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ABSTRACT

RESERVOIR COMPUTING SOLUTIONS FOR STREAMFLOW

MONITORING AND PREDICTION IN REAL WORLD SCENARIOS

Paden D. Allsup

Computer Science Department

Bachelors of Science

With severe drought continuing in the western United States and the effects of

climate change becoming more apparent across the world, it is becoming increasingly

important to be able to predict the impact of extreme weather events like storms,

droughts, and fires on streamflow dynamics [3]. This includes flow regime as well

as biogeochemical behavior of river systems and their watersheds [5]. This project

explores the use of Echo State Networks (ESN), a subset of Reservoir Computing,

on modeling and predicting streamflow variability with a focus on biogeochemical

patterns. In this project ESNs are tested and compared in the hope of creating

more robust streamflow chemistry predictors that are applicable in broader scenarios

than what are commonly needed for Machine Learning applications to Hydrological

problems.

Reservoir Computing models are proven to be an effective model for multivariate

time series problems like streamflow prediction, (problems with more than one time-

dependent variable, where each variable depends on both its past readings, as well as
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its relation to other variables) [14]. ESNs have been in use since the late 1990’s, but

remain less well-known than more modern Deep Learning models [15]. ESNs are an

efficient Machine Learning model, and their inherent non-linearity makes them very

dynamic and able to adapt to training quickly. This makes ESNs a good potential fit

for large-scale environmental signal-processing and remote sensing problems [9]. We

also compare ESNs with a modern Long Short-term Memory (LSTM) model, which is

frequently used for streamflow problems, and provide a template for when one model

should be picked over the other.
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CHAPTER 1

Introduction and Methodology

1.1 Introduction

Watershed health is incredibly important to surrounding ecosystems, with healthy

watersheds providing benefits like carbon storage/transfer, erosion control, and soil/nutrient

redistribution. The health of a watershed serves as a key metric for the health of the

greater ecosystem. Accurate prediction of streamflow variance is increasingly impor-

tant as the impact of climate change on our local environments grows. Streamflow

dynamics, more specifically hydrochemical behavior or streams and rivers, are a com-

plex web of interdependent variables which makes them difficult to accurately model.

Two of the most important variables affecting biodiversity and resistance to extreme

weather events are water temperature and dissolved oxygen levels [23]. Water tem-

perature and dissolved oxygen are directly connected because of the temperature

dependence of oxygen solubility and oxygen production by primary producers. These

variables have both daily and seasonal variation. The relationship between seasonal

and daily variation is difficult to model, but is key for understanding and predicting

long-term changes to streamflow [24]. The relationship between these two variables

is shown in figure 1.1.
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Figure 1.1: Relationship between Dissolved Oxygen and Water Temperature.

Machine Learning (ML) models have recently been applied to hydrological prob-

lems, and have been shown to be more accurate than traditional physical-based mod-

els [18]. As such, there has been a recent surge in the use of ML tools for hydro-

chemical and streamflow applications [22]. There are a few methods that have gained

popularity for providing accurate and dynamical models for both monitoring and pre-

diction, namely traditional Artificial Neural Networks (ANNs) and the more recent

Long Short-term Memory (LSTM) model. LSTMs are a type of Recurrent Neu-

ral Network (RNN) that successfully avoids the vanishing- and exploding-gradient

problems common in traditional RNNs, making them highly resistant to bifurca-

tions, which historically have made RNNs difficult to train [13]. LSTMs also possess

an internal context with helps them successfully model spatio-temporal datasets and

time-dependent problems, where context relating to previous events is needed in order

to understand future behavior. This makes them well suited to problems surrounding
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streamflow prediction [4]. Recently LSTMs have been used to predict water quality

[19, 25].

