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An Iterative Five-Point Algorithm
with Application to Multi-Target Tracking

Jacob H. White1, Randal W. Beard1

Abstract— We present ReSORtSAC: Recursively-seeded
optimization, refinement, sample, and consensus. ReSORtSAC
is a novel algorithm that can be used to estimate the relative
pose between consecutive frames of a video sequence. Relative
pose estimation algorithms typically generate a large number
of hypotheses from minimum subsets and score them in
order to be robust to noise and outliers. The relative pose is
often represented using the essential matrix. Previous methods
calculate essential matrix hypotheses directly without utilizing
prior information. These equations are complex to evaluate
and can return up to ten essential matrix solutions for each
minimum subset, all of which must be scored.

Instead, we calculate relative pose hypotheses by optimizing
the rotation and translation between frames, rather than
calculating the essential matrix directly. The equations used
in our optimization are simpler to evaluate, resulting in faster
computation speeds. We also reuse the best hypothesis to
seed the optimizer which reduces the number of relative
pose hypotheses which must be generated and scored. These
advantages greatly speed up performance and enable the
algorithm to run in real-time, while sharing resources with
other computer vision algorithms. We show application of
our algorithm to visual multi-target tracking (MTT) in the
presence of parallax and demonstrate its real-time performance
on a 640×480 video sequence. Video results are available at
https://youtu.be/HhK-p2hXNnU.

I. INTRODUCTION

Motion estimation from a video sequence has many
applications in robotics including target tracking, visual
odometry, and 3D scene reconstruction. These applications
often require on-board processing of the video sequence
in real-time and have size, weight, and power (SWAP)
constraints. Furthermore, the motion estimation algorithms
often must share computational resources with other
computer vision algorithms on the robot.

One method of estimating motion from a video sequence
is by calculating the essential matrix between consecutive
frames. The essential matrix relates the normalized image
plane coordinates in one frame to the next frame using the
epipolar constraint. The essential matrix can be decomposed
into a rotation and a normalized translation to determine
the motion of the camera. The essential matrix is typically
calculated by generating a large number of hypotheses from
five-point minimum subsets of matching features in order
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1161036 and CNS-1650547, along with significant contributions from C-
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to be robust to noise and outliers. This is often done
using random sample consensus (RANSAC) [1] or least
median of squares (LMedS) [2]. When using RANSAC,
these hypotheses are scored by counting the number of
inlier points from the entire set. When using LMedS, these
hypotheses are scored by calculating the median error.

Previous methods calculate essential matrix hypotheses
directly from each five-point minimum subset. One of the
most well-known of these algorithms is Nister’s algorithm
[3]. Nister showed that for five matching points, the
essential matrix can have up to ten solutions, all of which
can be found by solving a tenth-order polynomial, where
some of the roots are complex and can be discarded.
Since the number of complex roots come in pairs, there
always remain an even number of real roots. On average
there are typically four valid solutions. There are a
number of open-source implementation of Nister’s five-
point algorithm. One of the most popular implementations
is OpenCV’s findEssentialMat function [4]. However,
constructing, solving, and extracting the essential matrix
from this tenth-order polynomial is complex and can
be computationally expensive. Furthermore, since each
minimum subset produces up to ten hypotheses, it can be
time consuming to score them.

As an alternative to directly calculating essential matrix
solutions, some authors [5], [6], [7], [8], [9] propose
solving for the essential matrix using non-linear optimization
algorithms such as Gauss-Newton (GN) and Levenberg-
Marquardt (LM). Since the essential matrix has nine entries
but only five degrees of freedom, the optimization is done on
the essential matrix manifold to ensure that the result is valid.
There are a number of ways to define the essential matrix
manifold. Some authors define the manifold using a rotation
and translation unit vector, which are elements of SO (3) and
S2 respectively [5], [6]. Others define the manifold using two
elements of SO (3), in an SVD-like product [8], [9].

During each iteration of the optimization algorithm, the
optimizer step is solved for in terms of the five degrees of
freedom along the manifold. Since SO (3) and S2 are or
can be represented using Lie groups, the matrix exponential
can then be used to map the optimizer step back to the
manifold in order to perform the update. Each iteration of
the optimization is quite fast because the cost function and
its derivatives are mathematically simple. The most time-
consuming part of the iteration is inverting a 5 × 5 matrix,
which is faster than solving a tenth-order polynomial. For this
reason, these optimization-based solvers have the potential to
be faster than direct essential matrix solvers.

https://youtu.be/HhK-p2hXNnU


However, one weakness of these optimization-based
solvers is that they only find one of the ten possible solutions
to the essential matrix at a time. Finding all solutions requires
additional optimization runs with different initialization
points. The optimization method is also sensitive to initial
conditions, which can cause the optimizer to fail to produce
a valid solution. For example, GN may diverge if the initial
guess is too far from the true solution. LM can be used to
prevent increases in the cost function, but may occasionally
still fail to converge. Because of the need to run the optimizer
more times to produce the same number of hypotheses, these
existing optimization-based solvers might not necessarily be
faster than the direct essential matrix solvers if the same level
of accuracy is desired.

However, not all of the ten possible solutions are needed in
order achieve comparable accuracy to direct essential matrix
solvers, if the best solution can be found the first time.
The main contribution of this work is a novel optimization-
based relative pose solver that leverages prior information in
order to find the desired solution without requiring additional
optimization runs. Building on previous work, our algorithm
utilizes LMedS to produce robust estimates in the presence
of noise and outliers. We use the LM optimizer to solve for
the relative pose from each minimum subset.

