Teaching Discourse Markers to Students with Students: The Case of Italian Learners of L2 Russian

Beatrice Bernasconi
Marina Giampietro

Follow this and additional works at: https://scholarsarchive.byu.edu/rlj

Part of the Slavic Languages and Societies Commons

Recommended Citation
Bernasconi, Beatrice and Giampietro, Marina (2022) "Teaching Discourse Markers to Students with Students: The Case of Italian Learners of L2 Russian," Russian Language Journal: Vol. 72: Iss. 1, Article 8.
DOI: https://doi.org/10.70163/0036-0252.1287
Available at: https://scholarsarchive.byu.edu/rlj/vol72/iss1/8

This Article is brought to you for free and open access by the Journals at BYU ScholarsArchive. It has been accepted for inclusion in Russian Language Journal by an authorized editor of BYU ScholarsArchive. For more information, please contact ellen_amatangelo@byu.edu.
Teaching Discourse Markers to Students with Students: The Case of Italian Learners of L2 Russian

Beatrice Bernasconi, Marina Giampietro

1. Introduction

The present study explores the development of a teaching treatment on discourse markers (DMs) for Italian learners of Russian as a Second Language (L2) using students in the research process. We believe that learners’ insights are a valuable resource in the design of teaching treatments tailored to learners’ needs. Both researchers and students can benefit from such cooperation when dealing with slippery aspects of spoken language, such as DMs.

Our study has a twofold objective:

1. To compare the use of DMs by Russian native speakers and intermediate Italian learners of L2 Russian. In particular, we focus on four categories of DMs that can facilitate the process of meaning construction in conversation, namely, approximators, shields, fillers, and reformulators.

2. To propose a game-centered teaching treatment with the students’ cooperation, using the results from Objective 1.

We collected the data for the present study by conducting a task-based test in the form of a game with four pairs of MA students at Roma Tre University (approximately Common European Framework of Reference [CEFR] level B2) in Rome, Italy, and five pairs of native speakers of Russian. We compared and analyzed the productions of the two groups to highlight differences in the use of the target DMs by native and non-native speakers. The students were involved at different stages of the research. Eight students took the test, provided feedback on it, and suggested ways of incorporating the game into the teaching treatment. Two students contributed to the analysis of the data. One student, namely, the second author, worked on the project as a researcher from its conception to the formalization of the results.

1 This article is the result of the close collaboration of the two authors, but Beatrice Bernasconi is responsible for Sections 1, 3, 4, and Marina Giampietro is responsible for Sections 2, 5, 6.
The article is structured as follows. After summarizing the state of the research on DMs in L2, we explain the methodology used in the study. Then, we discuss the results of the comparison between native and non-native speakers’ productions of DMs. Starting from these results, we illustrate the teaching treatment addressed to intermediate learners and designed with the students’ cooperation. Finally, we present some conclusions and future research directions.

2. Discourse markers in L2 acquisition and teaching

DMs constitute a heterogeneous class of linguistic elements that, starting from their original lexical meaning, have developed pragmatic, textual, and procedural functions (Bazzanella, 1995, 2006; Bogdanova-Beglarian et al., 2018; Fedriani & Sansò, 2017; Maschler & Schiffrin, 2015; Molinelli, 2014; Schiffrin, 2001). Although their versatility and multifunctionality make them crucial for successful communication, DMs are particularly resistant to acquisition by L2 learners (Jafrancesco, 2015; Mascherpa, 2016; Nigoević & Sučić, 2011). Even advanced learners do not use DMs to mark correct functions, or, conversely, they mark some functions with DMs that native speakers do not typically use (Aijmer, 2004; Müller, 2005; Romero Trillo, 2002).

Several studies have highlighted that learners struggle to use DMs to express their uncertainty and to overcome disfluencies (Borreguero Zuloaga et al., 2017; Ferroni, 2020; Romero Trillo, 2002). As learners often lack the necessary lexicon to express themselves precisely and speak fluently, DMs like approximators, shields, fillers, and reformulators (Benigni, 2014; In’kova & Gur’ev, 2018; Koljaseva, 2021; Podlesskaja, 2013) can be significantly helpful for them during referential work and, at the same time, can make the production sound more natural. Although there are other categories of DMs that could be helpful in this sense, for example, phatic expressions or focus particles, we chose these four categories as the target strategies because they are most closely related to the meaning-construction process we are discussing. At the same time, narrowing the number of target strategies allowed us to have a manageable amount of data for both analysis and teaching purposes.