While LSTMs have been shown to successfully predict streamflow forecasts [21],

they are complex and costly to train, which makes it hard to apply the them in

areas where computational resources are limited. Echo State Networks (ESN), a

subset of Reservoir Computing, are significantly simpler, yet remain robust, and

similar to LSTMs avoid the vanishing- and exploding-gradient problems found in

more traditional RNNs. ESNs are commonly used as an alternative to RNNs because

of their accuracy and ease of use. ESNs and LSTMs differ in model architecture,

training methods, and simplicity in modeling and forecasting applications.

LSTMs consist of a series of interconnected cells that are made up of “gates”

that handle signal propagation, enabling them to both forget unnecessary long-term

information and retain important short-term information. Figure 1.2 shows a generic

LSTM cell. ESNs, on the other hand, are composed of a single set of sparsely con-

Figure 1.2: The structure of a vanilla LSTM model cell, where ct is the cell input
activation vector, ht is the hidden state or output vector similar to the hidden state in
a traditional RNN, and xt represents the input vector to the unit itself, while ft, it, Ot

represent the forget gate, input gate, and output gate respectively.

nected “nodes”, called a reservoir, that propagates a signal through to a single output
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layer which decodes data and whose outcome is a final prediction, as shown in Fig-

ure 1.3. The single output layer, called a readout, is the only trainable piece of the

network, saving both time and space when compared with other models.

Figure 1.3: Generic structure for an Echo State Network, containing a dynamical

reservoir and a single layer readout (in this example the layer consists of a single

node)

ESNs are notably simpler than more modern Deep Learning models, but are

still commonly used for their efficiency and accuracy in spatio-temporal problems.

When used for temporal problems, ESNs and LSTMs accept data in the form of

time sequences, where each data reading represents values at a single point in time.

Datasets are compilations of readings of the same set of features across a timescale,

and are meant to be read in sequential order. Both ESNs and LSTMs make use of

feedback connections which take into account previous timesteps’ information while

considering future timesteps’ outcomes. While LSTMs possess non-linearity in each

cell that helps to capture chaotic signal behavior, they often need large networks to

handle increasingly complex signals. ESNs possess an inherent non-linearity, which

comes from the connectivity between reservoir nodes, that allows them to successfully
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handle largely chaotic time series, and are much easier to train on long-term natural

signals.

Where resources and time are not limitations, LSTMs have been shown to

provide accurate predictions at the cost of time and complexity [12]. In cases where

resources like memory and compute power are limited, or quick training and prediction

are needed, ESNs can serve as an alternative to an LSTM. ESNs that have been

correctly initialized also possess (and get their name from) the Echo State Property

(ESP) which is very similar to the fading memory possessed by LSTMs. In order for

ESNs to effectively handle chaotic signals, they must have this property [7]. Building

an accurate model correctly strikes a balance between the non-linearity of the signal

propagation and the memory capability of the model [1]. When initialized correctly,

Echo State Networks can be an efficient method for handling long-term, multivariate,

temporal data.

1.2 Methodology

When predicting on time-series data, especially chaotic natural signals like

streamflow, it helps to isolate the chosen features, and train the model on each fea-

ture of interest. This can help to highlight connections or relationships between tested

features, and help the model to accurately predict some of the more chaotic compo-

nents of streamflow. One common use for Echo State Networks is in future signal

generation, which can be extremely valuable for modeling flow regime and hydro-

chemical patterns. Once the model has been sufficiently trained with longterm data,

the model can successfully highlight trends taking place over a long period of time

(e.g., the growth of maximum temperature in recent years [10]). This project demon-

strates the power of long-term future signal generation, and tests multiple networks

on both water temperature and dissolved oxygen level prediction.
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1.2.1 Reservoir Size and Connectivity

Similar to LSTM models, the main factors affecting performance of an Echo

State Network are the overall network size, and the regression regularization factor

which helps to avoid over-fitting the data. ESN optimization is notoriously difficult

to determine, and is often found through trial and error. Optimal reservoir size is

highly task-dependent, and dramatically impacts the ability to generate an accurate

signal. Node connectivity, a hyperparameter governing the random connections be-

tween nodes in the reservoir, influences the signal generated by the reservoir, which

may be either too chaotic, or not chaotic enough, which prevents accurate predictions.