The main difference between our work and previous work
is that during each iteration of LMedS, we seed the optimizer
with an informed initial guess instead of a random seed.
In video sequences, the rotation and translation between
consecutive frames is similar to nearby frames, so we can use
the relative pose estimate from the previous time step as a
good initial guess of the relative pose at the current time step.
Then in subsequent LMedS iterations, we update this initial
guess whenever a better relative pose hypothesis is found.
We show that this change significantly reduces the number of
hypotheses that must be generated and scored to achieve the
same level of accuracy. This allows the algorithm to run in
real-time while sharing resources with other computer vision
algorithms.

After the best LMedS hypothesis is found, it is refined
using only inlier points. The same optimizer described above
can easily be extended to accept more than five points. In
contrast, direct essential matrix solvers are unable to refine
the best hypothesis and thus require a separate algorithm to
do so.

The remainder of the paper is outlined as follows. Section
2 finalizes the problem description. Section 3 develops our
iterative five-point algorithm. Section 4 applies the algorithm
to target tracking in the presence of parallax. Section 5
presents results of both the iterative five-point algorithm
and the target tracking algorithm. Conclusions are given in
section 6.

II. PROBLEM DEFINITION

Given two consecutive video frames with point
correspondences detected in each frame, the goal is to
find the rotation R2

1 and translation t21/2 between the two
frames. The relevant geometry is shown below in Figure 1.
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Fig. 1. The geometry for the derivation of the essential matrix
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be

the 3D position of point i with respect to camera frames 1
and 2. The equation describing the relationship between the
3D coordinates of each point in frame 1 and 2 is

P 2
i = R2

1P
1
i + t21/2,

where R2
1 ∈ SO (3) is the rotation matrix from frame 1 to

2 and t21/2 is the translation vector from frame 2 to frame 1,
resolved in frame 2.

Left multiplying each side of the equation by
(
t21/2

)
×

,
where xy

z


×

=

 0 −z y
z 0 −x
−y x 0

 ,
gives

(
t21/2

)
×
P 2
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(
t21/2

)
×
R2

1P
1
i +

(
t21/2

)
×
t21/2.

The last term on the right is zero, thus(
t21/2

)
×
P 2
i =

(
t21/2

)
×
R2

1P
1
i .

We can then left-multiply each side of the equation by
(
P 2
i

)>
to get (

P 2
i

)> (
t21/2

)
×
P 2
i =

(
P 2
i

)> (
t21/2

)
×
R2

1P
1
i .

However, the left side of the equation is always zero
because the cross product

(
t21/2

)
×
P 2
i gives a vector

perpendicular to P 2
i , and therefore(
P 2
i

)> (
t21/2

)
×
R2

1P
1
i = 0.

Since the right side of the equation is zero, any scalar
multiple of P 1

i and P 2
i will also satisfy the equation.



This removes the depth dependency and allows us to use
normalized image plane coordinates in the equation. Let p1i
and p2i be the normalized homogeneous image coordinates
of point i in camera frame 1 and 2 respectively, i.e.

pi =

xiyi
1

 =

Xi

Zi
Yi

Zi

1

 =
Pi
Zi
.

This gives (
p2i
)> (

t21/2

)
×
R2

1p
1
i = 0. (1)

The essential matrix is defined as

E
4
=
(
t21/2

)
×
R2

1. (2)

In our method, we optimize the rotation and translation
on the manifold to satisfy Equation (1). The essential matrix
is only produced from the rotation and translation when it is
needed for cost functions and derivatives. In contrast, many
approaches in the literature solve for the essential matrix
directly, which requires decomposing the essential matrix
later to obtain the desired rotation and translation.

III. NEW ITERATIVE FIVE-POINT ALGORITHM

In this section, we drop the frame notation and simply
write the rotation as R and the translation as t, where R ∈
SO (3) and t ∈ S2. To estimate the rotation and translation
between frames, we generate a large number of relative
pose hypotheses from five-point minimum subsets and score
them using LMedS. However, instead of calculating the
essential matrix in closed-form, we optimize the rotation and
translation components of the essential matrix to find the
solution.

The optimization is done on the SO (3)×S2 manifold. We
will call this the essential matrix manifold. This manifold can
be represented using Lie groups, as discussed in subsections
III-A-III-C

At each iteration, the optimizer requires derivatives with
respect to each of the five degrees of freedom. Additionally,
since the optimizer step is represented in these five degrees
of freedom, it must be mapped back to the Lie group using
the matrix exponential. These derivatives and the exponential
map are also discussed in subsections III-A-III-C

The optimization algorithm minimizes the Sampson error
using the Levenberg-Marquardt algorithm. This error and its
derivatives are described in subsection III-D. The Levenberg-
Marquardt optimization algorithm used is described in
subsection III-E.

At each iteration of the LMedS algorithm, the optimization
produces a relative pose hypothesis from a random five-
point minimum subset. The best hypothesis is always used
to seed the optimizer. The LMedS algorithm is described
in subsection III-F and the optimizer seeding method is
described in subsection III-G.

The best relative pose hypothesis is refined using only
inlier points. This refinement is performed using the same
optimization algorithm used to generate the rotation and

translation hypotheses. The refinement is described in
subsection III-H.

Lastly, since there are two rotations and two translations
for which the Sampson error produces the same cost value,
the correct rotation-translation pair must determined. Since
the cheirality check often gives the wrong rotation matrix,
we instead pick the rotation matrix with the smallest angle.
We only use the cheirality check to determine the correct
translation. This is described in subsection III-I.

