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ABSTRACT 
 
 
 

COMPARING MULTIPLE SCLEROSIS AGE OF ONSET IN AFRICAN AMERICAN 
AND EUROPEAN COHORTS VIA POLYGENIC RISK SCORES 

 
 
 
 

Amy A. Hernandez Larrazábal 
 

Microbiology and Molecular Biology Department 
 

Bachelor of Science 
 
 
 

Health disparities have been observed in autoimmune diseases such as multiple 

sclerosis (MS), which show that non–Hispanic black patients with MS die at an earlier 

age and have an increasing mortality trend compared to white MS patients.3 New genetic 

information shows promising results to treat genetic diseases. For example, genome-wide 

association studies (GWAS) are being used to calculate polygenic risk scores (PRS) 

which are a method used to understand disease risk. However, current PRS have been 

developed using GWAS that overrepresent individuals of European ancestry,4 showing 

that they do not equally apply to all individuals. We set out to examine if PRS could be 

calculated using 200 previously identified non-major histocompatibility (MHC) variants 

for increased MS risk in Europeans.13 We also examined if PRS using those non-MHC 

variants could be used to generate a PRS for African Americans.  

In order to evaluate the capability of PRS to predict MS age of onset for 

Europeans and African Americans using non-MHC variants, we acquired de-identified 

electronic health records (EHR) of MS patients that had been genotyped from Vanderbilt 
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University Medical Center BioVU. We replicated the 200 non-MHC MS risk variants in 

our European and African American cohorts. We then calculated PRS using the formula 

PRSj=∑iSi∗Gij for each cohort using the software program PRSice.8 We analyzed the 

efficiency of the PRS through conducting a linear regression analysis. We also identified 

the variants that drove this association using linear regression analysis. Our results 

indicated that generating a PRS by only using non-MHC MS Risk SNPs for MS age of 

onset in Europeans and African Americans is not sufficient for a significant calculation.   
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INTRODUCTION 

Multiple sclerosis (MS) is a complex autoimmune disease where the myelin 

sheath that covers nerve fibers deteriorates and causes nerve damage. MS is most 

common in individuals of European descent; however, it still affects other populations.2 

Previous research studies have found that the average age of onset (AOO) for MS in non-

European populations is 28.6 years, while for European populations the AOO is 32.8 

years.2 Furthermore, studies have shown that non–Hispanic black patients with MS died 

at an earlier age and have an increasing mortality trend in comparison to white patients 

with MS.2,3 This suggests that MS takes a different toll on individuals depending on race; 

understanding why this difference in AOO occurs can aid us in enhancing our knowledge 

of MS onset, and how to better accommodate non-European individuals with MS. 

Genome-wide association studies (GWAS) have increased the field’s 

understanding of complex diseases and the prediction of clinical outcomes. However, the 

majority of GWAS analyses have been completed using data from individuals of 

European descent, while admixed individuals or individuals that possess ancestry from 

two or more genetically distinct sources, are often excluded due to a variety of historical 

and methodological reasons. Some methodological reasons for this exclusion come from 

the possibility of false positives (type 1 errors) or the possible reduction of power of the 

study and small sample sizes.5 These methodological reasons result from differences in 

allele frequencies, differences in linkage disequilibrium, and a lack of methods and 

pipelines that account for ancestry.22  

Despite awareness of lack of representation in genomic data, not much has 

changed throughout the years. As of 2018, the GWAS catalog reports that ~78% of all 
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GWAS participants were of European descent showing a large discrepancy in the 

representation in human genetic studies which further exacerbate health disparities.4 The 

effects of the lack of diversity in human genetic studies can be seen as we compute 

polygenic risk scores (PRS). PRS have been used as a method to learn about genetic 

contributions to disease risk; however, the majority of PRS have been developed using 

GWAS that overrepresent individuals of European ancestry, making them heavily biased 

toward those individuals.16  

Furthermore, the lack of diversity makes applying risk criteria across populations 

difficult when using different populations for the base and target data.20 Previous research 

has found that variability of PRS estimates across multiple populations and ancestry 

groups exists and that scores transfer well across European populations but transfer 

poorly to individuals of African ancestry.23 This shows that GWAS are currently less 

optimal for generating PRS for complex diseases when individuals of different ancestries 

since they may not be transferable across populations. Considering that GWAS data is 

likely biased towards Europeans, it is crucial to identify if such data can still be applied to 

non-European populations efficiently.  