Approximators (sort of, kind of), also called downtoners (Jucker et al., 2003), introduce fuzziness within the propositional content (Prince
et al., 1982). They act on the semantics of the word in their scope by approximating the word to the prototype. At the same time, they also express an inexact similarity between the word and the thought it represents (Andersen, 1998; Sperber & Wilson, 1991), motivated by the fact that the meaning that the speaker wants to convey “is not sufficiently covered by an available word” (Jucker et al., 2003, p. 1748). Approximators are useful for filling linguistic gaps and masking disfluencies (Benigni, 2017; Podlesskaja & Starodubceva, 2013). Shields (I think, possibly) express the speaker’s commitment to the grade of truth of the utterance (Jucker et al., 2003; Prince et al., 1982), in other words, they signal the speaker’s uncertainty about their speech. Reformulators (that is) usually introduce a periphrasis of what has just been said to avoid misunderstandings that could arise from the first formulation, when the latter is judged as not correct or clear enough (Blakemore, 1993; Cuenca, 2003). Fillers (well, you know) are used to gain time in the word-search process and for speech planning (Amiridze et al., 2010) and can be categorized as lexical or non-lexical. Non-lexical fillers, like vocalizations or filled pauses, will not be taken into account here.

DMs are not usually taught in language classes and textbooks (Benigni & Nuzzo, 2018; Pugliese, 2015; Vasileva, 1972). For this reason, studies have proposed and tested alternative ways to teach DMs in different languages, such as treatments based on the use of authentic language data or innovative techniques like input flood (Ferroni, 2019; Ferroni, 2020; Hernández, 2011; Jones & Carter, 2014). However, to our knowledge, this field has been underexplored in L2 Russian (Benigni & Nuzzo, 2018). With the aim of filling this gap in the literature, our study proposes a teaching treatment for approximators, shields, fillers, and reformulators in L2 Russian.

3. Methodology
In this section, we outline the methodology used to collect, transcribe, and analyze the data from the native and non-native speakers’ groups and to obtain the students’ feedback for the design of the treatment.

3.1. The test: Materials and procedure
The task used for the data collection consists of a cooperative activity in the form of a “spot-the-differences” game to be played in pairs. Such
a task is meant to elicit the target DMs as it creates a semi-spontaneous speech environment in which participants may lack adequate words or concepts to describe what they see. In the game, each participant receives a picture. The two pictures are identical apart from nine differences regarding the presence or absence of objects or their spatial orientation. Participants must find as many differences as possible within a specific time limit. They have access only to their own picture and therefore must cooperate with their partner to accomplish the task. The participants cannot see each other, thus avoiding gestural or mimical interferences. Every other means of communication is allowed to reach the common goal.

For our test, we adapted pictures from an Italian puzzle magazine by adding, removing, or changing a few details (see Appendix), thus making the pictures both accessible for learners and challenging for native speakers to engage in a complex conversation. The test took place online, on the Zoom platform. At the beginning of each session, instructions for the task were provided. Native speakers were given 10 minutes to accomplish the task, while non-native speakers were given 15 minutes because, necessarily, learners need more time for production. During the task, participants were not allowed to communicate with the instructors. At the end of the time limit, participants could still conclude their speech turn. Recordings were saved anonymously.

Five pairs of native speakers (henceforth “NSs”) and four pairs of non-native speakers (henceforth “NNSs”) completed the task. The NSs were adults (> 18 years old) who were raised and educated in Russia and had at least a high school diploma. The NNSs were MA students at Roma Tre University who had never received any specific instruction on the use of DMs in Russian. Both male and female NSs and NNSs participated (NSs: nine females and one male; NNSs: seven females and one male). However, gender-related differences in the use of DMs were not taken into account in our analysis. The recordings were transcribed and gathered into two corpora. The transcription scheme was adapted from the CLIPS project, a heterogeneous group of spoken corpora of Italian that includes a corpus built on the “spot-the-differences” game. The overall dimensions of the two corpora in terms of duration and number of words are displayed in Table 1.

---

2 The CLIPS project is available at www.clips.unina.it.
Table 1. Dimensions of the NSs and NNSs Corpora

<table>
<thead>
<tr>
<th></th>
<th>NSs Corpus</th>
<th>NNSs Corpus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration</td>
<td>54’41”</td>
<td>61’03”</td>
</tr>
<tr>
<td>Total number of words</td>
<td>6,660</td>
<td>2,816</td>
</tr>
</tbody>
</table>