A. The SO (3) Manifold

The SO (3) manifold is the three-dimensional Lie group
consisting of all 3 × 3 rotation matrices. To be able to use
elements of SO (3) in an iterative algorithm, these three
degrees of freedom must be defined and the derivatives
in each of these directions calculated. These will later be
used to form the Jacobian in the LM optimization. The LM
algorithm returns updates to the Lie group represented in the
Lie algebra. Thus we also need a method to map between
the Lie group and the Lie algebra. This can be done using
the matrix exponential and the matrix logarithm. Thus to
update elements of the Lie group by an incremental amount
δR =

[
δR,1 δR,2 δR,3

]> ∈ so (3), we will use

Rk+1 = e(δR)×Rk.

To simplify notation, we will define this update using the
boxplus operator, as is done in [10],

� : SO (3)× R3 → SO (3) ,

Rk � δR , e
(δR)×Rk.

For skew symmetric 3×3 matrices the matrix exponential
can be calculated efficiently using the Rodrigues formula

eω× = I + sin (θ) ω̂× + (1− cos θ) ω̂2
×, (3)

where
ω̂ =

ω

‖ω‖
and

θ = ‖ω‖ .

The derivative of the rotation matrix Rk+1 along the
direction ω̂, evaluated at θ = 0 is given by

∂

∂θ
Rk+1 =

∂

∂θ
eθω̂×Rk

∣∣∣
θ=0

= ω̂×e
θω̂×Rk

∣∣∣
θ=0

= ω̂×Rk.

Thus the derivatives of R ∈ SO (3) along each of the three
degrees of freedom are

∂

∂δR,1
Rk+1 = (e1)×Rk,



∂

∂δR,2
Rk+1 = (e2)×Rk,

and

∂

∂δR,3
Rk+1 = (e3)×Rk,

where

e1 =

10
0

 ,
e2 =

01
0

 ,
and

e3 =

00
1

 .
B. The S2 Manifold

The S2 manifold is the set of all 3 × 1 unit vectors and
has two degrees of freedom. However, S2 is not a Lie group,
so instead we will represent it internally using elements of
SO (3). To obtain an S2 unit vector, we will multiply this
internal rotation matrix by a unit vector in the ẑ direction to
give

t = Q>e3.

We will define an incremental update on the internal rotation
matrix Q by δt ∈ R2 as

Qk+1 = e


δt,1
δt,2
0


×Qk.

Once again, we will define a boxplus operator to condense
notation,

� : S2 × R2 → S2,

Qk+1 = Qk � δt , e


δt,1
δt,2
0


×Qk.

Taking derivatives in both degrees of freedom gives

∂

∂δt,1
Qk+1 =

(
(e1)×Qk

)>
e3

= Q>k

0 0 0
0 0 1
0 −1 0

 e3
= Q>k e2

and
∂

∂δt,2
Qk+1 =

(
(e2)×Qk

)>
e3

= Q>k

0 0 −1
0 0 0
1 0 0

 e3
= −Q>k e1.

C. The Essential Matrix Manifold

The essential matrix is the product of the skew symmetric
matrix of a translation unit vector and a rotation matrix:

E = t×R.

Therefore, define the essential matrix manifold as the
Cartesian product of the rotation matrix and the unit vector
translation

E ∈
{
SO (3)× S2

}
.

As before, we will define a boxplus operator to update
elements of the essential matrix manifold by an incremental
update δ ∈ R5,

� :
{
SO (3)× S2

}
× R5 →

{
SO (3)× S2

}
,

E � δ ,

R�
δ1δ2
δ3

 , Q� [δ4
δ5

] . (4)

The derivatives of the essential matrix in each of the five
degrees of freedom are

∂Ek+1

∂δ1
= t× (e1)×Rk, (5)

∂Ek+1

∂δ2
= t× (e2)×Rk, (6)

∂Ek+1

∂δ3
= t× (e3)×Rk, (7)

∂Ek+1

∂δ4
=
(
(e1)×Q

)>
× e3Rk, (8)

and
∂Ek+1

∂δ5
=
(
(e2)×Q

)>
× e3Rk. (9)

D. Sampson Error

The Sampson error is a well-known approximation of the
reprojection error in both images [11]. This error will be
used as the residual function in the Levenberg-Marquardt
optimization. The Sampson error for the ith point is

ri =

(
p2i
)>
Ep1i√

(Ep1i )
2

1 + (Ep1i )
2

2 + (E>p2i )
2

1 + (E>p2i )
2

2

. (10)



The derivative of the Sampson error with respect to the
jth degree of freedom is

∂ri
∂δj

=

√
s
(
p2i
)> ∂E

∂δj
p1i −

(
p2i
)>
Ep1i

1√
s
∂s
∂δj

s
, (11)

where

s =
(
Ep1i

)2
1
+
(
Ep1i

)2
2
+
(
E>p2i

)2
1
+
(
E>p2i

)2
2
,

and ∂E
∂δj

is given in equations (5)-(9).

E. Levenberg-Marquardt Optimization

Both the Gauss-Newton and Levenberg-Marquardt
optimizers begin with an initial guess of the rotation matrix
and the translation unit vector. The Sampson error (10) can
be evaluated at this initial guess for each point to construct
the residual vector

r =


r1
r2
...
rm

 .
The Jacobian of the residual vector is constructed from
the residual derivatives (11) in each of the five degrees of
freedom along the essential matrix manifold described in
section III-C. This gives

J =


∂r1
∂δ1

∂r1
∂δ2

∂r1
∂δ3

∂r1
∂δ4

∂r1
∂δ5

∂r2
∂δ1

∂r2
∂δ2

∂r2
∂δ3

∂r2
∂δ4

∂r2
∂δ5

...
...