In the case of MS, disability accumulates overtime and early detection is crucial 

because it enables clinicians to initiate disease modifying treatments which have been 

seen to delay or prevent debilitating disability.33 We believe that accurate PRS could be 

used clinically to encourage earlier screenings of MS thus leading to an earlier diagnosis 

and treatment options. In order to evaluate the capability of PRS to predict MS age of 

onset for Europeans and African Americans, we extracted previously identified non-

MHC Single Nucleotide Polymorphism’s (SNPs) associated with MS risk and used them 
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to calculate PRS. Using linear regression analysis, we evaluated the results and the SNPs 

that could potentially be driving the association. 

 

MATERIALS AND METHODS 

Data Acquisition 

Vanderbilt University Medical Center BioVU is representative of patients that come 

from a variety of ethnicities, health statuses, and ages. BioVU is a resource of over 

180,000 blood samples that have been collected from patients to extract DNA. After 

extraction, each sample is linked to the individual’s clinical data in a Synthetic 

Derivative, a de-identified version of their electronic health record (EHR). The patients’ 

DNA in this study was genotyped on the Illumina Expanded Multi-Ethnic Genotyping 

Array (MEGAEX) platform. The MEGAEX platform was used to provide genotyping 

coverage to European, African, East Asian, and South Asian populations.12 We obtained 

access to these de-identified EHRs from Vanderbilt University Medical Center BioVU 

for our study. 

Using previously published algorithms,11 patients with MS were identified by the 

International Classification of Diseases 10th revision (ICD-10) billing codes associated 

with MS or demyelinating diseases, medications, and text keywords. We extracted EHRs 

of individuals of European and African American ancestry (Table 1). We limited our 

study to patients at or above the age of 18 due to the complexity of MS and lack of 

pediatric MS cases. The dates recorded for the first occurrence associated with MS or 

demyelinating diseases were extracted using ICD-10 billing codes and established as the 
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age at diagnosis (AAD) for each patient. AAD will be used as proxy for age at clinical 

onset (AOO) because it is the best estimation of initial MS onset that we have.  

 

Quality Control 

Standard quality control (QC) procedures for both the European and African 

American populations were completed in PLINK. PLINK is a software program 

commonly used as a toolset for whole-genome analysis; it is designed to perform a 

variety of functions such as data management, basic association testing, and result 

annotation.27 These QC procedures include checking for sex and chromosomal 

anomalies, sample relatedness, sample genotyping efficiency, and minor allele 

frequencies. We filtered our dataset by an individual missingness > 0.01 and a minor 

allele frequency < 0.05. Related individuals were removed.  

We checked for sex and chromosomal anomalies using the --check-sex command. A 

male call was made if the homozygosity estimate was more than 0.8, a female call was 

made if the homozygosity estimate was less than 0.2. No errors with sex checks were 

found in our dataset. We checked for sample relatedness using the --genome command. 
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We used denser marker data to compute pairwise kinship estimates between every 

individual.  

We checked for sample genotyping efficiency using --missing command with a 

parameter of 0.01. We removed samples with a high proportion (proportion ≥ 0.01) of 

number of SNPs that failed to meet the missingness cut off and samples for which no 

genotype was called. We checked the minor allele frequencies (MAF) using the --freq 

command with a parameter of 0.05 for every SNP in our dataset. We removed rare SNPs 

(MAF ≤ 0.05) as they would reduce the power of our study if they remained in our 

analysis.  