3.2. The data sets and their annotation

After collecting and transcribing the two corpora, we annotated and extracted into two data sets all the occurrences of items performing one or more of the four target functions of our study. First, we worked on the annotation separately. Then, we discussed doubtful cases and agreed upon final decisions to overcome any discrepancies. We used the following labels to annotate and select the relevant occurrences: 1. Approximator, for example, типа [sort of, like]; 2. Shield, for example, наверное [maybe]; 3. Filler, further divided into two subtypes: 3.1 Word Search, for example, как сказать [how to say], and 3.2 Speech Planning, for example, так [so]; and 4. Reformulator, for example, то есть [that is]. When a DM performed different functions in distinct contexts, we assigned it different tags among the different examples. We accounted for these cases by including the same DM in all the relevant categories. When a DM performed more than one function at a time in a given context, we assigned it more than one tag within the same example. These cases are included in a separate category (the Polyfunctional category; see Section 4.5). The annotation scheme is summarized in Table 2.

Table 2. Scheme for the Extraction and Annotation of the Two Data Sets

<table>
<thead>
<tr>
<th>Function</th>
<th>Subtype</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Approximator</td>
<td>NA</td>
</tr>
<tr>
<td>2. Shield</td>
<td>NA</td>
</tr>
<tr>
<td>3. Filler</td>
<td>3.1 Word Search</td>
</tr>
<tr>
<td></td>
<td>3.2 Speech Planning</td>
</tr>
<tr>
<td>4. Reformulator</td>
<td>NA</td>
</tr>
</tbody>
</table>

The NNS and NS data sets amount to 76 and 371 occurrences, respectively. Despite their high frequency in the NS corpus, three highly
polyfunctional DMs—ны [well, so, uh] (128), вот [here is] (108), and такой [this, so, such] (91), which also perform our target functions—were not included in the data set. These elements would need a separate teaching treatment, since their complexity and polyfunctionality make them particularly difficult to understand and acquire (Bolden, 2016; Kobozeva, 2007; Satjukova & Voejkova, 2010). The outcome of the annotation and the comparison between the two data sets is discussed in Section 4.

3.3. The collection of students’ feedback

Nine MA students were engaged to give their feedback on two distinct points: the task used for the test, which would also constitute the starting point for the treatment, and the metalinguistic accessibility of the target categories.

For the first purpose, we asked eight students who took the test to provide feedback. Immediately after completing the test, the students were told the aim of the study and were informally interviewed on the following main points:

- Difficulty: How would you judge the difficulty of the task?
- Duration: Was the given time limit suitable to complete the task?
- Pictures: Was the level of complexity of the pictures appropriate?
- Game format and learning preferences: What is your opinion about the game format? How would you prefer the game to be incorporated into a teaching treatment?

For the second purpose, two students contributed to the development a learner-friendly categorization of the target DMs to be used during the teaching treatment. One of the students is a native speaker of Russian from Ukraine, and the other is one of the Italian MA students who took the test. First, the two students annotated the entire NNS data set using a simplified annotation scheme that included only functions without subtypes with the following five labels: 1. Approximator; 2. Doubt Marker, corresponding to Shield; 3. Word-Search Marker, corresponding to Filler-Word Search; 4. Speech-Planning Marker, corresponding to Filler-Speech Planning; and 5. IDK: “I don’t know”, for examples they were not able to classify. Since there are no examples of reformulators in the NNS data set, this category was not included in the scheme.
As a second step, the students annotated a sample of 88 examples from the NS data set. This time, the annotation scheme was simplified based on the difficulties the students encountered in the first attempt: Categories 3, Word-Search Marker, and 4, Speech-Planning Marker, were reunited under the label 3, Filler. The general category 4, Reformulator, was included to account for the occurrences in the NS data set. Table 3 summarizes the schemes adopted by the students in comparison with the scheme adopted for the analysis. The outcome of the collaboration with the students is presented in Section 5.

Table 3. Original Annotation Scheme and Schemes Adopted by the Students

<table>
<thead>
<tr>
<th>Analysis annotation scheme</th>
<th>1st simplified scheme</th>
<th>2nd simplified scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td>Subtype</td>
<td>Function</td>
</tr>
<tr>
<td>1. Approximator</td>
<td>NA</td>
<td>1. Approximator</td>
</tr>
<tr>
<td>2. Shield</td>
<td>NA</td>
<td>2. Doubt Marker</td>
</tr>
<tr>
<td></td>
<td>3.2 Speech Planning</td>
<td>4. Speech-Planning Marker</td>
</tr>
<tr>
<td>4. Reformulator</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>5. IDK</td>
</tr>
</tbody>
</table>