...
...

...
∂rm
∂δ1

∂rm
∂δ2

∂rm
∂δ3

∂rm
∂δ4

∂rm
∂δ5

 .
This Jacobian is a first-order Taylor-series approximation
of the error function. In other words, the residual can be
approximated by

r ≈ r0 + J0δ.

The goal is to bring the residual to zero. Based on this
linear approximation of the error, we can solve for the Gauss-
Newton incremental update δGN using least squares, so that

δGN = −
(
J>k Jk

)−1
J>k rk.

The essential matrix manifold element is then updated using
the boxplus operator defined in Equation (4).

Gauss-Newton iterations are repeated until the norm of the
residual is lower than a threshold, or the maximum number
of iterations is reached. In our implementation we use a
maximum of ten iterations.

However, if the initial guess is too far from the true
solution, the Gauss-Newton algorithm can take longer to
converge or become unstable. The Levenberg-Marquardt
algorithm is an improvement on the Gauss-Newton algorithm
that performs better in these conditions. It is essentially a
hybrid between the Gauss-Newton algorithm and gradient

descent, with a parameter λ to mix the two algorithms, so
that

δLM = −
(
J>k Jk + λ

(
J>k Jk

)
diag

)−1
J>k rk,

where (·)diag indicates a matrix formed by only using the
diagonal elements of the matrix.

F. Consensus Algorithms

The two consensus algorithms used in this paper are
random sample consensus (RANSAC) [1] and least median
of squares (LMedS) [2]. At each iteration of RANSAC or
LMedS, a minimum subset of size n is chosen from which
to generate a model. In the case of solving for the relative
pose between frames, the subset is chosen from the m point
correspondences at the current time step. The subset is called
a minimum subset because it is the smallest number of
points that provide enough constrains to generate a solution,
or model. In the case of the solving for the relative pose,
n = 5 point correspondences are used, since there are five
degrees of freedom and each point correspondence gives one
constraint. For each minimum subset, one or more models
that fit the points are solved for.

After generating N minimum subsets, each with their
corresponding solutions, all of these models are scored to
find the best one. The difference between RANSAC and
LMedS is how the models are scored. For RANSAC, the
score is the total number of inliers with a residual lower
than the RANSAC threshold τ . This can be written as a cost
function if the number of outliers are counted instead of the
number of inliers, so that

cost =

m∑
i=0

{
1 |ri| > τ

0 otherwise.

For LMedS, the cost is instead calculated by finding the
median of the square of the residuals, so that

cost =
m

median
i=0

r2i .

The advantage to using LMedS is that the threshold does
not need to be known before-hand. However, it only works
if less than half of the points are outliers.

The number of iterations required when using RANSAC
or LMedS is typically solved for by treating each matched
pair of points as a binomial random variable representing
whether the point is an inlier or an outlier [12]. For example,
achieving a 99% confidence ratio when the outlier ratio is
50% requires 145 RANSAC or LMedS iterations.

G. Seeding the Optimizer

The method in which the optimizer is seeded is essential
to achieving good performance. It is important that the
optimizer be seeded with a good initial guess. When no
prior information is known about the camera motion, the
algorithm can be seeded with the identity rotation and a
random translation unit vector. This method we will call the
random initialization method.



Prior information can significantly increase performance.
One way to incorporate prior information is to seed the
optimizer at each LMedS iteration with the best hypothesis
from the previous time step. We will denote this method as
the “prior” initialization method.

Another approach is to seed the optimizer with the best
hypothesis so far from the current time step. For the first
iteration of LMedS, there is no best hypothesis and so
the optimizer must be seeded randomly. However, for each
subsequent iteration, the best hypothesis can be used to seed
the optimizer. Since each hypothesis depends on the previous
best hypothesis, we will denote this method as the “random
recursive” initialization method.

These two approaches can also be combined. This results
in one long continuous stream of hypotheses which depend
on the previous best hypothesis. We will denote this method
as the “prior recursive” initialization method.

H. Refining Relative Pose Hypotheses

Even the best hypothesis from RANSAC and LMedS
usually has some error due to error on the individual points
in the minimum subset used to create the hypothesis. The
estimate can be improved by using least-squares optimization
on the manifold over inlier points.

Since our algorithm already uses LM to optimize relative
pose hypotheses, it can easily be extended to accept more
than five points to refine the best relative pose hypothesis. In
contrast, the OpenCV five-point algorithm does not have any
built-in optimization method or separate function to perform
the optimization.

Naive optimization using least-squares will often make
the estimate worse if the data contains outliers. Robust
least-squares optimization methods either explicitly find the
inliers [13], or use a robust cost function that essentially gives
higher weights to measurements with lower residuals [14].

For robust refinement we will find the inliers by first
estimating the standard deviation σ̂ [13]. For an explanation
of these cryptic numbers the reader is referred to [15], page
202. The robust standard deviation is given by

σ̂ = 1.4826

[
1 +

5

n− p

]√
m,

where p = 5 is the number of points used to create the
model, n is the total number of points, and m is the median
squared from LMedS. Inliers are defined to be any points
within two and a half standard deviations. Thus the weights
or inlier mask is

wi =

{
1 r2i < 2.5σ̂

0 otherwise.

Even after attempting to remove outliers, however, the
refined estimate can sometimes be worse than the original.
To prevent this, we score the refined hypothesis using the
same LMedS Sampson error metric to see if it is better or
worse than the original. If the new hypothesis has a lower
LMedS error it is kept, otherwise it is discarded.