ESNs will commonly be initialized with very sparse connectivity rates with the hope

that less connectivity between nodes will increase the variation in reservoir response

signals, which is good for overall training. Typically a connectivity rate of 1% is

used, meaning each node is connected with approximately 1% of the other nodes in

the reservoir. With the connectivity rate remaining constant, a network too large

muddies the signal, which under-fits the time series and cannot accurately predict

minute daily variation. A network too small generates a signal that is too sensitive

and becomes even more chaotic than the time series, which also gives inaccurate

predictions.

Figure 1.4: Various reservoir sizes and their effects on signal generation
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The effects of various network sizes are shown in Figure 1.4. Here, three signals

based on the same time series were generated by reservoirs with connectivity rates of

1%, and sizes n = 100, n = 1000, and n = 10000, representing too small, too large,

and a close to optimal network size. As the size of the reservoir gets smaller, the

signal generated cannot differentiate between large and small scale variations. This

results in an inability to generate a signal with accurate seasonal variance. When the

reservoir size becomes too big, it predicts too much small scale variation, and loses

sensitivity. A plot of the actual recorded daily temperature is included for compari-

son. A round of testing various network sizes showed that in handling our particular

datasets, a reservoir size of n = 1000 nodes provided the best signal generation for

both temperature and dissolved oxygen level prediction and modeling.

The reservoir state is updated at every timestep, and is governed by the equation

x(t+ 1) = f(Wx(t) +W inu(t+ 1) +W fby(t))

where x(t) is the reservoir state at timestep t, W is the randomly initialized N ∗

N weight matrix of weights between reservoir nodes, W in represents the randomly

initialized N ∗ K matrix of weights between input and reservoir nodes, W fb is the

feedback weight matrix of shape N ∗ L from output to reservoir nodes, and u(t) and

y(t) represent the input signal of size K and output signal of size L, respectively. The

extended state is given by

z(t) = [x(t);u(t)]

which is passed through an activation function (in our case a sigmoid function) g by

multiplying a matrix of output weights W out of shape L ∗ (K +N) and the extended

state, z(t):

y(t) = g(W out ∗ z(t))

The output signal is then decoded by linear regression and a prediction is made.
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1.2.2 Ridge Regularization

After testing to find the optimal network size, another round of testing various

regression and regularization parameters helped to generalize the model for long-term

future predictions. ESNs are able to make use of multiple kinds of on- and off-line

regression models. For this project, we used a single readout layer which computes a

simple Tikhonov linear ridge regression. This regression updates the output weight

matrix W out by using the form

W out = (R + λI)−1 ∗ P

with R being the correlation matrix of the extended reservoir state and P being the

cross-correlation matrix of states vs. target outputs. λ, our regularization parameter,

is a non-negative smoothing factor multiplied to I, the identity matrix. By exper-

imenting with various values for the regularization parameter, we were able to find

good generalization for both temperature and dissolved oxygen. This regularization

helps control the signal propagation through the reservoir, and avoid over-fitting on

either the daily or seasonal variation. Figure 1.5 shows the impact of various regu-

larization parameters. While the difference between regularization values is not as

noticeable in the generated signals as is the reservoir size, it is still important for

maximizing the goodness of fit of the network to the chosen task. With a smaller

than optimal regularization parameter, the generated signal becomes wild and pre-

dicts unrealistic daily variance. Larger than optimal parameters capture the general

trends better, but ultimately produce a muddier and less sensitive signal. After mul-

tiple tests, a ridge regularization value of 1e − 7 was chosen. This value helped to

balance sensitivity between both large-scale seasonal trends and minute daily change.
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Figure 1.5: Ridge regularization

