
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Faculty Publications

2007-02-01

Interactive Image Repair with Assisted Structure and Texture Interactive Image Repair with Assisted Structure and Texture

Completion Completion

Teryl Arnold
blossom1625@yahoo.com

Bryan S. Morse
morse@byu.edu

Follow this and additional works at: https://scholarsarchive.byu.edu/facpub

 Part of the Computer Sciences Commons

Original Publication Citation Original Publication Citation
T. Arnold and B. S. Morse, "Interactive image repair with assisted structure and texture

completion," in WACV '7: Proceedings of the Eighth IEEE Workshop on Applications of Computer

Vision, IEEE Computer Society, February 27.

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Arnold, Teryl and Morse, Bryan S., "Interactive Image Repair with Assisted Structure and Texture
Completion" (2007). Faculty Publications. 273.
https://scholarsarchive.byu.edu/facpub/273

This Peer-Reviewed Article is brought to you for free and open access by BYU ScholarsArchive. It has been
accepted for inclusion in Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more
information, please contact ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/facpub
https://scholarsarchive.byu.edu/facpub?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F273&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F273&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/facpub/273?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F273&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ellen_amatangelo@byu.edu

(a) Initial mouse click (b) User drags mouse (c) Gesture to guide completion (d) Final click to stop

Figure 2. User interaction process. The user right-clicks the mouse in the defect (a) and drags the
cursor across the areas to consider in identifying both the damaged and valid image regions (b).
If necessary, the user left-clicks the mouse and drags in the direction of desired structure comple-
tion (c). In this case, the user indicates completion of the flag’s stripes using a horizontal motion.
Another right-click ends the repair (d). Green arrows represent the direction of the cursor motion.

(a) Original Image (b) Scattered Edge Points (c) Edge Fitting (d) Completion (1st Phase)

(e) Completion (2nd Phase) (f) Constrained Search (g) Unambiguous Fill-in (h) Priority Filling

Figure 3. The repair process. After the user clicks in the damaged region (a, magnification of Fig-
ure 1a) and drags the cursor over both the damaged and relevant “good” areas, a simple region-
growing algorithm separates the damage from the valid image. Edge detection then finds structure
in the surrounding area (b). These sparse and perhaps noisy edge points are then fitted with rotated
polynomials (c), which are connected using an optimization process guided by optional user ges-
tures (d). A second phase connects the remaining structure (e). Texture synthesis with a constrained
search fills in the damaged region with appropriate textures (f,g). Some cases are ambiguous (over-
constrained), so a priority-based filling process is used, again using information from the user’s
gestures (h, vertical gesture).

Drori et al. [11] and Demanet et al. [10] attempt simi-
lar approaches, but rather than diffusing greyscale structure
they diffuse segmentation maps that determine from which
source region synthesized textures are drawn.

Criminisi et al. [9] also try to incorporate structure using
a priority-based texture synthesis. This method first syn-
thesizes texture along directions propagated from exterior
structural edges. It then synthesizes the remainder of the
texture in non-structural regions.

Sun, et al. [20] take this further and first introduce user
interaction into the repair by allowing the user to first draw
curves for the important structures passing through the dam-
aged region. These curves guide a priority-based filling
whereby texture blocks along these curves are first gen-
erated and optimized through belief propagation. These

curves then also serve to limit the source regions for the
search much like in the earlier work in [10, 11, 14].

Jia and Tang [14] attempt to automatically determine the
structural edges in the surrounding area and connect them
through the damaged region. Unlike [20], this connection
occurs automatically through a voting process than rather
requiring user-drawn curves. These connected curves then
limit the search process for texture synthesis.

One problem frequently cited in this work is the prob-
lem of depth ambiguity [2, 11, 20, among others] as shown
in Figure 1. Some methods allow limited resolution of am-
biguities through pre-specified preferences (vertical vs. hor-
izontal, brighter over darker, favoring symmetry, etc.) [11]
or manual layering [20], but none provide for direct user
input to resolve ambiguities during the filling-in process.

IEEE Workshop on Applications of Computer Vision (WACV'07)
0-7695-2794-9/07 $20.00 © 2007

1.2. Overview and User Interaction

Using an interactive algorithm that leverages user ges-
tures to fill in damaged regions, cases such as Figure 1 can
be completed according to the user’s intent. We implement
this in a framework similar to that of Jia and Tang [14],
but unlike their method user gestures influence the comple-
tion of the structure into the damaged region. Unlike the
approach of Sun, et al. [20], the method requires only sim-
ple directional gestures rather than explicitly drawing each
curve of the missing structure.

User input influences the process in four ways:

1. The user indicates which region to remove and what
surrounding data to consider in the filling-in process
(Figure 2a,b).