4. How NSs and NNSs use DMs: Results and discussion

As mentioned in Section 3, NSs produced 371 occurrences of target DMs, while NNSs produced only 76. Therefore, approximators, shields, fillers, and reformulators correspond to 5.6% of the total number of words in the NS corpus and 2.7% in the NNS corpus. The 371 occurrences in the NS data set are spread within a range of 42 items, while the occurrences produced by the NNSs are spread within a range of 10 items. The distribution of the functions performed by various DMs varies significantly between the two groups. The most frequent category attested in the NNS data set is Shield (54%), followed by Filler (25%) and Approximator (9%). No reformulators were produced by NNSs. On the other hand, NSs most frequently used fillers (40%), followed
by approximators (25%) and shields (24%). Only 7% of DMs used by NSs belonged to the Reformulator category. Last, in both data sets, polyfunctional DMs that performed two target functions simultaneously in the same context were attested. These cases were more frequent in the NNS data set (11%) and less common in the NS data set (4%). Table 4 summarizes the distribution of DM functions in the two data sets according to both the raw number of occurrences and percentages. The difference between the two groups is statistically significant ($X^2(4) = 41.379$, $p$-value $< 0.001$) with a medium effect size (Cramer’s $V = 0.304$).

As displayed in Table 4, NNSs used shields far more frequently than did NSs but were less likely to use approximators, which were used more frequently by NSs. Also, fillers were pervasive in NSs’ speech, and were also attested, though less pervasively, in NNSs’ speech. In the next subsections, we address each group of DMs separately.

Table 4. Distribution of DM Functions in the Two Data Sets

<table>
<thead>
<tr>
<th></th>
<th>Appr.</th>
<th>Shield</th>
<th>Filler</th>
<th>Ref.</th>
<th>Polyf.</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>NS</strong></td>
<td>93 (25%)</td>
<td>89 (24%)</td>
<td>149 (40%)</td>
<td>27 (7%)</td>
<td>13 (4%)</td>
<td>371 (100%)</td>
</tr>
<tr>
<td><strong>NNS</strong></td>
<td>8 (9%)</td>
<td>41 (54%)</td>
<td>19 (25%)</td>
<td>0 (0%)</td>
<td>8 (11%)</td>
<td>76 (100%)</td>
</tr>
</tbody>
</table>

4.1. Approximators

Occurrences of approximators amount to 8 and 93 in the NNS and NS data sets, respectively. This difference is partially ascribed to the dimensions of the data sets. However, considering the relative frequency of approximators in comparison to the other functions, it seems that NNSs struggled to use this kind of DM to express their uncertainty about the propositional content. The discrepancies in the use of approximators between the two groups are not limited to their frequency but also relate to their variety. As shown in Table 5, NNSs used only one item, как [as, like], while NSs employed 14 items. Among these, the four most frequent items were типа [sort of, like], как би [as if], как, and как бы [as if].

When NSs were unsure about the nature of an object, they used approximators to associate the object to the closest prototypical concept that was lexically available in their repertoire at the moment of
speech—for example, картина, зеркало, штора, пиджак in (1) to (4)—and to reduce the degree of commitment to the utterance:

(1) NS1#31 справа висит типа картина или ещё одно зеркало
[on the right there’s like a picture or another mirror]

(2) NS5#72 ну да, и там это получается как бы зеркало, потом идёт, ну, полоска
[well, yes, and, it appears, there’s like a mirror, then comes, well, a line]

(3) NS6#24 а потом как будто штора, это четыре таких волнистых полосочки
[and then something like a curtain, these four wavy lines]

(4) NS6#6 ну такое, ну как пиджак, пиджак, чёрный
[well that, well like a jacket, jacket, black]

Only four NNSs expressed approximation, and they always employed the same item: как. Example (5) shows how NNSs typically used this item in their production:

(5) NNS8#52 окей, да я вижу как рисунки
[okay, yes I see like drawings]

Table 5. Variety and Occurrences of Approximators Used by NNSs and NSs

<table>
<thead>
<tr>
<th>Approximators—NNSs (8)</th>
<th>Approximators—NSs (93)</th>
</tr>
</thead>
<tbody>
<tr>
<td>как (8)</td>
<td>типа (22) как бы (18) как (15)</td>
</tr>
<tr>
<td></td>
<td>как будто (14) какой-то (8)</td>
</tr>
<tr>
<td></td>
<td>практически (6) так сказать (3)</td>
</tr>
<tr>
<td></td>
<td>в принципе (1) вроде (1) как-то (1)</td>
</tr>
<tr>
<td></td>
<td>какой-нибудь (1) не совсем (1)</td>
</tr>
<tr>
<td></td>
<td>что-то такое (2)</td>
</tr>
</tbody>
</table>

The use of как by NSs (4) and NNSs (5) seems to correspond. However, NSs mainly used как in combination with other lexical, morphological, and syntactic strategies, such as the quantitative adverb немножко [a
bit], diminutives, and disjunctive noun phrases. Last, in the NNS data set, как has scope on nouns and noun phrases in 6 occurrences and on an adverb in only one case. In the NS data set, the marker has scope on nouns and noun phrases in 10 examples, on adjectives in 4 examples, and on a verb phrase in 1 example.

