
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

International Congress on Environmental
Modelling and Software

8th International Congress on Environmental
Modelling and Software - Toulouse, France -

July 2016

Jul 12th, 8:30 AM - 8:50 AM

From OpenMI to HydroCouple: Advancing OpenMI to Support From OpenMI to HydroCouple: Advancing OpenMI to Support

Experimental Simulations and Standard Geospatial Datasets Experimental Simulations and Standard Geospatial Datasets

Caleb A. Buahin
Utah State University, caleb.buahin@aggiemail.usu.edu

Jeffery S. Horsburgh
Utah State University, jeff.horsburgh@usu.edu

Follow this and additional works at: https://scholarsarchive.byu.edu/iemssconference

 Part of the Civil Engineering Commons, Data Storage Systems Commons, Environmental Engineering

Commons, Hydraulic Engineering Commons, and the Other Civil and Environmental Engineering

Commons

Buahin, Caleb A. and Horsburgh, Jeffery S., "From OpenMI to HydroCouple: Advancing OpenMI to Support
Experimental Simulations and Standard Geospatial Datasets" (2016). International Congress on
Environmental Modelling and Software. 11.
https://scholarsarchive.byu.edu/iemssconference/2016/Stream-A/11

This Event is brought to you for free and open access by the Civil and Environmental Engineering at BYU
ScholarsArchive. It has been accepted for inclusion in International Congress on Environmental Modelling and
Software by an authorized administrator of BYU ScholarsArchive. For more information, please contact
scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/iemssconference
https://scholarsarchive.byu.edu/iemssconference
https://scholarsarchive.byu.edu/iemssconference/2016
https://scholarsarchive.byu.edu/iemssconference/2016
https://scholarsarchive.byu.edu/iemssconference/2016
https://scholarsarchive.byu.edu/iemssconference?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2016%2FStream-A%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/252?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2016%2FStream-A%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/261?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2016%2FStream-A%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/254?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2016%2FStream-A%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/254?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2016%2FStream-A%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1087?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2016%2FStream-A%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/257?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2016%2FStream-A%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/257?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2016%2FStream-A%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/iemssconference/2016/Stream-A/11?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2016%2FStream-A%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

International Environmental Modelling and Software Society (iEMSs)
8th International Congress on Environmental Modelling and Software

Toulouse, France, Sabine Sauvage, José-Miguel Sánchez-Pérez, Andrea Rizzoli (Eds.)
http://www.iemss.org/society/index.php/iemss-2016-proceedings

From OpenMI to HydroCouple: Advancing OpenMI to
Support Experimental Simulations and Standard

Geospatial Datasets

Caleb A. Buahina and Jeffery S. Horsburgha
a Utah Water Research Laboratory, Utah State University (caleb.buahin@aggiemail.usu.edu,

jeff.horsburgh@usu.edu)

Abstract: HydroCouple is a cross-platform, component-based modeling interface definition that largely
follows the Open Modeling Interface 2.0 (OpenMI) specification. HydroCouple provides advancements
to better facilitate those experimental model investigations that fall into the so-called “embarrassingly
parallel” class of simulations, including uncertainty assessment, ensemble forecasting, and optimization
simulations. Additionally, HydroCouple explicitly incorporates low level interface definitions for multi-
dimensional datasets and geospatial data formats including the Open Geospatial Consortium’s Simple
Feature Access specification, raster datasets, and meshes that are widely used in the earth systems
and environmental modeling field. In this paper, we describe these and other advances provided by the
HydroCouple interface definitions. We also illustrate how these advances can be used to facilitate
parallelized experimental model simulations that have so far been challenging in OpenMI and other
component-based modeling frameworks.

Keywords: Component-Based Modeling; OpenMI; Optimization, Experimental Model Simulations;
Cross-Platform.

1 INTRODUCTION

The case for using the component-based modeling approach to address complex earth systems and
environmental challenges is compelling because of how it naturally complements the goals of integrated
assessment. Integrated assessment seeks to provide relevant information within a decision making
context that brings together a broader set of areas, methods, styles of study, or degrees of certainty,
than would typically characterize a study of the same issue within the bounds of a single research
discipline (Parson, 1995; Laniak et al., 2013). The component-based modeling approach facilitates this
goal by prescribing standardized modeling frameworks and interfaces that can be adopted by model
developers from different disciplines so that models can be readily linked together to simulate feedbacks
between different domains that are often ignored or simulated using simplistic assumptions. The benefit
of this is that more holistic evaluations can be performed.

