Melt Detection in Antarctic Ice Shelves Using Scatterometers and Microwave Radiometers

David G. Long
david_long@byu.edu

Lucas B. Kunz

Original Publication Citation

BYU ScholarsArchive Citation
https://scholarsarchive.byu.edu/facpub/298

Follow this and additional works at: https://scholarsarchive.byu.edu/facpub

Part of the Electrical and Computer Engineering Commons

This Peer-Reviewed Article is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
Melt Detection in Antarctic Ice Shelves Using Scatterometers and Microwave Radiometers

Lukas B. Kunz and David G. Long, Senior Member, IEEE

Abstract—Ku-band dual-polarization radar backscatter measurements from the SeaWinds-on-QuikSCAT scatterometer are used to determine periods of surface freeze and melt in the Antarctic ice shelves. The normalized horizontal-polarization radar backscatter ($\sigma^h$) and backscatter polarization ratio are used in maximum-likelihood estimation of the ice state. This method is used to infer the daily ice-surface conditions for 25 study locations on the Ronne, Ross, Larsen, Amery, Shackleton, and other ice shelves. The temporal and spatial variations of the radar response are observed for various neighborhood sizes surrounding each given location during the study period. Criteria for determining the dates of melt onset and freeze-up for each Austral summer are presented. Validation of the ice-state and melt-onset date estimates is performed by analyzing the corresponding brightness temperature ($T_b$) measurements from Special Sensor Microwave/Imager (SSMI/I) radiometers. QuikSCAT $\sigma^o$ measurements from 1999 to 2003 are analyzed and found to be effective in determining periods of melt in Antarctic ice sheets at high temporal and spatial resolutions. These estimates can be used in studies of the climatic effects of the seasonal and interannual melting of the Antarctic ice sheets.

Index Terms—Antarctic, ice, ice shelves, melt onset, QuikSCAT, refreeze, SeaWinds, Special Sensor Microwave/Imager (SSMI/I).

I. INTRODUCTION

A significant number of studies have been conducted using spaceborne passive microwave sensors to detect the surface melt of Arctic sea ice, e.g., [1]–[3], Antarctic ice sheets [4]–[6], and the Greenland ice sheet [7], [8]; however, the use of active microwave sensors in such studies has been limited [9]. Even more limited has been the use of these instruments in detecting surface melt on Antarctic sea ice [10] and on Antarctic ice shelves [11]. Active microwave measurements, particularly from scatterometers, are very useful in determining annual melt-season duration and in observing surface melt pond formation. These measurements are sensitive to changing ice-surface conditions that may indicate the initial signs of shelf retreat. Recently, longer melt-season duration and the presence of surface melt ponds on Antarctic ice shelves have been linked to shelf breakup [12]. Thus, monitoring surface melt conditions is critical to evaluating the stability of Antarctic ice shelves. This paper proposes a method for exploiting the sensitivity of scatterometer measurements to determine the presence of surface melt on Antarctic ice shelves. Performance of the method is compared with passive microwave measurements.

II. BACKGROUND

Spaceborne scatterometers are active microwave sensors that observe the normalized radar backscatter $\sigma^o$ of the Earth’s surface. Scatterometers were originally developed and flown to observe near-surface wind over the ocean [13] but are useful in a variety of terrestrial applications [14]. Scatterometer measurements are particularly sensitive to the water content of the illuminated surface. The backscatter signatures observed from snow-covered ice and liquid water are markedly different [15]. Volume scattering is the predominant factor in the radar response of dry snow cover for active microwave sensors. As the amount of liquid water in the snow cover increases, the wet snow causes a decrease in the radar backscatter [16]. These backscatter signatures are of primary interest in this analysis.

Measurements from radiometers are also useful in analyzing the content of liquid water in the snow cover. Radiometers are passive microwave sensors that record brightness temperature measurements. The relative permittivity of wet snow is considerably higher than for dry snow, so absorption is also higher and results in a decrease of volume scattering. This increases the emissivity and causes the brightness temperature of the wet snow to dramatically increase [16]. Several algorithms have been implemented on passive microwave data to map snowmelt-onset dates on Arctic sea ice [9], the Greenland ice sheet [8], and the Antarctic ice sheet [5], [6]. Similar algorithms are used in this paper to validate the melt detection results from the active microwave measurements on Antarctic ice sheets.