1.2.3 Data

Another important consideration relates to the chosen data. Water temperature

has consistently been reported daily by the United States Geological Survey (USGS)

in many sites dating back to the 1950’s. However, dissolved oxygen recordings were

sporadic in most sites before the year 2018, which makes it difficult to find enough

long-term data to both train and test on. We found in our initial testing that models

trained on the limited amounts of dissolved oxygen datasets were unreliable and inac-

curate. In order to circumvent this problem, we added multiple random permutations

of the same set of years to our dataset in order to simulate seasonal changes across a

larger time-scale than was available. While this method does not produce the most

accurate real-world predictions of long-term dissolved oxygen behavior, it is useful for

both modeling purposes and general tracking of watershed reaction to extreme events

like floods and wildfires. When extreme events happen, the model can be used to test

possible reactions a watershed might have when not accustomed to dramatic events.

As will be highlighted in our results, as the signal to process becomes more complex,

the amount of data needed to successfully train an ESN grows at a significant rate,

which can make applying the model difficult in scenarios where total amount of data

is a limitation. If, on the other hand, amount of data is not a limitation but the
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signal is extremely chaotic, and increased amounts of data only add more chaos, an

ESN will not be able to successfully predict the signal without an extremely large

reservoir. This makes the use of ESNs difficult in situations where compute power is

not an issue, but system storage is a limitation.

1.2.4 Training and Testing

Multiple drainage locations were chosen for training and testing based on similar

elevation, discharge, hydrochemical behavior, and general topography. Data for this

project came from various USGS sites on the Colorado and Green rivers near the

Colorado-Utah border. The site numbers used were: USGS09095500, USGS09261000,

and USGS09163500. Both temperature and dissolved oxygen data came from all 3

of these sites but individual models were trained on each site individually in order

to test the model’s fit for specific sites. Temperature results from all three models

showed little variation in performance, . The dissolved oxygen dataset used on to

create the results provided below came from data gathered at site USGS09095500 on

the Colorado river near Cameo, Colorado. This site contained the longest period of

recording of daily dissolved oxygen. Dissolved oxygen data from the other sites was

tested, however we found that the recording periods were too short for our model to

accurately reproduce the signal. Temperature data came from site USGS09163500 on

the Colorado River near the Colorado-Utah border. Both temperature and dissolved

oxygen metrics had maximum, minimum, and mean values recorded daily by the

USGS. We found that each produced similar results after training, so the mean was

chosen to report on.

To build our models, we used a python library called reservoirpy, which makes

building and optimizing Echo State Networks straightforward, and has many built-

in tools to help fine-tune models for performance. In order to capture the effects
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of random reservoir initialization, 10 models identical in size and regularization, for

both temperature and dissolved oxygen were initialized then trained and tested on the

same datasets. A train/test split of approximately 70/30 was chosen (the first 70%

of the recorded data was used to train the models and the remaining 30% was used

for testing). After training, each model was asked to predict the signal pattern for

the test portion of the data. For each prediction, the model was given the previous

day’s value for temperature or oxygen, and asked to predict what the next day’s

value would be. Each model outputted a new time-series which was compared to the

withheld portion of the data. Model accuracy was recorded and stored in a list for

comparison to other models. These results were also plotted for visual comparison to

the actual time-series.
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Results, Discussion and Analysis

2.1 Results

2.1.1 Metrics

In testing model accuracy, multiple metrics were used to track model fit: Root

Mean Square Error (RMSE), R-squared (R2), and Nash-Sutcliffe Efficiency (NSE).

RMSE is a commonly used regression metric to test standard deviation of model

predictions from true values, with values closer to 0 representing a more accurate

model. A weakness of RMSE is that the return value can be highly relative (a value

between 0 and infinity can be returned), which makes it difficult to judge real-world

accuracy of a model. R2 provides a solution to this problem, returning a value between

0 and 1, where a value of 1 represents a perfect correlation between predictions and

true values, and values closer to 0 represent a lack of or no correlation between

predicted and observed values. NSE is very similar to R2, however, it is primarily

used to judge model simulation fit and is commonly used to measure hydrological

model accuracy. Together these metrics give a broad view of model performance and

give insight into real-world application.
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2.1.2 Temperature

With temperature data being plentiful, our model performed very well. Each of

the ten models had high R2 and NSE values, low values of RMSE, and successfully

generated realistic water temperature series on both the seasonal and daily scale.