The success of the component-based approach for integrated modeling is predicated on the premise
that the wide adoption and acceptance of a component-based modeling framework/standard that fulfils
modeling needs across a wide range of disciplines will spur the development of a critical mass of
components for that framework/standard. Several of these frameworks and standards with varying
degrees of complexity have been proposed for the earth systems and environmental modeling field,
including the Earth Systems Modeling Framework (ESMF, Hill et al., 2004), Community Surface
Dynamics Modeling System (CSDMS, Peckham et al., 2013), the Object Modeling System (OMS, David
et al., 2002), etc. So far, existing frameworks have either used data structures that have an excessively
high level of data abstraction, are strongly tied to a specific research discipline, or require complex
software stacks for their use.

The Open Modeling Interface (OpenMI; Moore and Tindall, 2005) specification provided a novel path
forward by only proposing a set of standardized, programming language neutral interface definitions for
how components must be developed so that they can be coupled to exchange data during a simulation.

C. A. Buahin et al. / From OpenMI to HydroCouple: Advancing OpenMI to Support Experimental Simulations and Standard
Geospatial Datasets

In the first OpenMI specification (i.e., OpenMI 1.4), components exchange in-memory data directly at
runtime through a pull-based data exchange mechanism, where one component requests the data it
needs from other components and waits for a response before proceeding with its computations
(Gregersen et al., 2005). In the latest OpenMI 2.0 specification, a new control flow has been added
called the loop-driven approach where the simulation system loops over all components and each
component checks if it needs to update itself based on whether the in-memory data a component needs
has been supplied by source components linked to it (Moore, 2010). This direct data exchange between
components simplifies the use of OpenMI by removing the need for an underlying complex software
framework. The interface definitions provided by OpenMI are object oriented with some support for low
level abstractions of datasets that are often used in the modeling field. The OpenMI interfaces are also
organized into clear, logical, and well documented inheritance relationships. OpenMI has been one of
the more widely used and cited component-based modeling standards (with over 1400 citations on
Google Scholar) and has been formally adopted by the Open Geospatial Consortium (OGC) as a
standard.

Our experience in reviewing and using the OpenMI standard for applications in the hydrologic and
hydrodynamic modeling field has, however, revealed some areas where advances can be made.
Although OpenMI provides some low level interface definitions for datasets that are routinely used in
the modeling field, it does not provide direct support for some of the more standard geospatial dataset
formats and their associated topological relationships that are often needed by model developers.
Secondly, while OpenMI currently supports the class of simulations we are referring to as experimental
simulations that involve running coupled model components hundreds to thousands of times with varied
inputs (e.g., optimization, multi-scenario evaluations, ensemble, or parameter estimation and
uncertainty assessment simulations), users are limited to two approaches. The first approach involves
executing the coupled model components multiple times using new inputs each time in a sequential
fashion until a solution is obtained. This sequential approach can lead to excessively long simulation
times that are impractical for models that have simulation times on the order of minutes or greater. The
second approach that can used is to take advantage of the inherent quality of these types of
experimental simulations where each simulation is independent from another to parallelize simulations
to reduce simulation times. However, within OpenMI, these type of parallelized simulations can only be
done by manually creating clones of the coupled model components and executing each clone in
parallel. The challenge with this approach is that for many experimental simulations it is not known in
advance how many clones are needed for a solution. Also, in a complex coupled coupled modeling
system involving many components, it becomes difficult to track the provenance of cloned components.

Finally, although OpenMI provides interface definitions that may be implemented in any programming
language, the interface implementations provided by the OpenMI developers have only been provided
in the C# and Java programming languages. There exists, however, a large base of legacy models that
have been written using natively compiled programming languages like C, C++, and Fortran that cannot
be easily rewritten as OpenMI compliant components using C# or Java. The approach that has been
recommended to address this difficulty is to convert an existing model’s code into a library that exposes
relevant functions and datasets that can be accessed externally from an OpenMI compliant component
wrapper library (Gregersen et al., 2007). This approach, nevertheless, has some drawbacks that we
have previously illustrated (Buahin and Horsburgh, 2015). C# and Java are interpreted programming
languages and are typically compiled into an intermediary bytecode that is interpreted by a virtual
machine (VM) infrastructure – e.g., the .NET Framework Common Language Runtime for C# and the
Java Virtual Machine (JVM) for Java – before being executed natively on a machine. The intermediary
work done by the VM framework can introduce computational penalties, especially when marshalling
data between a wrapper component and an underlying legacy model library written using a natively
compiled language.