0196-2892/06 $20.00 © 2006 IEEE
The passive Special Sensor Microwave/Imager (SSM/I) records radiometric $T_b$ measurements with seven channels: dual polarization at 19.35, 37.0, and 85.5 GHz and $v$ polarization at 22.235 GHz [17]. Several SSM/I instruments are onboard Defense Meteorological Satellite Program (DMSP) satellites and provide almost complete coverage of the polar regions each day. Only the 19- and 37-GHz channels are used in this analysis. The SSM/I footprint sizes vary from 43 × 69 km at 19.35 GHz to 28 × 37 km at 37 GHz.

The SeaWinds-on-QuikSCAT scatterometer instrument has two scanning pencil-beam antennas and measures both the $v$ and $h$ polarization backscatter [18]. The inner beam is $h$-polarized with an incidence angle of $\sim 46^\circ$, and the outer beam is $v$-polarized at an incidence angle of $\sim 54^\circ$. Like the SSM/I, the polar orbiting QuikSCAT provides almost complete coverage of the polar regions daily regardless of cloud cover or solar illumination. The QuikSCAT footprint size is approximately 25 × 36 km.

Melt conditions can vary over the measurement footprint. To help equalize the sensor resolution and minimize spatial variability effects in the analysis, high-resolution images produced using the Scatterometer Image Reconstruction (SIR) algorithm [19], [20] are used. The SIR algorithm combines all passes from a given day to improve the spatial resolution of the data images at the expense of temporal resolution. Backscatter and $T_b$ images are produced with a pixel size of approximately 2.5 km. The effective resolution for QuikSCAT images is estimated to be 8–12 km, whereas the effective resolution of the SSM/I images is estimated to be of the order of 25–30 and 38–45 km for the 19- and 37-GHz channels, respectively. At each study location, 2.5-km SIR image pixels within a specified radius of the location are included in the analysis. Pass-to-pass variations in sensor sampling locations, antenna sidelobes, and spatial variability of the surface may contribute to variability of the pixel values.

We note that melt conditions vary with the local time of day. Inasmuch as the time of day of observations may differ somewhat between the two sensors, sensor time-of-day acquisition may contribute to differences in the sensor responses. The QuikSCAT SIR image data used in this study are available from the NASA Scatterometer Climate Record Pathfinder (SCP) project [14], [21].

III. ICE-STATE DISTRIBUTION ESTIMATIONS

To observe the intra- and intershelf radar response characteristics, 25 locations are selected from each of the major ice shelves (Fig. 1). The yearly and seasonal variations in the statistics of the measured backscatter values for each location are observed. These empirically calculated statistics form the basis of the ML test for ice-state estimation.

The QuikSCAT scatterometer dual-polarization backscatter measurements ($\sigma_H^v$ and $\sigma_H^h$) are very correlated but exhibit different sensitivities to the presence of liquid water. This sensitivity is easily observed from the quasi-polarization ratio (PR) defined by

$$ PR = \sigma_V^o - \sigma_H^o $$

where the values are in decibels. This is not a true polarization ratio because the $v$ and $h$ polarization measurements are from different incidence angles. In general, $\sigma_V^0$ is $\sim 1$ dB below the $\sigma_H^0$ values.

From the time series in Fig. 2, we see that PR fluctuates much more during each Austral summer than during the winter. This results from the greater sensitivity of $h$-polarized backscatter to liquid water in the snow cover than $v$-polarized backscatter as melt/freeze events occur during summer. This time series is typical of most areas that experience surface melting. Backscatter values for locations with no melt events are nearly constant with time.

For each study location, contiguous melt and nonmelt training periods were subjectively selected in the middle of winter and summer of each year, avoiding transition periods. All measurements during the training periods were used to compute melt and nonmelt statistics, which were found not to be particularly sensitive to the precise boundaries chosen.