Figure 2.1: Water Temperature Model NSE values

The NSE distribution is shown in Figure 2.1. NSE values for each of the ten

temperature models performed well, despite random reservoir generation. With an

average NSE value of .933, our model provides a very good fit for predicting water

temperature of our chosen section of the Colorado river. As shown in Figure 2.2, it

seems that the most difficult part for the model to reproduce is the change in daily

variance after significant weather events. During the second summer season in our

Figure 2.2: Temperature model prediction vs. observed temperature values
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test years there was a relatively stable period before a large spike just before the

peak of the season, where the temperature remained relatively stable for a period of

approximately 60 days. During that period, the recorded daily variance of the water

temperature was minimal, whereas our model predicted more temperature variance.

Other places where the model struggled seem to be during the autumn season where

there were dramatic drops in daily temperature. In the winter, days where the actual

recorded temperature reaches 0◦C represent days when likely the water surrounding

the sensors at the USGS gauge site was frozen and therefore a minimum bound

was recorded before the water froze, or where water was visibly frozen and so a

temperature of 0◦C was manually recorded. Our model incorrectly predicted values

below freezing for water temperature, although it could be argued that artificially

capping the temperature data at 0◦C is more problematic given that ice can have

temperatures well below zero, and water can still flow beneath ground when the

surface is frozen. In other cases where temperature recording is not capped, the

model would likely match the found temperature closer than in this dataset.

2.1.3 Dissolved Oxygen

With less data available for dissolved oxygen, our model was understandably

less accurate. After adding random permutations of previous data to our training set,

our model performed significantly better. Even after augmenting the data by adding

multiple random permutations of the total set in order to simulate extra years’ data,

there was still significantly less total data than was available for water temperature.

Dissolved oxygen models were not as accurate as temperature models, but still had

consistently good results. With the availability of more data, model accuracy would

improve.

The NSE values in Figure 2.3 have an average of .664 and show that even
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Figure 2.3: Dissolved Oxygen Model NSE values

with a significantly shorter training period our model is still a reasonably good fit

for the watershed, though not good enough to rely on for real-world predictions.

In the predicted signal seen in Figure 2.4, the troubles our oxygen model had were

in determining at what times there was significant daily variation, and when daily

dissolved oxygen levels were more stable.

While capturing the seasonal trends relatively well, a longer training period

would likely provide better results in predicting the levels of daily variation, and

though this model is perfectly usable in a modeling application, we would hesitate to

use its predictions to make decisions regarding real-world watershed health. As the

period of recording grows larger, the results will become more applicable in real-world

scenarios. Though these results are not particularly groundbreaking they provide a

key insight into the potential of ESNs in dissolved oxygen prediction, and highlight

the importance of having access to sufficient data for training and testing.

Similar to temperature recordings, the more dramatic nature of the variance

during spring and fall seasons made it hard for the model to differentiate between the

more stable winter months, and the rest of the year where the recorded levels varied

greatly. Dissolved Oxygen levels are affected by more than just temperature, relying

on groundwater discharge, the atmosphere itself, and light levels which affect the
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Figure 2.4: Dissolved oxygen model predicted vs. observed oxygen levels

amount of oxygen primary producers (plants) add to the water. During the summer,

spring, and fall seasons these contributions from other sources could be responsible

for the greater variance found in recorded amount. Because the chaos of the signal

differs from season to season, it is difficult to build a model that can accurately predict

these trends without access to each contributing variable.