These challenges were the underlying motivation behind the development of HydroCouple. In the
following sections, we describe the new interface definitions that have been added to or modified from
the OpenMI standard to address these challenges. We also illustrate how these new interface definitions
can be used for a hypothetical optimization simulation in a shared memory, parallel computing
environment. Ultimately, these advancements are being put forward so that they can be considered for
inclusion in the OpenMI standards.

C. A. Buahin et al. / From OpenMI to HydroCouple: Advancing OpenMI to Support Experimental Simulations and Standard
Geospatial Datasets

2 HYDROCOUPLE INTERFACE DEFINITIONS

The HydroCouple interface definitions, associated Software Development Kit (SDK), and
HydroCoupleComposer component coupling graphical user interface (GUI) and engine were written
using the C++ programming language and the Qt framework. The benefit of using C++ is that it can be
natively compiled and, therefore, minimizes the data marshalling costs between components and their
underlying legacy model codes. Additionally, C++ can be compiled on a majority of operating systems
and has bindings to several programming languages including Python, C, Java, and Fortran. The Qt
framework provides reflection capabilities that are not available in the standard C++. This allows for
object introspection and method invocation at runtime, which facilitates the in-memory model coupling
and data exchange process. In the following sections we describe the major interface definitions and
changes that have been implemented in the HydroCouple interface specification and the rationale
behind them.

2.1 IModelComponent and IAdaptedOutFactoryComponent

In the OpenMI interface specification, the IBaseLinkableComponent is the primary interface that defines
a model component. It forms the wrapper around a model’s computational engine and defines interfaces
for functions to initialize a model with arguments, validate a model, prepare a model for a simulation,
update a model to its next state, check on the state of a model simulation, and dispose of a model’s
resources after a simulation. It also specifies the inputs (defined through the IBaseInput interface) and
the outputs (defined through the IBaseOutput interface) that a model can consume and provide to other
components respectively. In contrast to OpenMI, HydroCouple specifies two types of components called
the IModelComponent and the IAdaptedOutputFactoryComponent.

The IModelComponent interface shown in Figure 1 is equivalent to the IBaseLinkableComponent in the
OpenMI specification. In addition to all the functions defined by OpenMI for the
IBaseLinkableComponent interface, the IModelComponent interface also specifies a new clone function
that must be implemented for a component to make a deep clone of itself. This cloning process involves
making a copy of the parent IModelComponent class and initializing it with the same arguments as the
parent while making sure that outputs from the parent and child do not conflict. A parent model
component keeps track of all of it child clones, which can be accessed using the children function. The
clone function has been added so that independent copies of a model instance can be made for
parallelized simulations. Details of the cloning approach are left up to the model component developer.
Linkages with other model components are left up to the caller of the clone function.

Figure 1. The HydroCouple IModelComponent interface definition that replaces OpenMI’s
IBaseLinkableComponent.

In the OpenMI specification each component can provide a list of IAdaptedOutputFactory interface
instances which can be used to generate adaptors to mediate data exchange between an output (i.e.,
IBaseOutput) of one component and an input (i.e., IBaseInput) of another component. The role of these
adaptors is to perform data transformation operations such as spatial and temporal interpolations, data

C. A. Buahin et al. / From OpenMI to HydroCouple: Advancing OpenMI to Support Experimental Simulations and Standard
Geospatial Datasets

aggregations and disaggregation, coordinate transformations, etc. that may be needed to supply the
correct output from one component to another. To promote the reuse of IAdaptedOutputFactory
instances, a new component type interface definition that is not bound to any component called an
IAdaptedOutputFactoryComponent has been introduced in HydroCouple as shown in Figure 2. With this
new interface definition, an IAdaptedOutputFactoryComponent can be developed and compiled into an
independent library that can be loaded into a composition of coupled model components and readily
used by any compatible model component to perform the necessary data transformations needed.