Fig. 3 shows scatterplots of $\sigma_H^v$ versus PR for each year of the time series for locations 3 and 7. Note the concentration of nonmelt values around the point ($-2$ dB, $-1$ dB) in each plot for location 7. The remaining values, which are during summer melt, are loosely grouped. This suggests that the backscatter and PR observations during melting and nonmelting periods may be modeled as random variables with separate means and covariances for melt and nonmelt. For simplicity, a Gaussian distribution is assumed, and the mean vector and covariance matrix during each specified period in Fig. 2 are computed.
IV. ML ESTIMATION OF ICE STATES

Given the scatterometer measurements, the daily ice state for each location is estimated using the ML ratio method

\[
l(x) = \frac{f_{\mathbf{X}|H_1}(x|h_1)}{f_{\mathbf{X}|H_0}(x|h_0)} > \frac{L_{01}P(H_0)}{L_{10}P(H_1)} \tag{2}
\]

where \(l(x)\) is the ratio of pdfs \(f_{\mathbf{X}|H_i}(x|h_i)\) of \(x\) for each ice state, \(H_0\) denotes the conditions for no surface melting, and \(H_1\) represents the presence of surface melt. \(x\) is a two-element vector in the space spanned by the possible values of \(\sigma_H^2\) and PR, and \(\mathbf{m}_0\) and \(\mathbf{m}_1\) contain the estimated mean \(\sigma_H^2\) and PR values for the respective ice states. \(L_{ij}\) is the loss associated with choosing ice state \(j\) when the true state of nature is \(i\), and \(P(H_i)\) is the prior probability that ice state \(i\) is the true situation. For ML estimation, no a priori information is used, and equal losses \((L_{01} = L_{10})\) are chosen.
Forming the log-likelihood ratio \( \Lambda(x) = \log l(x) \) simplifies the melt hypothesis test to a comparison of weighted norms, the so-called Mahalonobis distance, i.e.,

\[
\phi(x) = \begin{cases} 
1, & \|x - m_1\|_{R_1^{-1}} < \|x - m_0\|_{R_0^{-1}} + \log |R_0|/|R_1| \\
0, & \text{otherwise} 
\end{cases} 
\]

(3)

where \( R_0 \) and \( R_1 \) are the respective covariance matrices for nonmelt and melt conditions. This test is performed on the daily \( \sigma^2 \) values for the 25 study locations from 1999 through 2003. Each day’s measurements are used independently in the melt classification, so the result from one day does not influence the ice-state estimation for any other day. The time-series data are divided into yearly segments, and the mean and covariance over each given year are used in the ML test. For locations that exhibit very few days of melting, the empirically computed covariance matrices may be ill conditioned. In these cases, the covariance matrix from the nearest valid location is used instead. This substitution is necessary only for a few locations on the Ronne and Ross ice shelves. Fig. 5 illustrates the results of the ML ice-state estimation for locations 7 and 19. The melt classification results for the other peninsular locations are very similar (see Table I).

This method performs well for location 7 because periods of reduced backscatter are classified as melt. However, due to refreeze events, some days during the summer have high backscatter values that are close to the winter mean value. These are still included in the reported melt duration. These events are observed in the melt classification results for many of the 25 study locations.

Study location 19 shows that some potentially false melt classifications occur when refrozen snow backscatter measurements are higher than the winter nonmelt values [refer to Fig. 5(c)]. This happens when the backscatter values lie to the right of the decision boundary in the \( \sigma^2_H \) versus PR scatterplot [see Fig. 5(d)]. A slight modification to the decision boundary can compensate for this problem; however, because such measurements represent a distinct deviation from the normal nonmelt conditions, the locations classified as melt that have higher backscatter values should be identified and analyzed further. Possible explanations for this behavior include a dramatic refreeze event, the formation of hoar frost, or a significant accumulation event, among others.

Generally, the scatterometer measurements increase dramatically at the end of the Austral summer and indicate the onset of surface refreeze. Some years at the conclusion of the summer melt season, the backscatter measurements rise above the
TABLE I
MELT-ONSET DATES AND TOTAL NUMBER OF MELT DAYS FOR EACH YEAR FROM THE ML QUIKSCAT MELT DETECTION METHOD