 

SNP extraction 

We set out to identify the 200 previously identified non-major histocompatibility 

complex (MHC) MS Risk SNPs in our dataset.17 Of these 200 MS risk SNPs, 78 SNPs 

were an exact match to those that were in our dataset. In order to find the remaining 122 

SNPs, we used the software program SNiPA to obtain functional annotations and linkage 

disequilibrium information for these MS risk SNPs. SNiPA allowed us to identify SNPs 

in our dataset that were in linkage disequilibrium (LD) with the original 200 MS risk 

SNPs. LD patterns were used to identify the remaining MS risk SNPs in our dataset 

because these patterns allow for the identification of SNPs that co-occur with the actual 

causal variant.19 We were able to identify 94 SNPs in our dataset that were in LD with the 

remaining 122 MS risk SNPs, therefore we were able to identify a total of 172 non-MHC 

SNPs associated with MS risk in our dataset. 12 of those SNPs were found to be 

ambiguous SNPs and were removed. 
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Polygenic Risk Scores 

We calculated polygenic risk scores (PRS) for African American and European 

individuals via PRSice. PRSice is a software program that is dedicated to the calculation, 

application, and evaluation of PRS.8 We used this software program in LINUX. It follows 

the standard use of the clumping and thresholding (C+T) approach in which SNPs are 

clumped and thinned according to linkage disequilibrium (LD) as well as P-value.8 In 

order to account for differences in LD patterns, clumping is often used to remove SNPs in 

such a way that weakly correlated SNPs are retained by preferentially retaining the SNPs 
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most associated with the phenotype of interest. However, since the base data that we used 

was in the form of summary statistics that had already been pruned for LD patterns, we 

did not use clumping.  

We calculated PRS for individuals in each cohort which contained the 160 of 172 

SNPs that were identified by the International Multiple Sclerosis Genetics Consortium 

and were present in our target dataset.17 We used the command --score sum in order to 

use the following formula: PRSj=  ∑i Si∗Gij. In this formula the effect size of the SNP(i) 

is Si. The number of effect alleles observed in individual (j) is Gij.  

Our phenotype of interest was age of MS onset. To best estimate this value for our 

PRS calculation we used AAD, which was determined from the SD for each participant. 

For our P-value threshold, we set the threshold to include all SNPs with P-values equal to 

or within the range of 0 to 0.05 for both cohorts. The test statistic that we used to generate 

effect size estimates was in the form of BETA. Additionally, we used the following 

covariates: sex, PC1, PC2, PC3, and PC4 to generate a summary file on the best fit PRS. 

Principal components (PC) are population structure and sample ancestry estimates that 

are used as covariates to account for differences in population structure and ancestry. To 

calculate PC, we used --pca command with a parameter of 4 in PLINK. We then 

extracted the first four PC values for each individual in our study. 

In order to generate a file that contained a PRS output for every P-value threshold 

we used the command --all-score. We did this so that we could identify the P-value 

threshold that contained all of our base SNPs. For every PRS that we calculated, we used 

the following command in LINUX using an RScript: RScript PRSice.R --prsice 

PRSice_linux --base baseSNPs --target target_QC_Data --no-clump --binary-target F --
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pheno MS_Phenotype --cov covariate_File --stat BETA --beta --score sum --all-score --

out PRSicePRSFile. Additionally, while running the PRS command, 38 Europeans and 9 

African Americans were excluded because there was no AAD available for them.  

 

 

 

To identify the efficacy and accuracy of the PRS, we performed a linear 

regression analysis for AAD. For this linear regression we once again used the covariates 

sex and PC 1 – 4. This linear regression helped us identify the R2 value of each PRS and 

its associated P-value. The following command AAD ~ SCORE, data=Target_dataset 

+SEX + PC1 + PC2 + PC3 + PC4 was used in R for all of the PRS cohorts.  
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Linear Regression for Age of onset SNPs 

Upon completion of the PRS, we completed a linear regression analysis via 

PLINK using the --linear command and assessed which SNPs could potentially be 

driving the PRS and AAD association. We ran this linear regression to find SNPs that had 

an association to MS AAD (P-value < 0.05). Six covariates were included in our linear 

regression analysis: age in 2018 (the year when the samples were genotyped), sex, PC1, 

PC2, PC3, and PC4. The basic linear regression command we used was AAD ~ MS risk 

SNP, data=cohortFile* + age in 2018 +SEX + PC1 + PC2 + PC3 + PC4 (*dataset 

changed depending on which cohort was examined). Analyses were performed in the 

African American dataset, as well as the European dataset. 