2.1.4 Comparison with a similar LSTM

We also measured the performance of a comparable LSTM on the same data

splits and generation periods. For our LSTM model, we used a python library called

scalecast, which provides a wrapper over the commonly used TensorFlow Keras LSTM

layer, which streamlines LSTMs for use with time series problems, and automatically

optimizes model performance based on chosen parameters. Our LSTM model was

initialized on the same training period with a time-lag of 50 steps (each prediction

takes into account the previous 50 days’ data), the same train/test split as our ESN, a

standard Adam optimizer, and an early-stopping criterion monitoring validation loss

for efficient training. Testing with various lengths of time-lag showed that finding

the optimal period to use as a lag input takes an incredibly long time. In order to

compare the simplest usable form of LSTM, an arbitrary value of 50 days was chosen

in order to strike a balance between length of time needed to train and quality of
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results.

Figure 2.5: LSTM Temperature Predictions.

Training the LSTM on our water temperature dataset delivered reasonably good

results, though the model performed slightly worse than our ESN as shown in Fig-

ure 2.5. Training also took significantly longer than our ESN, although this was

expected because ESNs require little training compared to a more complex LSTM.

Though the 95% confidence interval contains almost all the correct test values, the

actual predicted signal is not a good fit for the time-series. Though a more com-

plex model would perform markedly better, that eliminates the benefit of having a

simple model to be used where resources are limited. Our results show that the sim-

plest LSTM model does not provide as good a fit for this dataset even though it

had multiple optimizers and took into account a longer prior period in order to make

predictions than did our ESN. These results were not unexpected, but the difference

in accuracy was surprising considering our ESN had almost no optimization, and was

purely predicting based on the previous day’s output, compared to the much longer

50-day period taken into account by the LSTM.

A separate LSTMmodel was also tested on the original dissolved oxygen dataset,
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(with no added random permutations), to see if a more complex Deep Learning model

could handle the smaller amounts of data. Interestingly, dissolved oxygen predictions

were significantly worse than our other model, and highlighted the same problem ex-

perienced by our ESN above. When presented with a limited amount of data, a basic

LSTM model cannot accurately replicate highly chaotic signals. The lack of long-

term data in such a chaotic series would likely inhibit any model’s accuracy, though

some might perform better than others. Similar to the temperature results above,

the 95% confidence interval contains most of the values, however the actual predicted

values were very far off. With more data the results would likely have resembled the

temperature spread from the temperature LSTM model. Dissolved Oxygen results

from the model are shown in Figure 2.6.

Figure 2.6: LSTM Dissolved Oxygen Predictions.

This comparison highlights the major advantage ESNs have over LSTMs: in

order to generate accurate time-series, LSTM models must be deep enough, and have

a training set large enough, to handle the chaotic signal variance and balance be-

tween short-term and long-term signal behavior. This often means that a sufficiently

trained model is too complex and costly to be realistic in a real world scenario. The
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simplicity of ESNs allow for almost any machine to build and run a model that pro-

vides accurate results. A sufficiently deep LSTM would certainly be more accurate

than our relatively simple ESN architecture, however for the quality of results given,

ESNs are a viable choice for quick predictions and signal generation, especially where

immediate results are needed. ESNs provide very quick and efficient training and

handle chaotic signals well with little optimization compared to more modern Deep

Learning models. Where time and computational resources are not a limiting factor,

an optimized LSTM would likely provide better results than the more simple ESN.

2.2 Discussion and Analysis

2.2.1 Necessity of Consistent Data

As shown by our results above, Echo State Networks can provide very good sig-

nal modeling and generation in long-term streamflow and hydrochemistry prediction

problems. The efficiency of their initialization and training make them a good choice

for hydrological modeling problems, and they can be extremely sensitive to changes in

streamflow dynamics. This can be very helpful when studying the impact of extreme

weather events on watersheds. The temperature models had markedly better results

because of the length of the training sets, though by augmenting the available data

our dissolved oxygen model was also able to produce reasonably good results. While

the lack of data eliminates our dissolved oxygen model’s use in this specific water-

shed, any watershed where dissolved oxygen data from a longer period is available,

our model could be used as a predictor. Where there is sufficient data, a fully trained

model could be used either as a control, tracking what a healthy watershed should

look like, or as a model of watershed reaction to major events.