<table>
<thead>
<tr>
<th>Location</th>
<th>Shelf</th>
<th>Longitude</th>
<th>Latitude</th>
<th>1999-00 Onset/Total</th>
<th>2000-01 Onset/Total</th>
<th>2001-02 Onset/Total</th>
<th>2002-03 Onset/Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wilkins</td>
<td>073.50°W</td>
<td>70.25°S</td>
<td>99-279</td>
<td>153</td>
<td>00-306</td>
<td>131</td>
</tr>
<tr>
<td>2</td>
<td>George VI</td>
<td>067.90°W</td>
<td>70.90°S</td>
<td>99-311</td>
<td>112</td>
<td>00-307</td>
<td>070</td>
</tr>
<tr>
<td>3</td>
<td>Larsen B</td>
<td>060.50°W</td>
<td>65.35°S</td>
<td>99-324</td>
<td>149</td>
<td>00-257</td>
<td>133</td>
</tr>
<tr>
<td>4</td>
<td>Larsen B</td>
<td>061.50°W</td>
<td>65.75°S</td>
<td>99-322</td>
<td>099</td>
<td>00-306</td>
<td>059</td>
</tr>
<tr>
<td>5</td>
<td>Larsen C</td>
<td>060.91°W</td>
<td>66.95°S</td>
<td>99-337</td>
<td>075</td>
<td>00-309</td>
<td>109</td>
</tr>
<tr>
<td>6</td>
<td>Larsen C</td>
<td>061.50°W</td>
<td>66.50°S</td>
<td>99-324</td>
<td>083</td>
<td>00-308</td>
<td>079</td>
</tr>
<tr>
<td>7</td>
<td>Larsen C</td>
<td>061.50°W</td>
<td>67.00°S</td>
<td>99-337</td>
<td>075</td>
<td>00-309</td>
<td>087</td>
</tr>
<tr>
<td>8</td>
<td>Larsen C</td>
<td>061.50°W</td>
<td>67.50°S</td>
<td>99-337</td>
<td>060</td>
<td>00-341</td>
<td>078</td>
</tr>
<tr>
<td>9</td>
<td>Larsen C</td>
<td>061.50°W</td>
<td>68.00°S</td>
<td>99-337</td>
<td>054</td>
<td>00-341</td>
<td>073</td>
</tr>
<tr>
<td>10</td>
<td>Larsen C</td>
<td>061.50°W</td>
<td>68.50°S</td>
<td>99-337</td>
<td>054</td>
<td>00-341</td>
<td>056</td>
</tr>
<tr>
<td>11</td>
<td>Emery</td>
<td>072.00°E</td>
<td>69.00°S</td>
<td>00-017</td>
<td>021</td>
<td>00-334</td>
<td>056</td>
</tr>
<tr>
<td>12</td>
<td>Ross</td>
<td>160.00°W</td>
<td>78.50°S</td>
<td></td>
<td>000</td>
<td></td>
<td>000</td>
</tr>
<tr>
<td>13</td>
<td>Ross</td>
<td>155.00°W</td>
<td>80.50°S</td>
<td></td>
<td>000</td>
<td></td>
<td>000</td>
</tr>
<tr>
<td>14</td>
<td>Ross</td>
<td>178.61°W</td>
<td>79.99°S</td>
<td></td>
<td>000</td>
<td></td>
<td>000</td>
</tr>
<tr>
<td>15</td>
<td>Ross</td>
<td>174.45°W</td>
<td>82.52°S</td>
<td></td>
<td>001</td>
<td></td>
<td>001</td>
</tr>
<tr>
<td>16</td>
<td>Ronne</td>
<td>055.00°W</td>
<td>76.75°S</td>
<td></td>
<td>006</td>
<td>00-362</td>
<td>027</td>
</tr>
<tr>
<td>17</td>
<td>Ross</td>
<td>162.00°W</td>
<td>79.40°S</td>
<td></td>
<td>000</td>
<td></td>
<td>000</td>
</tr>
<tr>
<td>18</td>
<td>Ross</td>
<td>148.77°W</td>
<td>81.66°S</td>
<td></td>
<td>000</td>
<td></td>
<td>000</td>
</tr>
<tr>
<td>19</td>
<td>Bellingshausen</td>
<td>001.00°E</td>
<td>70.50°S</td>
<td>00-011</td>
<td>007</td>
<td>00-306</td>
<td>028</td>
</tr>
<tr>
<td>20</td>
<td>Ross</td>
<td>172.00°E</td>
<td>81.00°S</td>
<td></td>
<td>001</td>
<td></td>
<td>001</td>
</tr>
<tr>
<td>21</td>
<td>Ross</td>
<td>172.00°E</td>
<td>78.50°S</td>
<td></td>
<td>003</td>
<td></td>
<td>000</td>
</tr>
<tr>
<td>22</td>
<td>Fälchner</td>
<td>040.00°W</td>
<td>79.00°S</td>
<td></td>
<td>018</td>
<td></td>
<td>018</td>
</tr>
<tr>
<td>23</td>
<td>Williamson</td>
<td>112.75°E</td>
<td>66.50°S</td>
<td></td>
<td>000</td>
<td></td>
<td>000</td>
</tr>
<tr>
<td>24</td>
<td>Tajmyrsky West</td>
<td>085.50°E</td>
<td>66.75°S</td>
<td></td>
<td>011</td>
<td>00-333</td>
<td>062</td>
</tr>
<tr>
<td>25</td>
<td>Shackleton</td>
<td>096.50°E</td>
<td>65.50°S</td>
<td>99-349</td>
<td>041</td>
<td>00-329</td>
<td>066</td>
</tr>
</tbody>
</table>