4.2. Shields
The use of shields amounts to 41 in the NNS data set and 89 in the NS data set. This kind of marker was by far the most preferred by NNSs, who used 5 items to mark their uncertainty. NSs, on the other hand, produced 21 types of shields, as displayed in Table 6. The four most frequent DMs in the NS corpus were наверно/e [maybe], как бы, вроде [probably], and может (быть) [might be, may be, possibly]. Except for может быть, these items were not attested in the NNS data set.

<table>
<thead>
<tr>
<th>Shields—NNS (41)</th>
<th>Shields—NS (89)</th>
</tr>
</thead>
<tbody>
<tr>
<td>думаю (15)</td>
<td>наверно/наверное (21) как бы (13)</td>
</tr>
<tr>
<td>мне кажется (13)</td>
<td>вроде (11) может (быть) (10)</td>
</tr>
<tr>
<td>может быть (8)</td>
<td>видимо (4) не знаю (4)</td>
</tr>
<tr>
<td>не знаю (4)</td>
<td>так (пред)полагаю/понимаю (4)</td>
</tr>
<tr>
<td>могу сказать (1)</td>
<td>думаю (3) как будто (3)</td>
</tr>
<tr>
<td>(мне) кажется (2) бу скала(а) (2)</td>
<td></td>
</tr>
<tr>
<td>как-то (2) что ли (2) в принципе (1)</td>
<td></td>
</tr>
<tr>
<td>если я правильно понимаю (1) как (1)</td>
<td></td>
</tr>
<tr>
<td>какой-то (1) можно (1) пожалуй (1)</td>
<td></td>
</tr>
<tr>
<td>практически (1) якобы (1)</td>
<td></td>
</tr>
</tbody>
</table>

NSs typically used как бы to express their uncertainty when describing their picture, as shown in example (6). Different from example (2), как бы, in this case, does not approximate the meaning of the item in its scope but is used to express epistemic modality:

(6) NS5#81 это вот ещё щас раз два три четыре полоски у неё как бы
[there’s also, wait, it has one two three four lines somehow]
On the other hand, наверное and вроде were mainly adopted by the speakers to make comments about the progression of the game, such as to hypothesize about possible differences in the picture or to recap the number of differences already found. This application is illustrated in example (7) and accounts for 7 occurrences of наверное and 9 of вроде:

(7) NS1#68 мы вроде нашли пять отличий
[we apparently found five differences]

The two groups used the item может быть in slightly different contexts. NSs employed it exclusively to make meta-game comments, as already observed for вроде (7) and наверно, while NNSs used it half of the time in interrogative sentences, as in example (8):

(8) NNS1#40 волны? Может быть как волна?
[waves? Might it be like a wave?]

The same difference was also attested for (мне) кажется [it seems (to me)] and думаю [(I) think], which are more common in the NNS data set.

4.3. Fillers
Fillers were produced by both groups with dissimilar frequencies. Their total occurrences in the two data sets are 19 for NNSs and 149 for NSs. Word-search fillers amount to 15 in the NNS data set and 24 in the NS data set, whereas speech-planning fillers are attested 4 times in the former and 125 in the latter. As shown in Table 7, NSs used 10 DMs as word-search fillers, while only 4 were attested in NNSs’ speech. The same goes for the speech-planning function, as the range of items produced by NSs is twice as large as the range produced by NNSs.

Так was the most pervasive DM chosen by NSs for speech planning, beginning the turn, or introducing a new topic. Так was also attested, although scarcely, in the production of two NNSs, and its use seems to coincide with the NSs’ use, as examples (9) and (10) confirm:

(9) NS3#81 так <эээ> рука его лежит на коленях
[so <eee> his hand is lying on (his) knees]

(10) NNS2#53 <эээ> так у меня есть одна рука на брюки
[<eee> so I have one hand on the trousers]
Table 7. Variety and Occurrences of Fillers Used by NNSs and NSs