Figure 2. HydroCouple’s IAdaptedOutputFactoryComponent interface definition inheritance chain.

2.2 IComponentInfo Interface

In the OpenMI specification, the core interface that is instantiated when a component library is loaded
is the IBaseLinkableComponent interface. In HydroCouple, this has been superseded by the
IComponentInfo interface, which provides detailed metadata about a component, including the name of
the developer of a component, contact information, website for the component, as well as references to
publications or documents that describe the inner workings of a model. These details provide model
coupling composers with more guidance on the proper context for using a particular component. The
IComponentInfo interface must be implemented as either an IModelComponentInfo interface or an
IAdaptedOutputFactoryComponentInfo as shown in Figure 3. These two interfaces are responsible for
creating new instances of IModelComponent and IAdaptedOutputFactoryComponent components.

Figure 3. HydroCouple’s IComponentInfo interface definition inheritance chain.

C. A. Buahin et al. / From OpenMI to HydroCouple: Advancing OpenMI to Support Experimental Simulations and Standard
Geospatial Datasets

2.3 The IComponentDataItem Interface

The OpenMI interface specification provides two approaches for providing data to model components.
The first is the provision of initialization input data before the start of a simulation through the IArgument
interface. The second is the provision of the data that can be exchanged at runtime between model
components specified through the IBaseExchangeItem interface. While OpenMI provides detailed
specifications for the types of data provided through the IBaseExchangeItem interface through a multi-
dimensional array interface called the IBaseValueSet and spatio-temporal dataset specializations, no
such provisions are made for the IArgument interface. The IArgument interface’s value is an unspecified
object type that can be used to provide any kind of data. Providing detailed specifications for the
IArgument will enable the creation of common tools to create, edit, and visualize standard initialization
arguments for different models (e.g., a mesh generator, watershed delineation tools, time-series
downloaders, etc.). To provide these specializations in HydroCouple, a new interface has been
introduced called the IComponentDataItem interface that has various spatio-temporal specializations.
This new interface is inherited by both the IBaseExchangeItem and IArgument interfaces as shown in
Figure 4.

Figure 4. HydroCouple’s IComponentDataItem interface definition inheritance chain.

In OpenMI, geospatial datasets associated with the IBaseExchangeItem interface were specified using
an all-purpose interface called the IElementSet interface that can be used to represent points, lines,
polylines, polygons, and polyhedra. In HydroCouple, the IElementSet interface was eliminated in favour
of OGC’s Simple Feature Access (SFA; Herring, 2011) specification (Figure 4) so that it is aligned with
the standard data formats used by several GIS software and models. The additional benefit of
implementing the SFA specification is that it defines standard geospatial topological querying and
analysis functions that are useful for modeling purposes. The topological information that is missing in
the SFA specification as well as OpenMI’s IElementSet interface for polyhedral and triangular irregular
network (TIN) surface interfaces was implemented interface using the quad-edge data structure
proposed by Guibas and Stolfi (1985).

In addition to the SFA implementation, HydroCouple also provides IComponentDataItem interface
specializations for rasters, networks, and cartesian, rectilinear, and curvilinear regular grid types that
can be used in a wide variety of hydrologic and hydrodynamic modeling applications. Details about the
various specializations of the IComponentDataItem and their associated UML diagrams can be found
on the HydroCouple website (http://www.hydrocouple.org/hydrocoupledocs).

3 HYDROCOUPLECOMPOSER GUI

To facilitate the Component composition process, we have developed the HydroCoupleComposer GUI
(Figure 6), which doubles as an interactive console application that be used to couple models together.
The HydroCoupleComposer application is cross-platform (tested on Windows, Mac, and Linux

C. A. Buahin et al. / From OpenMI to HydroCouple: Advancing OpenMI to Support Experimental Simulations and Standard
Geospatial Datasets

platforms) and provides a graphical interface for specifying model component initialization arguments,
creating linkages between model components, specifying the variables to be exchanged between model
components, and managing all the component libraries that are involved in a simulation.

Figure 5. HydroCoupleComposer GUI.