From these analyses, we identified 16 SNPs associated with either an earlier or 

later MS age of onset. We identified the impact of an MS risk SNP on AAD by the 

BETA or regression coefficient value from the regression analysis. If the BETA value 

was negative the SNP was associated to an earlier age of onset. If the BETA value was 

positive the SNP was associated to a later age of onset.  
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RESULTS  

Polygenic Risk Scores 

Following PRS QC, 1400 samples with European ancestry, 162 samples with 

African American ancestry, and 160 non-MHC MS risk SNPs were used to calculate PRS 

for each individual. Association of MS risk PRS with AAD in Europeans showed that 

there was a weak positive correlation for females and little to no correlation for males 

(Figure 1). Association testing of MS risk PRS with AAD in African American males and 

females found a weak positive correlation between PRS and AAD (Figure 2). However, 

the PRS results for African Americans was not statistically significant and the R2 for both 

cohorts suggested that almost no variance was explained by the model (Table 2). These 

results suggest that non-MHC MS risk SNPs cannot solely be used to predict AAD or 

that larger samples sizes are necessary.  
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SNPs associated with MS Age of Onset  

We found a total of 16 SNPs associated with AAD as statistically significant (P-

value < 0.05). 12 of the 16 MS risk SNPs were found to be significant in our European 

dataset (Table 3), and the remaining 4 MS risk SNPs were found to be significant in the 

African American dataset (Table 4).  

We identified a statistically significant association between individual non-MHC 

MS risk SNPs and AAD in African Americans and Europeans. In particular, SNP 

rs12373588 was identified to have a later age of onset effect in African Americans with a 

risk allele having a frequency of 0.271 compared to a risk frequency of 0.473 in 

Europeans. SNPs rs1335523 and rs4821544 were identified to have a later age of onset 

effect in individuals of European descent. With SNP rs1335523 having a risk allele 

frequency of 0.864 in Europeans and 0.490 frequency in African Americans (Table 5). 

SNP rs4821544 has a risk allele frequency of 0.635 in Europeans and 0.417 in African 

Americans. This lower frequency MS risk SNPs associated with a later AAD in African 
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Americans could contribute to an earlier MS age of onset, which is consistent with 

previous studies.2,3 Proximal genes and functions that could be interrupted by these 

variants can be seen in Table 5. Proximal genes are important to note because the SNPs 

could potentially be disrupting or influencing that gene’s function.15 However, the 

distance to that proximal gene should be considered and further studies on the expression 

of the Gene-SNP need to be conducted.15 

 

 

 

DISCUSSION 

 Our results suggest that using the non-MHC MS risk SNPs would likely need to 

be coupled with other known or potential AAD risk variants in order to calculate a 

predictive PRS for European and African American individuals. These results are in line 

with another study that showed that carrying HLA-DRB1*15:01, a known risk factor for 

MS, and having a greater genetic burden from the 200 non-MHC risk variants is 

associated with an earlier MS AOO.7 Considering that MS has a variety of risk factors 

that could contribute to AAD, it is important to recognize that PRS are not able to capture 
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the non-genomic variation that contributes to a disease (i.e., sociocultural factors, 

environmental factors, etc.). Contributions such as complex social disparities and 

systemic racism have also been suggested to contribute to the clinical heterogeneity in 

MS and should be considered.27 

 Interestingly, there were three SNPs in particular that we found to statistically 

correlate with AAD, that have also been found to biologically affect MS onset or disease 

progression. SNP exm-rs133532 is proximal to CD58 gene which was found to mediate 

both protection from onset of MS and inflammatory demyelination.12 This is consistent 

with our association analysis that found exm-rs133532 to confer a later effect on MS 

onset. SNP exm-rs1800693, which we found to be statically associated with an earlier 

AAD was also found to be primarily involved in the onset of MS by affecting the tumor 

necrosis factor pathway.26 SNP rs4821544 is proximal to NCF4 gene which has been 

found to have a role in the NADPH-oxidase complex that produces reactive oxygen 

species and has been linked to autoimmune disorders.25 Additionally, SNPs rs12373588, 

rs1335532, and rs4821544 which we found to be associated with MS AAD in either 

Europeans or African Americans, were also found to have an effect on MS risk in 

Hispanic and African American populations.6 

Our findings further urge the need to examine if current GWAS data can be used 

to conduct accurate PRS in different populations. Understanding the limitations of current 

data and the need for diversity in genetic samples should always be considered when 

conducting genetic studies.  
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Limitations  