V. DETERMINING MELT-ONSET AND REFREEZE DATES

As previously noted, the Larsen ice shelf has become the subject of interest for observing and understanding the causes and impacts of ice-shelf breakup. Surface melting is believed to play a key role in ice-shelf breakup [12]. Determining the dates of melt-onset and refreeze is important in understanding the inter-annual variability of surface melt in Antarctica. Previous efforts to map these events have focused on Arctic and Antarctic sea ice. Winebrenner et al. [23] used synthetic aperture radar and scatterometer data to map the melt-onset and refreeze dates of Arctic sea ice, and Drinkwater and Liu [10] used scatterometer data to map melt onset of Antarctic sea ice.

Using the ML method for melt detection on Antarctic ice shelves with QuikSCAT data, we adopt the following criteria for determining the melt-onset and refreeze dates. The melt-onset date is chosen to be the beginning of a three-day period of consecutive melt classifications, and the refreeze date is selected as the day marking the start of a period of no melt classifications for at least seven days. Fig. 7 contains maps of the resulting melt-onset date estimates for each year over the Antarctic Peninsula, whereas Fig. 8 maps the total number of days classified as melt events during each Austral summer for the peninsula. For each pixel in the images, the distribution from the nearest study location is used in the ML ice-state classification. Inasmuch as we are interested only in the ice shelves, only locations below 100 m in elevation are used in the melt-onset progression maps shown here.

For the discussion of these melt maps, we follow the terminology used by Vaughan and Doake [24]: the northernmost section of the Larsen ice shelf (just north of study location 3) is termed Larsen “A,” the section covered by locations 3 and 4 is Larsen “B,” and locations 5–10 span Larsen “C.” Location 1 is on the Wilkins ice shelf and location 2 on the George VI ice shelf.
From Figs. 7 and 8, we see that the Larsen A ice shelf experiences a very early melt onset and over 300 days of melt each year. From 2001 to 2003, nearly every day is classified as melt. This is expected since Larsen A disintegrated in 1995, thus removing ice-sheet ice from the area [12]. The boundary between the Larsen A and Larsen B ice shelves is marked by an abrupt change in the results from the melt-total and melt-onset maps for each year. The Larsen B melt season begins much later and ends earlier than for Larsen A.

The Larsen C ice shelf experiences significant melt much later than Larsen A and B for the 1999–2000, 2000–2001, and 2002–2003 melt seasons. The total number of melt days for each pixel of Larsen C is almost uniform, but for 2000–2001, the southern portion of the shelf begins its melt season more than a month later than the northern part. The maps also show that although the Larsen C melt season occurs later for 2001–2002 and 2002–2003 than previous summers, the total number of melt days is very similar for each year.

The Wilkins and George VI ice shelves show considerable variation in their respective dates of melt onset from year to year. The 1999–2000 melt season begins earlier on the edges of both shelves than in the interior. This year also experiences a longer melt-season duration than the other years. The 2000–2001 Austral summer is marked by a later melt onset than the previous year, and the melt is uniform over the entire surface of each shelf. During the 2001–2002 and 2002–2003 melt seasons, the total melt on each shelf is very uniform (∼ 100–150 melt days), but the Wilkins shelf begins its melt season nearly three months earlier than the George VI shelf for 2001–2002.

The ML method consistently classifies melt over contiguous areas, and some interesting features are observed in the variations of the melt seasons from year to year. To determine the validity of this melt detection method, an analysis of passive microwave measurements were analyzed using previous methods, and the results are given in the next section.

VI. VALIDATION USING RADIOMETER DATA

Passive microwave brightness temperature measurements have previously been used to detect melt on Arctic sea ice and the Greenland and Antarctic ice sheets from SSM/I observations. The results from three melt detection methods using these data are compared with the ML method classifications using QuikSCAT data.