4 OPTIMIZATION SIMULATION USING HYDROCOUPLE

To illustrate how the new cloning interface provided by HydroCouple can be used in practice, the
following is a hypothetical optimization simulation that involves the coupling of an optimization model
component (i.e., Optimization Component) to the United States Environmental Protection Agency’s
Stormwater Water Management Model (i.e., SWMM Component) that has been wrapped as a
HydroCouple component. This hypothetical modeling exercise could represent an effort to properly size
conveyance conduits and other hydraulic infrastructure in a stormwater system for a design storm. This
optimization simulation can be accomplished in HydroCouple using the steps illustrated in the sequence
diagram shown in Figure 7. In this example, the Optimization Component serves as the trigger
component that interacts with the driver executable.

At the beginning of the simulation, the main function in the executable calls the update function of the
trigger Optimization Component to update itself to its next state. The Optimization Component then
repeatedly calls the clone function on the SWMM Component to make as many clones of itself as
needed. Two clones are created in the example illustrated in Figure 7. After the cloning is completed,
the Optimization Component enters the parallelized region (labelled “Par” in Figure 6), where it asks for
the values it needs from each of the cloned SWMM components so that it can calculate respective
objective function values that are to be minimized or maximized for each SWMM Component. For this
particular example, the objective function might be the degree of overtopping of the various conduits in
the SWMM model. The parallelization can be done using a simple “# pragma omp parallel for” pre-
processor directive for the loop that iterates over all the cloned Model Components when using the
OpenMP shared-memory parallel programming library. Before each of the SWMM Components
computes the values needed to evaluate their objective functions, they request the variables for which
the objective function is to be estimated from the Optimization Component. For our example, this might
be the size of pipes, detention ponds, pumps etc., that are generated by the Optimization Component
through some sort of intelligent search algorithm e.g., a multi-objective evolutionary algorithm. After the
variables are returned, each Model Component updates their states based on the variables they have
received. The Optimization Component then uses the returned values from each of the Model
Components to compute respective objective function values. If the optimization criteria of minimizing
or eliminating the overtopping in the conveyance system is met at some specified threshold, the

C. A. Buahin et al. / From OpenMI to HydroCouple: Advancing OpenMI to Support Experimental Simulations and Standard
Geospatial Datasets

Optimization Component finalizes its simulation and terminates. Otherwise, the update function is called
on the Optimization Component to start the whole process again.

Figure 7. Sequence diagram for optimization simulation using HydroCouple.

5 CONCLUSIONS

In this paper we have described the HydroCouple interface definitions, which expand on the capabilities
of the OpenMI specification to provide support for several standard geospatial dataset formats and their
associated topological relationships. The benefits of these new interfaces are to increase compatibility
with existing GIS formats used in several models and reduce the computation time needed to convert
data from these standard formats into formats needed for modeling and estimating topological
relationships. Further, HydroCouple provides new interface definitions to facilitate parallelized
simulations for the class of experimental model simulations that include model calibration, sensitivity
and uncertainty analysis, Monte Carlo analysis etc., that have heretofore been possible in OpenMI using
the sequential approach, which may lead to excessively long simulation times. We have demonstrated
how the new interface definitions may be implemented using a hypothetical optimization example that
involves the coupling of an optimization model component to a SWMM model to minimize overtopping
in a stormwater system.

HydroCouple was developed using C++ and the Qt framework, which provides bindings to several
programming languages and can be compiled on many of the major operating systems. To facilitate the
use of the HydroCouple interface, a HydroCouple Software Development Kit (SDK) that provides
implementations of the core interface classes has been developed. So far, HydroCouple and its
associated tools have been compiled for Windows, Mac OSX, and the Ubuntu Linux operating systems.
The HydroCouple Composer GUI has been developed to facilitate the graphical composition of model

Loop

Par

update()

clone()
<<create>>

<<create>>

<<return>>
<<return>>

<<return>>

<<return>>

<<return>>

<<return>>

<<return>>

<<return>>

<<return>>

<<return>>

clone()

getValues()

<<return>>

getValues()

getValues()

getValues()

getValues()

getValues()

update()

update()

update()

update()
Calculate objective function and finalize simulation if optimization termination criteria is met

C. A. Buahin et al. / From OpenMI to HydroCouple: Advancing OpenMI to Support Experimental Simulations and Standard
Geospatial Datasets

components together. The HydroCouple Composer software also doubles as a console application that
can be used with command line arguments to couple model components and run compositions.

