Results/", user_file, sep="")) 

  means <- apply(df, 2, function(x) prop.test(sum(x<0.05), length(x),  

                                              correct=FALSE)$estimate) 

  lower <- apply(df, 2, function(x) prop.test(sum(x<0.05), length(x),  

                                              correct=FALSE)$conf.int[1]) 

  upper <- apply(df, 2, function(x) prop.test(sum(x<0.05), length(x),  

                                              correct=FALSE)$conf.int[2]) 

  return(list("means" = means, "lower" = lower, "upper" = upper)) 

} 

 

# read in file and get power 

get.power <- function(user_file) { 

  df <- read.csv(paste("Results/", user_file, sep="")) 

  means <- apply(df, 2, function(x) binom.test(sum(x<0.05),  

                                               length(x))$estimate) 

  lower <- apply(df, 2, function(x) binom.test(sum(x<0.05),  

                                               length(x))$conf.int[1]) 

  upper <- apply(df, 2, function(x) binom.test(sum(x<0.05),  

                                               length(x))$conf.int[2]) 

  return(list("means" = means, "lower" = lower, "upper" = upper)) 

} 

 

## ## ## ## ## ## ## ## ## 

## Error (no difference) 

## ## ## ## ## ## ## ## ## 

 

## identifiers:  

# file name (to check that this is working) 

df.error$file <- rep(results.error, each=2) 

# truncation pattern 

df.error$truncation <- factor( 

  rep(unlist(lapply(results.error,  

                    function(x) str_extract(x, "([a-z]+)"))), each=2), 

  levels=c("ref", "unif", "exp") 

  ) 

 

# rank test 

df.error$test <- factor(rep(c("Log-Rank", "Prentice"),  

                            times=length(results.error))) 
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# target sample size 

df.error$size <- factor(rep(unlist(lapply(results.error, FUN=get.size)),  

                            each=2)) 

 

## results: 

errors <- lapply(results.error, function(x) get.error(x)) 

 

# type I error rate 

df.error$rate <- unlist(lapply(errors, function(x) x[["means"]])) 

# CI lower 

df.error$lower <- unlist(lapply(errors, function(x) x[["lower"]])) 

# CI upper 

df.error$upper <- unlist(lapply(errors, function(x) x[["upper"]])) 

 

## ## ## ## ## ## ## ## 

## Power (difference) 

## ## ## ## ## ## ## ## 

 

## identifiers 

# file name (to check that this is working) 

df.power$file <- rep(results.power, each=2) 

# truncation pattern 

df.power$truncation <- factor( 

  rep(unlist(lapply(results.power, 

                    function(x) str_extract(x, "([a-z]+)"))), each=2), 

  levels=c("ref", "unif", "exp") 

  ) 

# sample size 

df.power$size <- factor(rep(unlist(lapply(results.power, FUN=get.size)),  

                            each=2)) 

# difference 

df.power$difference <- factor( 

  rep(unlist(lapply(results.power, FUN=get.diff)), each=2) 

  ) 

 

# test 

df.power$test <- factor(rep(c("Log-Rank", "Prentice"),  

                            times=length(results.power))) 

 

## results: 

powers <- lapply(results.power, function(x) get.power(x)) 

 

# Power 

df.power$power <- unlist(lapply(powers, function(x) x[["means"]])) 

# CI lower 
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df.power$lower <- unlist(lapply(powers, function(x) x[["lower"]])) 

# CI upper 

df.power$upper <- unlist(lapply(powers, function(x) x[["upper"]])) 
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