I. Determining the Correct Rotation and Translation
For any relative pose hypothesis, there are two possible

rotations R1 and R2, as well as two possible translations
t and −t, that will produce the same Sampson cost. This
is because the Sampson cost is based on the essential
matrix. Each of these possible rotation and translation
pairs produce equivalent essential matrices, and thus
our hypothesis generation and scoring algorithms cannot
distinguish between them.

Direct essential matrix solvers usually find these rotation
matrices and the translation vector by extracting them from
the essential matrix using the singular-value decomposition
(SVD). However, since our optimization already produces
one possible rotation matrix and translation vector, we can
determine the other possible rotation by rotating the first
rotation 180 degrees about the translation vector. This is
simpler than taking the SVD of the essential matrix. Using
the Rodrigues formula (3) to rotate the first rotation matrix
R1 by 180 degrees gives

R2 =
(
I + 2t̂2×

)
R1.

After finding the two rotation matrices and the translation
vector, the cheirality check is often used to determine which
of rotation matrices and which translation sign is correct.
The cheirality check involves triangulating each point to
determine its 3D position. In our implementation of the
cheirality check we count the number of triangulated points
with positive depth and then add the totals from both
cameras. The rotation and translation pair with the largest
sum is chosen. However, with four possible choices, the
cheirality check often gives spurious results.

Alternatively, since the two possible rotations are always
180 degrees apart, we can pick the rotation with the smallest
angle and use the cheirality check to find the correct
translation. In a continuous video sequence the true rotation
between frames is usually very small. Thus one possible
rotation angle will be close to zero and the other possible
rotation angle will be close to 180 degrees. As long as
the true rotation is never more than 90 degrees, the correct
rotation will always be the one with the smaller angle.

Taking the trace of the matrix is a computationally efficient
method of picking the rotation with the smaller angle. Notice
that the first and third terms of the Rodrigues formula (3)
are the only terms with diagonal components. Thus the trace
of the rotation matrix is

tr (R) = 3− (1− cos (θ))
(
2ω̂2

1 + 2ω̂2
2 + 2ω̂2

3

)
= 3− 2 (1− cos (θ))
= 1 + 2cos (θ) . (12)

Since cos (θ) is monotonically decreasing on 0 < θ <
π, taking the trace of the matrix tr (R (θ)) will also be
monotonically decreasing. Thus the trace can be used to
determine which rotation matrix has the smallest angle,
giving

R =

{
R1 if tr (R1) > tr (R2)

R2 otherwise.



J. Complete System

The complete system is shown in Figure 2. At each time
step, features are detected in one frame using good features
to track [16] and then matched to the next frame using
LK optical flow [17]. These point pairs are the inputs to
ReSORtSAC.

At each iteration of LMedS, the LM optimizer is seeded
with the best initial guess, using the prior recursive method
described in section III-G. Ten LM iterations are used, with
iterations being repeated if the error is not successfully
decreased (Section III-E). After each iteration of LMedS,
the new hypothesis is scored. If the median squared error is
lower than the median squared error of the best hypothesis
so far, the new hypothesis is kept (Section III-F).

The best hypothesis is then refined using inliers (Section
III-H) and its rotation and translation disambiguated (Section
III-I). The result is the final essential matrix estimate.

Levenberg-
Marquardt
optimization

Refinement Pose
disambiguation

LK	optical	flowGood	features
	to	track

Frame	2Frame	1

Sampson	error

Calculate	median

Least	median	of	squares	(LMedS)

Randomly	pick
5-point	subset

pts	1 pts	2

Seed	optimizer
with	best	prior

Final	 	and	
estimate

� �

Video

Store	best
hypothesis

Fig. 2. Block diagram of ReSORtSAC

K. Computational Considerations

There are a couple of computational considerations in
implementing the ReSORtSAC relative pose estimator. The
most important of these considerations is to reduce the
number of matrices allocated on the heap, as heap allocations
are computationally expensive. One reason the OpenCV
polynomial essential matrix solver is slow is because it
allocates a large number of dynamic matrices on the heap.1

Our implementation allocates fixed-size matrices on the stack
and initializes dynamic matrices from raw buffers created
once at the beginning of the program. These initialization
options are available in both Eigen and OpenCV, but we
have chosen to implement our algorithm using Eigen.

1Based on our own observation of the publicly available OpenCV source
code [4]

IV. MOTION DETECTION AND TRACKING IN THE
PRESENCE OF PARALLAX

One application of relative pose estimation is motion
detection and tracking in the presence of parallax. Motion
detection is a valuable source of information in tracking. It
can be used to track objects without any prior knowledge
about their appearance, in contrast to many trackers that are
designed to track specific classes of objects.

There are many successful image-based background
subtraction techniques in the literature that work on
stationary cameras. In order for image differencing
techniques to work on a moving camera, the images must
first be aligned using a homography. This works well
for planar scenes. But if there is parallax, artifacts can
appear in the difference image. If the parallax is small
enough in comparison to the movement of objects in the
scene, the effects of parallax can be reduced using simple
morphological operations and gradient suppression, as is
done in [18].

In the presence of strong parallax, however, a better motion
model that accounts for depth variation must be used. There
are several methods in the literature that use a geometric
model to describe the motion of tracked points in the scene
over time. A KLT tracker or other tracker can be used to
generate sparse point trajectories. These can then be used in
the motion model.

With these tracked points, one approach is to approximate
the camera as orthographic instead of perspective [19]. With
this approximation, the motion of the camera and the points
in the scene over time can be solved using a system of linear
equations. Points that are not consistent with this motion
must be moving points. This approach works well if the
camera is far from the scene or only observes a small field of
view, but does not work well for perspective transformations,
because the linear orthographic assumption is violated.