While the interfaces we have advanced in HydroCouple were developed primarily to facilitate our
particular modeling applications in the hydrologic and hydrodynamic modeling field, they are applicable
to other environmental and earth systems modeling fields and we have put them forward so that they
will be considered for adoption in future versions of the OpenMI standard.

SOFTWARE AVAILABILITY

The HydroCouple interface definitions, the HydroCouple SDK, HydroCouple Composer, and example
HydroCouple components can be downloaded from the GitHub organization page at
https://github.com/hydrocouple. The HydroCouple interface definitions can be reviewed at
http://www.hydrocouple.org/hydrocoupledocs/index.html.

ACKNOWLEDGMENTS

This research was supported by National Science Foundation EPSCoR Grant IIA 1208732 awarded to
Utah State University as part of the State of Utah EPSCoR Research Infrastructure Improvement Award.
Any opinions, findings, and conclusions or recommendations expressed are those of the author(s) and
do not necessarily reflect the views of the National Science Foundation.

REFERENCES

Buahin, C.A. and J.S. Horsburgh, 2015. Evaluating the Simulation Times and Mass Balance Errors of

Component-Based Models: An Application of OpenMI 2.0 to an Urban Stormwater System.
Environmental Modelling & Software 72:92–109. DOI:10.1016/j.envsoft.2015.07.003

David, O., S. Markstrom, K. Rojas, L. Ahuja, and I. Schneider, 2002. The Object Modeling System. L.
Ahuja, L. Ma, and T. Howell (Editors). Agricultural System Models in Field Research and Technology
Transfer. CRC Press. DOI:10.1201/9781420032413.ch15

Gregersen, J.B., P.J.A. Gijsbers, S.J.P. Westen, and M. Blind, 2005. OpenMI: The Essential Concepts
and Their Implications for Legacy Software. Advances in Geosciences 4:37–44. DOI:10.5194/adgeo-
4-37-2005

Gregersen, J.B., P. J. A. Gijsbers, and S. J. P. Westen, 2007. OpenMI: Open Modelling Interface.
Journal of Hydroinformatics 9:175. DOI:10.2166/hydro.2007.023

Guibas, L. and J. Stolfi, 1985. Primitives for the Manipulation of General Subdivisions and the
Computation of Voronoi. ACM Trans. Graph. 4:74–123. DOI:10.1145/282918.282923

Herring, J.R., 2011. OpenGIS® Implementation Standard for Geographic Information - Simple Feature
Access - Part 1: Common Architecture. http://portal.opengeospatial.org/files/?artifact_id=25355 (last
accessed 03/29/2016)

Hill, C., C. DeLuca, M. Suarez, and A. Da Silva, 2004. The Architecture of the Earth System Modeling
Framework. Computing in Science & Engineering 6:18–28.
http://dx.doi.org/10.1109/MCISE.2004.1255817

Laniak, G.F., G. Olchin, J. Goodall, A. Voinov, M. Hill, P. Glynn, G. Whelan, G. Geller, N. Quinn, M.
Blind, S. Peckham, S. Reaney, N. Gaber, R. Kennedy, and A. Hughes, 2013. Integrated
Environmental Modeling: A Vision and Roadmap for the Future. Environmental Modelling & Software
39:3–23. DOI:10.1016/j.envsoft.2012.09.006

Moore, R. (Editor)., 2010. The OpenMI Document Series: OpenMI Standard 2 Specification.
https://publicwiki.deltares.nl/download/attachments/41549981/OpenMI+Standard+2+Specification.p
df

Moore, R.V. and C.I. Tindall, 2005. An Overview of the Open Modelling Interface and Environment (the
OpenMI). Environmental Science & Policy 8:279–286. DOI:10.1016/j.envsci.2005.03.009

Parson, E.A., 1995. Integrated Assessment and Environmental Policy Making: In Pursuit of Usefulness.
Energy Policy 23:463–475. DOI:10.1016/0301-4215(95)90170-C

Peckham, S.D., E.W.H. Hutton, and B. Norris, 2013. A Component-Based Approach to Integrated
Modeling in the Geosciences: The Design of CSDMS. Computers & Geosciences 53:3–12.
DOI:10.1016/j.cageo.2012.04.002

	From OpenMI to HydroCouple: Advancing OpenMI to Support Experimental Simulations and Standard Geospatial Datasets
	

	Microsoft Word - HydroCouple - A Model Coupling Interface Specification-Revision.docx