Anderson [9] used the horizontal range

$$HR = T_h(19\ H) - T_h(37\ H)$$

(4)
to determine melting events on Arctic sea ice, where $T_h(19\ H)$ is the $h$-polarized 19-GHz channel value and $T_h(37\ H)$ is the $h$-polarized 37-GHz channel value for a given location. If HR drops below 2 K, a melt event is counted. Although this method has previously only been applied to Arctic sea ice, here we use this algorithm with the brightness temperatures of Antarctic shelf ice.

Abdalati and Steffen [7] used the cross-gradient polarization ratio (XPGR) to detect melt over Greenland where

$$XPGR = \frac{T_h(19\ H) - T_h(37\ V)}{T_h(19\ H) + T_h(37\ V)} > -0.0158$$

(5)
is used to classify melt.

A method for determining melt on the Greenland ice sheet proposed by Ashcraft and Long [8] is also implemented using SSM/I 19-GHz $v$ polarization data. This method, hereafter $T_h - \alpha$, uses a threshold set between the mean winter brightness
Fig. 9. Melt detection results for study locations 7 and 3 are shown in plots (a) and (c), respectively. ML method melt classifications are indicated on the QuikSCAT time series for each location, whereas the results from the SSM/I methods are given along the bottom of plots (a) and (c) below the QuikSCAT time series. Vertical lines mark the melt-onset dates from the ML method. Plots (b) and (d) contain the SSM/I time series for locations 7 and 3, respectively. ML, \( T_b - \alpha \), and XPGR melt classifications are consistent for location 7 but differ for location 3, where \( T_b - \alpha \) and XPGR miss the melt season of 2001–2002 and diverge for 2002–2003. The HR method detects melt nearly everyday, and almost no melt during melt periods is detected by the other methods.

The total number of melt days and the melt-onset dates from the ML method for the 25 study locations during each year of the study are given in Table I. The melt-onset dates calculated by the ML algorithm are usually a few days prior to the start of melt season.

Fig. 10. (a) and (c) Melt detection results for study locations 19 and 24, respectively. (b) and (d) SSM/I time series for locations 19 and 24, respectively. The ML classifies more melt days than the \( T_b - \alpha \) and XPGR methods for location 19, and the \( T_b - \alpha \) and XPGR results do not coincide for any melt season. For location 24, there is high correlation between the methods except for the 2002–2003 melt season.

The ML method appears to be more sensitive to melt conditions in some cases than the methods using passive microwave data. This is evident in the results for study location 3 in Fig. 9(c). The \( T_b - \alpha \) method does not distinguish any melt events during the 2001–2002 summer; however, the backscatter time series clearly indicates substantial melting, and the ML method appropriately identifies many days of surface melt. XPGR sporadically identifies a few days as melt during this period and overestimates the number of melt events for the 2002–2003 summer and winter of 2003.

The results of the HR, XPGR, and \( T_b - \alpha \) melt algorithms are shown along the bottom of panels (b) and (c) in Figs. 9 and 10. The HR method classifies nearly every day as melt for each of the 25 study locations, whereas the ML, XPGR, and \( T_b - \alpha \) results are more consistent. This indicates that the HR method is not portable for use in melt detection on Antarctic ice shelves. The ML method generally results in more days classified as melt than the \( T_b - \alpha \) method. XPGR results vary much more from year to year than the other methods as illustrated by the classifications for location 3 [Fig. 9(c)].

The ML method appears to be more sensitive to melt conditions in some cases than the methods using passive microwave data. This is evident in the results for study location 3 in Fig. 9(c). The \( T_b - \alpha \) method does not distinguish any melt events during the 2001–2002 summer; however, the backscatter time series clearly indicates substantial melting, and the ML method appropriately identifies many days of surface melt. XPGR sporadically identifies a few days as melt during this period and overestimates the number of melt events for the 2002–2003 summer and winter of 2003.

The total number of melt days and the melt-onset dates from the ML method for the 25 study locations during each year of the study are given in Table I. The melt-onset dates calculated by the ML algorithm are usually a few days prior to the start of melt season.

The temperature value \( T_b^{\text{dry}} \) and the brightness temperature for wet snow \( T_b^{\text{wet}} \). Melt is classified for

\[
T_b(19 \text{ V}) > \alpha T_b^{\text{dry}} + (1 - \alpha) T_b^{\text{wet}}
\]

where \( T_b^{\text{wet}} = 273 \text{ K} \) and \( \alpha = 0.46 \) [8].