Another approach is to maintain an affinity matrix over
time. Each cell of this matrix stores the dissimilarity between
two points and is calculated from the maximum difference
of position and velocity between these two points up until
the current frame. This affinity matrix can be mapped into
an embedding space. The points can then be clustered in
the embedding space to distinguish between foreground and
background points and to segment moving objects [20].
Another approach is to use matrices to describe multiple-
frame geometric constraints [21], [22].

These approaches are well developed, but the papers
describing these methods do not include computation times.
In this paper, we use a simple method for motion detection
using only the two-frame essential matrix constraint. The
advantages of the method are computational simplicity and
real-time performance.

A. Problem Setup

Given two consecutive frames, with point correspondences
detected in each frame, the objective is to determine which
points are from stationary objects and which are from moving
objects. It is assumed that the essential matrix E, along with



its rotation R and translation t have already been calculated
using the iterative method described in Section III.

This is a much simpler problem when the camera is
stationary, since all motion observed in the image plane
comes from moving objects in the world frame. However,
for a moving camera, the problem becomes more difficult
because object motion and camera motion both cause
apparent motion in the image plane. The challenge is
determining the source of this motion. In other words, the
goal is to design a detector φ (pi) which returns 1 if the ith
point is moving and 0 otherwise. The output of the motion
detector is used as an input to a tracking algorithm in order
to produce target estimates.

B. Motion Detection Algorithm

The essential matrix relates points in one image to the
other image with the epipolar constraint. In other words, the
essential matrix maps a point in one image to a line in the
other image. Where the point in the other image appears
along this line depends on the real-world depth of the point
from the camera. As the camera translates, points that are
closer to the camera will appear to move more than the points
that are far away. This effect is known as parallax.

There are two degrees of freedom for the apparent motion
of each point in the image plane. One of these degrees of
freedom can be explained by the epipolar constraint if the
real-world point is stationary. However, motion along this
degree of freedom can also be explained by object motion
in the world frame. Hence the source of any movement
along this degree of freedom is ambiguous without additional
information. The second degree of freedom for apparent
motion of points in the image plane is perpendicular to the
epipolar constraint. Thus the only possible source of motion
along this degree of freedom is movement in the real-world
frame.

Note that except in degenerate cases, each point in the
image will move in a different direction due to parallax. For
example, when the camera is moving towards the scene or
away from the scene, the points move along radial epipolar
lines which intersect at the center of the image. As a result,
it can be helpful to describe the motion of the points due
to parallax using a vector field. Define the parallax field as
a unit vector assignment to each point in the image plane
that points in the direction the point would move due to
parallax. The second degree of freedom is perpendicular to
the parallax field, thus we will define the perpendicular field
as a 90 degree clockwise rotation of each of these vectors.

These two vector fields give basis vectors at each point
that will be used to decompose apparent motion in the image
plane into the two degrees of freedom described above. We
will denote the velocity in these two directions as the parallax
velocity and the perpendicular velocity respectively.

Before considering the effects of parallax, however, we
must compensate for the rotation of the camera. One method
of compensating for the rotation of the camera is to use a
Euclidean homography. Like the regular homography matrix,
the Euclidean homography also maps points in one image to

points in the other image using homogeneous coordinates,
but operates on image plane coordinates instead of pixel
coordinates. The Euclidean homography is given by

He =

(
R+

tn>

d

)
γ,

where t is a translation vector, n is the normal vector of the
plane which the homography describes, d is the distance to
this plane, and γ is a scale factor.

The homography requires normalizing each homogeneous
point after left-multiplying the point by the homography
matrix. To condense notation, define g (p) as an operator
that normalizes homogeneous points, so that

g (p)
4
=

p

pz
=

pxpzpy
pz

1

 .
Compensating for the rotation alone gives

p̂2i = g
(
Hep

1
i

)
= g

(
Rp1i

)
,

where p̂2 is the estimated location of the ith point in the next
camera frame.

Note that this estimated location is where the point would
be in the second image if it had infinite depth. The remaining
point velocity is the sum of the true velocity of the point
and the apparent velocity due to parallax. Subtracting the
estimated point and true point in the second image gives the
remaining velocity

v2i = p2i − p̂2i .

We can then use the essential matrix to calculate the
parallax and perpendicular fields. The essential matrix
equation (1) can be rewritten as a line in standard form,
giving

ax2i + by2i + γ = 0,

where a =
(
Ep1i

)
1
, b =

(
Ep1i

)
2
, and γ =

(
Ep1i

)
3
.

It can be shown that the vector
[
a b

]>
is perpendicular

to this epipolar line and the vector
[
−b a

]>
is parallel to

it. Assuming the essential matrix is formed from the relative
pose as given in Equation (2), this parallel vector will have
the correct sign and will be pointing in the direction of
parallax. Making these vectors unit vectors gives the parallax
field

f‖
4
=

[
b
−a

]
/
√
a2 + b2

and the perpendicular field

f⊥
4
=

[
a
b

]
/
√
a2 + b2.

The component of apparent velocity in the image plane in
each direction can be found using the dot product with each
field. There is no need to divide by the magnitude since the
fields are already unit vectors. This gives



v‖ =

〈
f‖,

[
vx
vy

]〉
and

v⊥ =

〈
f⊥,

[
vx
vy

]〉
.