 This study had several limitations. First, the sample size for African Americans 

was relatively small. The small sample size of African Americans is partially due to a 

smaller number of African Americans diagnosed with MS. Second, with multiple testing 

correction (Bonferroni Adjusted P-value ≤ 3.125 x10-4) the results of the study are not 

statistically significant; however, the results described in this study are the most 

significant. Lastly, the AAD for each patient with MS is an estimation for AOO, and 

variable of this proxy may decrease statistical power. Due to the nature of MS disease 

progression, most individuals that are affected by MS will not get assessed by a physician 

upon their first experience of symptoms. This will delay their diagnosis and it is likely 

that they will not be assessed by medical professionals until their symptoms worsen or 

become debilitating.27 However, AAD based on EHR reporting is much more precise 

than recall biased AOO. Although, these limitations are commonly faced by the genetics 

and genomics fields when studying MS; they must be considered when examining the 

results that have been observed in this study.  

 

Future Directions 

To further account for ancestry differences, we recommend using software 

programs that generate ancestry specific genomic segments such as RFMIX or 

ADMIXTURE to incorporate them into the linear regression analysis as covariates. In 

addition, further analysis into the SNPs that we identified as significantly associated with 

AAD should be considered10,24.  Further biological analysis of the non-MHC MS risk 

SNPs would also be beneficial. Chromatin immunoprecipitation (ChIP) can be used in 
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vitro to learn about the SNPs effects on gene regulation and effects on binding.9, 21 

Electrophoretic gel-mobility shift assay (EMSA) can also be used to identify in vitro 

DNA-protein interactions and can be used to distinguish sequence variation caused by a 

SNP.9 

 Animal models such as experimental autoimmune/allergic encephalomyelitis, 

Theiler’s murine encephalomyelitis virus, and toxin-induced demyelination models 

should also be considered as a method to analyze the effects of the SNPs we found 

associated with AAD on MS onset.28 Using animal models could potentially give an 

insight into biological mechanisms that theses SNPs could be altering or interfering with 

which could then be contributing to MS pathogenesis.28  

In regard to the PRS, completing a PRS for AAD using the non-MHC MS risk 

SNPs previously identified as significant for African Americans would be beneficial and 

likely give a more accurate idea as to what SNPs, if any are driving an association 

between the PRS and AAD.6  Additionally, using the SNPs that we found associated with 

AAD for African Americans and Europeans should be used to calculate PRS in another 

sample population and identify if a statistically significant association is observed.  

Upon those modifications, it could be beneficial to evaluate the discriminatory 

effects and utility of the PRS generated.  Area Under the receiver operating characteristic 

(AUROC), precision recall curve (AUPRC), or concordance statistic (C-index) are all 

analyses that can be used to evaluate the PRS performance and its ability to classify 

individuals between those who will develop the disorder and those who will not.31 

Additionally, the model’s calibrations which gives insight into the predicted risk vs the 

observed risk could be calculated using Hosmer-Lemeshow test (X2).32  
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Finally, increasing the sample size of the study would be ideal. Small sample 

sizes can reduce the statistical power of studies and increase the likelihood of type II 

errors.14 Thus, increasing the sample size of the study could reduce the likelihood of such 

factors influencing the results of the study. Current efforts by the National Institutes of 

Health (NIH) All of Us research program could increase the sample size of this study. The 

NIH All of Us research program is a United States Department of Health and Human 

Services initiative to increase the diversity of genotyped samples available in a public 

dataset to researchers in the United States.1 By using the All of Us dataset, increasing the 

sample size of African Americans is possible.  

 

Implications 

 As science moves towards precision medicine, a special importance should be 

placed on increasing studies in non-European populations. One example of this is with 

the clinical use of PRS in non-European populations. With differences in the 

demographic relationships, allele frequency, and local linkage disequilibrium patterns 

among populations, using European-derived studies are not sufficient for precision 

medicine or adequate patient care. These observed differences lead to limited 

generalizability of PRS among ethnic/diverse populations and can exacerbate health 

disparities. 

Using accurate genetic data in research studies for a variety of populations with 

MS could help to identify or promote an earlier age for screening for MS, reduce 

stigmatization around who is affected by MS, and help reduce MS mortality trends that 

are based on differences of race, ethnicity, and age.  
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