Other variables that were initially considered as key metrics were discharge,

specific conductance, turbidity, and pH, however no sites were found with enough
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consistent daily recordings to enable successful training. Much of the recorded periods

were far apart, with no consistent periods, or long-term recordings. These variables

were significantly more chaotic than temperature or dissolved oxygen which, combined

with the lack of consistent data, made designing an accurate model very difficult.

More advanced Deep Learning models may have produced better results with the data

available, but ESNs would likely produce similar results to the variables focused on

in this experiment if data were not an issue. Most sites with large periods of recorded

data only contained seasonal recordings (e.g., daily recordings for the summer or

winter season, or a few years of monitoring after a major event). This highlights the

importance of finding consistent, long-term data in developing a model that holds

real-world importance.

2.2.2 One Model, Many Applications

As an alternative to having separate models handle individual variables, in

cases where some variables directly depend on one or more independent variables,

it is worth exploring the use of a model fully trained on the independent variable

and passed through a relational function to predict dependent variables of interest.

In our case, dissolved oxygen levels directly depend on water temperature. Further

experiments could use our fully trained temperature model along with salinity values

and percent oxygen saturation levels to predict a range for dissolved oxygen levels for

modeling or planning purposes. ESNs can also be used with higher-dimensional data,

or to generate a single prediction based on multiple previous state outputs. With

streamflow chemistry being an dynamic web of interactions between variables, it is

worth exploring how a model trained on a specific target could be used to predict

other variables contained in the training set by switching the target with the desired

variable for prediction.
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2.2.3 Analysis of Echo State Networks

Echo state networks have been shown to be effective in signal processing appli-

cations as described above, and we have shown them to be effective in hydrological

applications as well. In problems with temporal datasets, ESNs shine as a simple and

efficient model architecture that provides accurate temporal predictions and time se-

ries generation. When early RNN algorithms were introduced, they suffered from

many problems related to gradient descent (such as bifurcations discussed above).

This made them hard to apply in real-world scenarios, and led many researchers to

explore the use of ESNs as an alternative. Today, thanks to developments like au-

todifferentiation, RNNs are much more useful. Because of this, Echo State Networks’

only advantage over modern RNN architectures is the quicker and highly adaptive

training. RNNs today are very effective in solving highly complex signal processing

problems like speech recognition [2]. In this kind of application, ESNs would likely

need unrealistic amounts of memory to create a model sensitive enough to compete

with an RNN. It remains to be seen whether ESNs are subsumed or even made irrele-

vant by modern deep learning techniques in these types of applications. Regardless, in

many signal processing problems, ESNs remain a simple, highly effective, and broadly

applicable architecture.

In regards to streamflow dynamics and hydrochemical modeling, Echo State

Networks can be used to create realistic models of high-dimensional scenarios, as well

as single variable applications like the one shown here. Streamflow dynamics is a chal-

lenging area of hydrology, with individual watershed catchments having dramatically

different reactions to similar weather events. It is worth exploring the differences in

ESN model reaction to extreme weather events when models have been trained on

different watershed catchments of similar landscape and topography. In order for this

to work, there must be well documented extreme event data on a scale large enough
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to compare models.

2.2.4 Ensemble Learning for Hydrological Problems

Recent publications in Hydrology have used many Machine Learning models for

various modeling and prediction purposes, and have shown that ML applications to

hydrological problems have generally been successful, especially when used as part

of an ensemble [17]. Ensemble learning is a type of meta-learning where multiple

models’ predictions are combined on a task, and then results are given to a parent

model which will learn through training which model is best for the given problem.

Models can be chosen based on some threshold or accuracy level in order to maximize

model performance on a difficult task, or based purely on predictions from the parent

model. Because they are so efficient and easy to implement, Echo state networks

can be used in collaboration with other models as part of an ensemble in order to

maximize ensemble performance in difficult hydrological tasks.