<table>
<thead>
<tr>
<th>Fillers — NNS (19)</th>
<th></th>
<th>Fillers — NS (149)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Word search</strong></td>
<td><strong>Speech planning</strong></td>
<td><strong>Word search</strong></td>
</tr>
<tr>
<td>(15)</td>
<td>(4)</td>
<td>(24)</td>
</tr>
<tr>
<td>как (5)</td>
<td>так (3)</td>
<td>в общем (5)</td>
</tr>
<tr>
<td>как сказать (5)</td>
<td>итак (1)</td>
<td>значит (4)</td>
</tr>
<tr>
<td>не знаю (4)</td>
<td></td>
<td>значит (3)</td>
</tr>
<tr>
<td>щас (1)(^3)</td>
<td></td>
<td>как называеться/называть (3)</td>
</tr>
</tbody>
</table>

The second most frequent item in the NS data set is значит [it means], which is absent in the NNSs data set. This DM can be used both as a word-search and speech-planning filler. On the other hand, NNSs employed как for the word-search function (11), with no correspondence in the NSs’ production:

(11) NNS1#47  
это это итальянский <laugh> <эээ> как <эээ> так <pause> у меня есть направо это зеркало  
[this this is Italian, *like*, so, on the right I have a mirror]

Last, the marker в общем [generally] was adopted five times by NSs to signal the conclusion of the word-search process. For example, in (12), the speaker was struggling to find the most adequate description of the man’s suit in the picture. She first hesitated (<эээ>), then filled a pause with не знаю [(I) don’t know], and finally decided to make a list of the pieces of clothing the man is wearing, marking this solution with в общем:

(12) NS4#2  
давай, он в чёрном пиджаке с белым <эээ> не знаю с в общем чёрный пиджак, белая рубашка и полосатые брюки, чёрно-белые

\(^3\) Щас is the phonetic realization of сейчас.
4.4. Reformulators
The Reformulator category was attested exclusively in the NS data set, for a total of 27 occurrences. То есть [that is] was attested 18 times and was the most frequently employed DM to signal explanatory reformulations of concepts, followed by значит, which occurred in four cases. Three occurrences of self-correction were also attested with items like точнее [more precisely], вернее [or rather], and правильно [more correctly]. The locution имею в виду [I mean] was also attested once to introduce a clarification. Examples (13) and (14) illustrate the explanatory and corrective uses, respectively, of two reformulators by NSs:

(13) NS2#46 у меня ящик с двумя ручками, то есть два ящика и там и там ручки [I have a drawer with two knobs, that is, two drawers and there and there (there are) knobs]

(14) NS6#20 <aaa> квадрат ой, прямоугольное точнее? [<aaa> a square oh, a rectangle more precisely?]

4.5. Polyfunctional DMs
As mentioned in Section 3.2, sometimes the same DM performed two functions simultaneously in a given context. These occurrences were gathered into the Polyfunctional category, which accounts for 11% of the NNSs’ data and 4% of the NSs’ data. Most frequently, a filler for word-search also functioned as an approximator or shield, both in NNSs’ and NSs’ speech. Only in one example from the NNSs data set did a filler for word search also mark a reformulation. Table 8 summarizes the distribution of these cases.

Example (15) illustrates the use of как by an NNS as both an approximator and a filler. This twofold function is suggested by the fact that как is used by the NNS to fill a very long hesitation pause. In (16), an NS instead employed the shield не знаю both to reduce her commitment and to give herself time to look for the appropriate word:
(15) NN3#27 а ты видишь <эээ> как <эээ> рисование на зеркало? [and do you see <eee> like <eee> a drawing on the mirror?]

(16) N2#46 у тебя нет вот значит та это видимо это не знаю, царапины или [you don’t have it, so, it means this, clearly, this I don’t know, scratches or]

Table 8. Variety and Occurrences of Polyfunctional DMs Used by NNSs and NSs

<table>
<thead>
<tr>
<th>Polyfunctional—NNS (8)</th>
<th>Polyfunctional—NS (13)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appr. + F. Word search (7)</td>
<td>Shield + F. Word search (1)</td>
</tr>
<tr>
<td>Appr. + F. Word search (4)</td>
<td>Shield + F. Word search (8)</td>
</tr>
<tr>
<td>Ref. + F. Word search (1)</td>
<td></td>
</tr>
<tr>
<td>как (7)</td>
<td>не знаю (1)</td>
</tr>
<tr>
<td>как (2) так сказать (1) как будто (1)</td>
<td>не знаю (7) наверное (1)</td>
</tr>
<tr>
<td></td>
<td>так сказать (1)</td>
</tr>
</tbody>
</table>

4.6. Concluding remarks
Comparing the two data sets leads to a few conclusions. The Approximator, Shield, and Filler categories had already emerged in the NNS’s interlanguage, and only the Reformulator category remained unexploited. However, from a quantitative point of view, approximators and fillers were less frequent in the NNS’s production. Moreover, NNSs could produce only a small variety of DMs and often relied on the same lexical choices, while the NSs’ repertoire was far richer. In the case of approximators, the only item adopted by NNSs, как, was frequently exploited by NSs as well, and the uses coincide in the two groups. As for shields, the NNSs used lexical items that were not as common in the NSs’ production, sometimes in non-target-like contexts. In general, through the use of lexical fillers, NSs were able to manage the word-search process more effectively than NNS’, limiting long pauses and vocalizations.