The perpendicular velocity can then be thresholded to
determine if a particular object is moving. The parallel
velocity can also sometimes help distinguish between
moving and stationary objects. Since parallax always makes
stationary points appear to move in the same direction
as camera translation, if the parallax velocity is negative
it indicates that the object is moving. Thus the decision
function for whether a point is moving can be written as

φ (pi) =

{
1 if |v⊥| > τ or v‖ < −τ
0 otherwise,

where τ is the moving point threshold. Due to small errors
in calculating the essential matrix and lack of camera
calibration, a threshold of one pixel is often the tightest
constraint that can be used.

C. Recursive-RANSAC

Moving points found using motion detection are then
fed into recursive-RANSAC, a newly proposed algorithm
for multi-target tracking [23]. At each time step recursive-
RANSAC searches for new models using RANSAC. When
a sufficient number of inliers are detected, a new track is
initialized.

Existing tracks are propagated forward using a Kalman
filter. Probabilistic data association [24] is used to account
for measurement association uncertainty. Each track is given
an inlier score based on the percentage of time steps in which
the track is detected. Recursive-RANSAC also has a track
management system that merges similar tracks and removes
tracks that have an inlier score lower than the minimum
threshold.

V. RESULTS

Two video sequences were used to test the two algorithms
presented in this paper. The ReSORtSAC relative pose
algorithm was tested on a synthetic video sequence of
a UAV inside a city. The synthetic video sequence has
no moving objects, so the complete motion detection and
tracking algorithm was tested on a video sequence taken from
a UAV camera.

A. Iterative Five-Point Algorithm

The ReSORtSAC relative pose algorithm was tested
on a synthetic video sequence of a UAV inside a city
generated using the BYU Holodeck simulator [25]. The two-
minute video sequence (3600 frames) includes aggressive
rotational and translational motions. A screenshot of the
video sequence is shown in Figure 3.

Fig. 3. Screenshot of the holodeck video sequence

There are three error metrics for each algorithm
comparison. The rotational error is the smallest rotation
angle between the true rotation and the estimated rotation.
This angle is the norm of the matrix logarithm and can be
efficiently calculated by solving (12) for θ, giving

eR =
∥∥logRtrueR−1est∥∥

=
tr
(
RtrueR

−1
est

)
− 1

2
.

The translational error is computed by finding the angle
between the true unit vector translation and the estimated
unit vector translation, so that

et = cos−1
(
t̂>truet̂est

)
.

Note that when calculating the rotation and translation
error metrics, we do not penalize pose disambiguation errors.
We consider the rotation and translation error metrics to
be independent from the pose disambiguation error metrics,
since there are four possible rotation-translation pairs for
which the Sampson error produces the same cost value.
The rotation and translation errors are thus computed for
all possible rotations and translations and smallest of these
errors is returned. The pose disambiguation error metrics
show the percentage of the time that the relative pose
algorithm chooses the correct rotation and translation.

Both the rotational and translational error are measured in
radians. The LMedS Sampson error is also computed. Unless
otherwise noted, all error metrics are averaged over the entire
video sequence of 3599 frame pairs.

The error over time for the OpenCV LMedS polynomial
solver and the ReSORtSAC solver is shown in Figure 4. Both
the OpenCV and ReSORtSAC solvers give low error for the
UAV trajectory. Notice how the rotation error seems to be
proportional to the total rotation, while the translation error
becomes very large as the true translation approaches zero.

Various methods of initializing the LM optimizer were
tested and compared against the OpenCV five-point
polynomial solver. To compare these methods, the LMedS
algorithm was run for 100 iterations at each time step for
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Fig. 4. Error over entire video sequence

the complete video sequence. At each LMedS iteration the
error of the best hypothesis was recorded. The mean error
across the entire video sequence is plotted in Figure 5.

This result shows the importance of initializing the
optimizer with a prior. The random initialization method
performs the worst out of all four methods, while initializing
the optimizer with a prior from the previous time step or
the best LMedS hypothesis so far from the current time
step significantly reduces the error. After 100 iterations,
the LMedS error for the initialization methods that use
prior information is comparable to the OpenCV five-point
polynomial solver, despite the fact that only one hypothesis
is generated per subset instead of an average of about four.
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Fig. 5. ReSORtSAC Levenberg-Marquardt seeding methods

Similarly, Figure 6 shows the error of our algorithm
and the OpenCV algorithm, but with the x-axis changed
to be time instead of number of iterations. When under a
time constraint, ReSORtSAC significantly outperforms the
OpenCV solver.

Table I compares the error of the LMedS Gauss-Newton
and Levenberg-Marquardt methods. Levenberg-Marquardt
has a noticeably lower error. This is likely because
Levenberg-Marquardt does a better job of dealing with large
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Fig. 6. ReSORtSAC and OpenCV error over time comparison

TABLE I
GAUSS-NEWTON AND LEVENBERG-MARQUARDT ERROR COMPARISON

Relative pose Rotation error Translation error LMedS error
solver (radians) (radians) (Sampson)

Baseline (OpenCV) 4.843e-04 1.742e-01 3.769459e-08
GN + LMedS 4.806e-04 1.731e-01 3.773465e-08
LM + LMedS 4.573e-04 1.706e-01 3.623720e-08

gradients and non-linearities.
RANSAC and LMedS were also compared. For RANSAC

the algorithm was tested with 19 different thresholds. For
LMedS, the algorithm was run once, since there is no
threshold parameter to tune. For each run the average truth
rotation and translation error over the entire video sequence
were calculated. As shown in Figure 7, LMedS performs
well without requiring a threshold. However, in order for
RANSAC to perform as well as LMedS, the threshold must
to be tuned to within an order of magnitude of the optimal
threshold.
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Fig. 7. Average rotation and translation errors for RANSAC and LMedS