Ensembles can also be used to increase ESN performance, by helping to stabilize

the training and tuning process [20]. One downside to Echo State Networks we found

was that our ESN models were relatively unstable, with good results being highly

dependent on an optimal combination of hyper-parameters. Because finding the per-

fect set of parameters was a very difficult problem, this provides an opportunity for

ensemble learning to improve robustness and help to stabilize model performance.

Because of the natural simplicity of ESNs, many individual models of various layouts

and levels of optimization, with different combinations of hyper-parameters, can be

combined in an ensemble in order to maximize performance on specific problems. In

conjunction with other well-known Machine Learning models for hydrological prob-

lems, ESNs can provide insight and help to validate insights and findings gained from

other models.



CHAPTER 3

Conclusion

3.1 Importance of Monitoring and Prediction Tools

As the effects of climate change become more visible around us, it becomes

increasingly important to monitor vital resources in locations where those resources

are strained. In the western United States, drought has significantly affected the lives

of the approximately 80 million people who live there. In order to consciously and

ethically manage resources and keep people safe, there is a great need for tools that can

give accurate predictions of water resources. Streamflow chemistry is a key indicator

of the quality of those resources, and their importance for biodiversity and overall

ecosystem health make successful prediction and monitoring tools an essential part of

our efforts to understand and mitigate the effects of climate change. There is growing

interest in applying Machine Learning tools to predict and model streamflow, which

has proven to be a very effective combination and helped to better manage limited

water resources. Streamflow is made up of chaotic natural signals, which are difficult

to model and predict in physical-based or statistical models. Echo State Networks

are another application of Machine Learning used to create more robust streamflow

predictors which are sensitive to the growing amount of extreme weather events such

as wildfires, droughts, and floods. ESNs handle chaotic signals well, and provide

another opportunity for real-world modeling and prediction that is accessible to a

wider range of scientists due to their ease of use and broad application.
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ESNs have already been proposed as an alternative to traditional neural net-

works and RNNs in rainfall forecasting [11]. This project explores the use of ESNs

in predicting hydrochemical behavior of streams and river systems, and in long-term

modelling of these systems, and provides a template for when ESNs would provide a

good fit for a chosen problem, and when other models should be considered. The suc-

cess we have shown in applying ESNs to this problem warrants further exploration

of their use in the broader field of Hydrology, and more specifically in the field of

streamflow hydrochemistry.

3.2 Future Work

One of the most impressive features of ESNs is their dynamic reservoir memory,

and how that memory is affected by model feedback. Many forms of online training

make special use of these feedback connections, which can be beneficial as the signals

become more complex. It is worth future efforts comparing and contrasting use of

these forms of training and their effects on model feedback in cases with extremely

complex signals. It is also worth exploring the use of ESNs in predicting reaction

patterns of dissolved oxygen to other key variables like turbidity, percent oxygen

saturation, and primary producer activity in a more high-dimensional space. This

problem is of particular interest in areas where flow regimes are affected by discharge

from joining river systems, dam construction and regulation, and unique biochemical

processes [16]. ESNs could provide key insights into this problem in areas where

remote sensing and monitoring are essential to measuring watershed health.
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APPENDIX A

Additional Facts and Figures

About appendices: This appendix contains additional facts and figures re-

garding both streamflow monitoring and ESNs

(1) Reservoir size plays a vital part in determining model fit.

Figure A.1: Reservoir Size effects on model accuracy

(2) Ridge regularization values have less impact than reservoir size, but do influ-

ence network sensitivity to long-term trends and minute patterns.

Figure A.2: Ridge Regularization Parameters

(3) The USGS Water Science School contains helpful information on key metrics

for measuring watershed health. The home page can be found at: Water

Science School Home Page
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(4) This project made use of a python reservoir library called reservoirpy, that

makes Echo State Network initialization, and training very easy, with high

levels of customization. Users can experiment with various on- and off-line

training methods, hyperparameter optimization tools, and simple graphical

interfaces to make training and testing intuitive for users. Their home page

and documentation can be found at: ReservoirPy
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