Last, our task proved to be effective in eliciting the target DMs in the NSs’ group. As a consequence, having the NNSs play the same game
with a group of NSs within the context of the teaching treatment could be a valid way to expose them to a rich and natural input. Furthermore, the NS corpus could represent a source of material to introduce NNSs to metalinguistic descriptions of DMs. Starting from these premises and with the help of students, we designed a teaching treatment to implement NNS’s abilities for meaning approximation, commitment reduction, speech planning, and reformulation.

5. The outcome of the students’ collaboration: A proposal for the teaching of DMs
Developing the teaching treatment involved two aspects: selecting target items to be taught to the students and choosing the most effective format for the treatment, for which the students’ opinions and suggestions were fundamental.

Table 9. List of Target DMs for the Teaching Treatment

<table>
<thead>
<tr>
<th>Function</th>
<th>Item</th>
<th>Occurrences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approximator</td>
<td>типа</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>как бы</td>
<td>18 (33)</td>
</tr>
<tr>
<td></td>
<td>как будто</td>
<td>14 (18)</td>
</tr>
<tr>
<td>Shield</td>
<td>наверное</td>
<td>21 (22)</td>
</tr>
<tr>
<td></td>
<td>вроде</td>
<td>11 (12)</td>
</tr>
<tr>
<td></td>
<td>может быть</td>
<td>10</td>
</tr>
<tr>
<td>Filler</td>
<td>так</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>значит</td>
<td>19</td>
</tr>
<tr>
<td>Reformulator</td>
<td>то есть</td>
<td>18</td>
</tr>
</tbody>
</table>

The objects of the teaching treatment were identified with a three-fold intention: (a) implementing the repertoire of DMs whose function was already attested in the NNSs’ production by introducing new items, (b) inducing a more native-like use of already-acquired items, and (c) attempting to activate the Reformulator category. We chose the target DMs according to their frequency in the NS corpus and their absence or non-native-like use in the NNS corpus. Following these criteria, we
identified three items for the Approximator and Shield categories and two items for the Filler category. Since the Reformulator category is to be activated in the NNS’s production, only the most frequent reformulator was included in the list. If an item performed multiple functions depending on the context in the NS data set (e.g., Approximator and Shield for как будто), we decided to include it in its most representative category. Table 9 shows the chosen DMs grouped according to their function, along with their occurrences within that function and, in brackets, the occurrences in the entire NS data set.

The preliminary scheme of the teaching activity consists of three moments: NNS’s spontaneous production in order to activate their communicative need to handle uncertainty in speech, the exposition to natural input by NSs, and a metalinguistic reflection based on the NSs’ input in which students are presented the target items and their functions. Starting from this general format, the MA students helped us further articulate the teaching activity.

Immediately after completing the task, the students were told the aim of the study and participated in an informal interview in which they expressed their opinions about the task and suggested how they would incorporate it into a teaching treatment. As far as the difficulty of the game is concerned, all of the students found it appropriate for an intermediate proficiency level and stated that, except for some lexical gaps, they were able to express themselves freely. The pictures were judged adequate for the task. Three students commented that colored pictures would have made the task easier and more engaging.

We also discussed the game format. Overall, the students noted that this type of activity is seldom included in language classes, despite its usefulness in improving fluency. Playing a goal-oriented game made them feel free to communicate without worrying about grammar issues.

Additionally, the students suggested that the metalinguistic instruction should take place after playing the game, as the difficulties encountered in carrying out the task would help them realize how DMs could be helpful in the meaning construction process. This type of structure reflects the typical organization of Task-based Language Teaching treatments (Ellis, 2003), in which the starting point for metalinguistic reflection is represented by the students’ communicative needs as they emerge while completing a goal-oriented task.
Finally, some students pointed out that playing with NSs could hinder the cooperative component of the activity, as the NSs would compensate for NSS’s lexical gaps. Instead, they proposed that students play with each other first and then repeat the game with their teachers.