Table II shows the results of the rotation and translation
disambiguation algorithms. The first row within each group
of relative pose solvers shows a baseline comparison, where
no method was used for pose disambiguation. The baseline



TABLE II
POSE DISAMBIGUATION COMPARISON

Solver Pose disambig- Rotation Translation Both
uation method correct correct correct

OpenCV none 50.2% 14.7% 6.8%
OpenCV cheirality 54.0% 93.2% 52.3%
OpenCV trace + cheirality 100.0% 96.5% 96.5%

ReSORtSAC none 100.0% 53.1% 53.1%
ReSORtSAC cheirality 40.9% 92.1% 40.8%
ReSORtSAC trace + cheirality 100.0% 96.5% 96.5%

TABLE III
RESORTSAC RELATIVE POSE REFINEMENT

Relative pose Refine Rot err Trans err LMedS err
solver success (radians) (radians) (Sampson)

Baseline (OpenCV) - 4.843e-04 1.742e-01 3.769e-08
Before refinement - 4.573e-04 1.706e-01 3.624e-08
After refinement 55.0% 3.779e-04 1.596e-01 3.519e-08

method gives poor results. However, it is worth nothing that
ReSORtSAC is able to keep the correct rotation, even without
any form of pose disambiguation. This is likely because it
is seeded at the first frame with the identity rotation, and
every frame thereafter the best hypothesis from the previous
is reused as a seed to the optimizer.

The second row in each group shows the results when
the cheirality check was used (Section III-I) to determine
the best out of the four possible rotation translation pairs.
Though the translation direction is often correct, the rotation
is correct only about half of the time. The third row in
each group shows the results of using the matrix trace to
determine which rotation is correct, with the cheirality check
to determine the correct translation direction. This third pose
disambiguation method consistently outperforms the other
methods.

Table III compares the average error before and after
refinement using only inlier points (Section III-H). The
refinement is defined to be successful if the new relative pose
has a lower LMedS Sampson error. The new relative pose is
only kept if the refinement was successful. Refining the best
relative pose hypothesis significantly reduces all three error
metrics.

The computation times for the relative pose solvers is
shown in Table IV. Notice that the OpenCV polynomial
solver takes much longer to generate hypotheses and also
requires scoring four times as many hypotheses. The time
required to score each hypothesis is proportional to the
number of points detected in each frame, which for this
video sequence is on average about 400 points. The relative
pose solvers were benchmarked on a laptop with a 2.1 GHz
Intel i7 CPU running Linux. The breakdown of the time
required to generate each hypothesis set is shown in Figure
8. The most time-consuming part of the OpenCV solver is
finding the zeros of the tenth-order polynomial. The most
time-consuming part of the GN and LM solvers is the Eigen
matrix solver.

TABLE IV
COMPUTATION TIME

OpenCV poly ReSORtSAC
Hypothesis 100 ∗ 0.400 ms 100 ∗ 22.7 us
generation = 40.0 ms = 2.27 ms
Hypothesis 400 ∗ 17.2 ns 100 ∗ 9.22 ns

scoring = 6.89 ms = 0.92 ms
Refinement - 5.98 ns

Pose 0.32 ms 0.15 ms
disambiguation

Total 47.2 ms 3.94 ms
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Fig. 8. Time required to generate each hypothesis set

B. Motion Detection and Tracking Results

The motion detection algorithm was tested on a moving
camera video sequence taken from a UAV. Figure 9 shows
the results of the motion detection algorithm. Notice how
the stationary points have zero perpendicular velocity and a
positive parallax velocity, while the moving points have a
non-zero perpendicular velocity component.

The computation times of the motion detection and
tracking algorithm are shown in Table V. For faster
processing the video was scaled to 640×480. The motion
detection and tracking algorithm is running on a Linux
desktop computer with a 4GHz Intel i7 CPU. On average
about 800 points are detected, tracked, and fed to the
relative pose solver each frame. Notice that the OpenCV
feature detection and tracking are the most time-consuming
components of the tracking algorithm and consume 70%
of the total CPU usage. The complete algorithm takes 29
milliseconds to run per frame, which means it is capable of
running in real-time at 34 frames per second (FPS).
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Fig. 9. Video motion detection results. Each point position (left) and its
corresponding net velocity (right) are plotted. Points with a net perpendicular
velocity greater than one pixel are classified as moving points (red), while
points with a velocity below this threshold are classified as stationary points
(blue).



Fig. 10. Recursive RANSAC tracks

TABLE V
MOTION DETECTION AND TRACKING COMPUTATION TIMES

Tracking Component Computation Time
Good features to track 9.2 ms

LK optical flow 12 ms
Calc E (ReSORtSAC) 3.0 ms
Recursive RANSAC 0.4 ms

Other 4.4 ms
Total 29 ms (34 FPS)

VI. CONCLUSION

In this work, we have presented an iterative five-
point algorithm for solving the rotation and translation
between consecutive frames capable of running in real-
time. We show the importance of seeding the Levenberg-
Marquardt optimizer with an initial guess and demonstrate
that this initial guess significantly improves the performance
to the algorithm. We have applied this algorithm to
detecting motion and tracking multiple targets from a UAV
and demonstrated real-time performance of this tracking
algorithm on a 640×480 video sequence.

Future work includes using an IMU to improve the initial
guess of the rotation and translation from the previous time
step. Future work also includes applying the principles of
using an initial guess to seed the optimizer to 3D scene
reconstruction and more complex tracking methods. The
depth of moving objects can be estimated by using nearby
3D reconstructed points, building on the method used in [26],
in order to estimate the 3D position of moving targets.
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