Figs. 9(b), (d) and 10(b), (d) show the time series of SSM/I data corresponding to the QuikSCAT dataset for four locations. Note that whenever the backscatter decreases significantly, there is usually an accompanying rise in brightness temperature measurements. The data for location 3 in Fig. 9(c) and (d) show a deviation from this pattern. The drop in backscatter during the 2001–2002 Austral summer corresponds to varying responses in the \( T_b \) values for each SSM/I channel. Inasmuch as passive microwave observations are more subject to changing atmospheric conditions, the discrepancy between the two sensors at this location may be due to atmospheric effects. The variation in responses between the SSM/I channels are due to the different operating frequencies and polarizations. Higher frequency channels are more affected by interference from the atmosphere.
to the first day of melt detected by XPGR and $T_b - \alpha$. This is the case for the melt season of 2000–2001 for location 7 and for 2000–2001 and 2001–2002 for locations 19 and 24. The XPGR method detects melt prior to the ML method for location 7 during 2001–2002 and 2002–2003 and for locations 3, 19, and 24 during 2002–2003. Melt-onset dates from the ML and $T_b - \alpha$ results are very close during 2001–2002 and 2002–2003 for location 7, during 2000–2001 and 2002–2003 for location 3, and during 2000–2001 for location 24. For most of the study locations, it is observed that when each of the ML, XPGR, and $T_b - \alpha$ methods detect melt during a given melt season, the melt-onset dates for the ML and $T_b - \alpha$ methods are within a few days, whereas the XPGR dates vary considerably.

VII. CONCLUSION

The ML melt detection algorithm using QuikSCAT Ku-band dual-polarization measurements is shown to be a promising method for detecting surface melt. Melt classifications using this method are spatially consistent, and the melt-onset date estimates correspond to the beginning of periods with greatly reduced backscatter. Maps of the melt-onset progression and melt-season duration for a number of key Antarctic ice shelves were created for each Austral summer from 1999 to 2003.

Validation of the ML method results via passive microwave methods suggests that QuikSCAT measurements are very effective in determining the presence of surface melt on Antarctic ice shelves and that the ML method melt-onset dates and melt-season duration estimates are reliable and consistent. Additionally, the backscatter observed by QuikSCAT is at finer spatial resolution than the radiometer $T_b$ measurements. This allows for more precise observation of spatially varying surface melt. We note, however, that the QuikSCAT time series is significantly shorter than the multidecade SSM/I time series.

ACKNOWLEDGMENT

SeaWinds and QuikSCAT data were obtained from the Physical Oceanography Distributed Data Archive at the Jet Propulsion Laboratory, Pasadena, CA, whereas SSM/I data were obtained from the National Snow and Ice Data Center. This work was completed at the Microwave Earth Remote Sensing Laboratory, Brigham Young University.

REFERENCES


Luksa B. Kunz received the M.S. degree in electrical engineering from Brigham Young University (BYU), Provo, UT, in 2004. At BYU, he was with the BYU Center for Remote Sensing, focusing on scatterometer applications of microwave remote sensing. He is currently a Radar Design Engineer with emphasis on signal processing algorithms for Raytheon Missile Systems, Tucson, AZ.
David G. Long (S’80–M’82–SM’98) received the Ph.D. degree in electrical engineering from the University of Southern California, Los Angeles, in 1989.

From 1983 to 1990, he was with NASA’s Jet Propulsion Laboratory (JPL), where he developed advanced radar remote sensing systems. While at JPL, he was the Project Engineer on the NASA Scatterometer (NSCAT) project, which flew from 1996 to 1997. He also managed the SCANS CAT project, the precursor to SeaWinds, which was launched in 1999 and 2002. He is currently a Professor in the Department of Electrical and Computer Engineering, Brigham Young University (BYU), Provo, UT, where he teaches upper-division and graduate courses in communications, microwave remote sensing, radar, and signal processing, and is the Director of the BYU Center for Remote Sensing. He is the Principle Investigator of several NASA-sponsored research projects in remote sensing. He has authored or coauthored more than 275 publications in signal processing and radar scatterometry. His research interests include microwave remote sensing, radar theory, space-based sensing, estimation theory, signal processing, and mesoscale atmospheric dynamics.

Dr. Long has received the NASA Certificate of Recognition several times. He is an Associate Editor of the IEEE GEOSCIENCE AND REMOTE SENSING LETTERS.