As for the metalinguistic phase of the teaching treatment, we checked the accessibility of the categories used to classify the DMs with the help of two students. For practical reasons, we will refer to the Ukrainian student as Student 1 and the Italian student as Student 2. The students were asked to annotate the entire NNS data set and a sample from the NS data set with two different annotation schemes. For the NNS data set, the annotation scheme included the distinction between Word-Search Marker and Speech-Planning Marker (see Table 3). In this case, Student 1 annotated 69% of the data set correctly, while Student 2 annotated only 51% correctly. Student 1 was able to identify all the approximators and almost all the shields (82%). She was also able to detect all of the fillers for speech planning but was able to detect only 60% of the fillers for word search. Student 2 performed well in the annotation of approximators (71%) but struggled more with shields (58%) and fillers (37%). In particular, she correctly identified all of the speech-planning fillers but only 20% of the word-search fillers, which she instead ascribed to the former subtype. Based on this result, we adopted a different annotation scheme with a unique label for fillers. Using the second scheme for the NS sample, Student 1’s performance remained constant (68%), but Student 2 managed to categorize 60% of the data set correctly. The success rate for the identification of approximators and shields remained unvaried, but both students were able to recognize fillers more effectively. Student 1 correctly labeled 96% of the fillers, while Student 2 correctly labeled 78%.

We included a few examples of reformulators in the sample from the NS data set. Student 1 was able to identify all of the reformulators, while Student 2 correctly labeled only 50%. These results confirm the need to introduce the concept of reformulation and provide students with suitable DMs to carry out this function. In conclusion, the two students confirmed that the second simplified scheme with the labels Approximator, Doubt Marker, Filler, and Reformulator was clearer, and they supported its use during the metalinguistic phase.
What follows is an outline of the teaching treatment considering the students’ feedback:

**Phase 1.** The students play the game. The activity is presented as a challenge in which the pair who finds more differences within the time limit wins.

**Phase 2.** A listening activity on one of the recordings of the group of NSs is proposed. NNSs receive a copy of the transcript lacking some examples of the nine target DMs and are asked to recognize and insert them correctly. The listening is goal-oriented and gradually draws the students’ attention to those items.

**Phase 3.** The metalinguistic phase of the treatment consists of the guided analysis of the nine target DMs in all the transcripts, with reference to the second simplified annotation scheme and specific attention to the contexts of use. Additional multimedia material provides NNSs with further and diverse input on the same structures, for example, relying on the Multimodal Subcorpus of the Russian National Corpus.\(^4\)

**Phase 4.** The students use the target DMs, taking turns playing the game with their NS teacher/s, who, at the same time, expose them to natural input. Pictures are different for every game turn.

Because it takes time for NNSs to use DMs fluently and spontaneously, the teaching activity might take up to six hours and be spread over four weeks. This schedule would allow students to acquire the target items gradually. In particular, Phase 1 and Phase 2 could occur during a two-hour class. More time should be devoted to the metalinguistic reflection, namely, Phase 3, which could therefore occupy three hours to be divided into different sessions. Phase 4 could take one final one-hour session, but it could also be repeated over time to consolidate the students’ abilities. One might argue that spending six hours on a relatively small set of DMs is not an effective use of time. However, during the treatment, students would also practice their listening and speaking skills. Teachers could therefore decide to replace the usual oral activities with our treatment to make optimal use of classroom time.

\(^4\) The Multimodal Subcorpus of the Russian National Corpus is available at [www.ruscorpora.ru/new/search-murco.html](http://www.ruscorpora.ru/new/search-murco.html).
6. Conclusion
In this article, we proposed a game-centered DM teaching treatment for intermediate Italian learners of L2 Russian, focusing on approximators, shields, fillers, and reformulators. To calibrate the treatment on the students’ interlanguage, we analyzed and compared DM production by NSs and NNSs in two spoken corpora, specifically collected for the purposes of this study. Furthermore, we collected students’ opinions to tailor the activities to their needs. Overall, learners performed the target functions less than half the time, often relying on the same lexical choices, hence the need to enhance their DM repertoire with alternative items and improve their discourse abilities. In this respect, the analysis of the NS corpus allowed us to select nine highly frequent and easily accessible target items. The students’ feedback was essential to define how the game could be concretely incorporated into the teaching treatment and develop a learner-friendly metalinguistic presentation of the target DMs. The outcome of the research is a teaching treatment that comprises a goal-oriented task to highlight students’ specific communicative needs, which are consequently met through exposure to natural input and metalinguistic reflection. Future research should focus on evaluating the effectiveness of the activity with another group of intermediate students.

References


**Appendix**

Pictures used for the “spot-the-differences” game in the test with NSs and NNSs, taken and adapted from the puzzle magazine *La Settimana Enigmistica* (nr. 4687, 20/01/2022)