2. Optional directional gestures guide completion of
the underlying structure in the damaged region (Fig-
ure 2c).

3. User gestures also determine priority of which edges
to consider when valid source areas cannot be uniquely
determined in relation to the detected structure.

4. The user decides when the result is satisfactory by con-
tinuously viewing new results produced by the algo-
rithm and indicating when stop (Figure 2d). At any
point they may make additional directional gestures to
guide the repair.

2. Framework and Methods

Our framework for interactive image repair includes
identifying the damaged and valid regions, detecting the
surrounding structure, fitting curves to that structure, com-
pleting the structure interrupted by the damaged region,
and filling in the damaged area using texture synthesis con-
strained by the surrounding and completed structure.

2.1. Identifying Regions

The user indicates the region to repair by right-clicking
the mouse within the damaged region. They then drag the
cursor to identify other regions to consider. The area the
user drags the cursor over is segmented to be either part
of the defect or part of the valid surrounding data using a
region-growing algorithm seeded by the user’s initial mouse
click. Although more sophisticated segmentation methods
could easily be incorporated (most inpainting or texture
synthesis methods simply assume that the area to repair has
already been manually identified), we have found this to
be suitable for many applications and provides “one-click”
repair rather than separate actions for identification then re-
pair. The user does not need to keep the mouse positioned
within the defect as they paint it. The initial mouse click

seeds the region-growing process, and the user need only
pass the area of the cursor over all of the desired defect.

All areas the user paints with the cursor that are not part
of the region-grown defect are considered valid source data
for the texture synthesis process. This allows the user to
specify the valid source regions without requiring a separate
step. We have also found this to be faster than searching
the entire image for matches [13] and more effective than
simply searching a fixed-size area around the defect.

2.2. Edge Structure Detection and Fitting

As with [14], we detect structure surrounding the defect
and complete this missing structure through the region.

2.2.1 Structure Detection

Before finding edges, we first apply anisotropic diffu-
sion [18] to reduce noise while preserving the edges.

Since the surrounding image may have finer-grained tex-
ture, we detect edges by comparing the color characteristics
over larger regions around the potential edge point. The av-
erage intensity for each color channel is computed in four
separate 3 × 3 quadrants surrounding the pixel. These are
then combined to give color features as in [16] and reduced
to a single weighted sum (feature) for each quadrant.

Once the average color features are computed across the
four neighboring regions, the differences between the re-
gions are computed. Absolute differences are calculated
horizontally, vertically, and diagonally. The maximum dif-
ference computed for all pixels is used to determine a differ-
ence threshold. Maximum differences above that threshold
are considered edge pixels. Figure 3b shows the edges de-
tected in the example image shown in Figure 3a. After the
edge pixels are detected in the valid data, they are grouped
spatially to represent separate edges.

2.2.2 Structure Fitting

After edge detection, each edge is represented as a group
of (potentially scattered) pixels as shown in Figure 3b. To
accurately complete structure, the location of pixels relative
to these edges must be known during the texture synthesis
process, so we fit these scattered edge points with curves
(Figure 3c). For efficiency in determining relationships be-
tween these curves and other pixels, we use low-degree ro-
tated polynomials [19].

Sets of edge pixels can be represented by rotated polyno-
mials by first computing the orientation of each set of edge
points. For each edge set, the points are then translated so
that their mean is at the origin and rotated so that their ori-
entation aligns with the x-axis. A least-squares fit is then
used to approximate the points by a low-degree polynomial,
and the mean, orientation, and polynomial coefficients are

IEEE Workshop on Applications of Computer Vision (WACV'07)
0-7695-2794-9/07 $20.00 © 2007

stored for the curve. (In the illustrative example in Figure 3d
the curves are just lines, but that need not be the case.)

2.3. Structure Completion

Some of the detected structure could be interrupted by
the damaged region. As a result, some of the previously
computed curves should be combined to form the correct
structure across the damaged region. For the case illustrated
in Figure 3, the white square in the middle is the region to
remove, so those eight edges are the only ones to be consid-
ered in the structure completion process. Without the square
there, it is apparent that the top two edges should connect re-
spectively to the bottom two while the two edges on the left
should connect respectively to the two edges on the right.
A combination of user input and the geometry of the fitted
curves can be used to successfully combine the computed
eight edges into four so that the underlying structure ex-
tends across the damaged region successfully (Figure 3d,e).

More specifically, there are two main steps for connect-
ing the underlying structure. The first step is a search that
is executed only if user input is given. If user input is not
given, the algorithm continues straight to the second step.
The second step executes a similar search to attempt to
match up any curves that have not yet been paired.

2.3.1 First Search (Given User Input)

The first search uses the following metrics to determine
whether curves should be combined:

1. mean squared error for the combined sets of edge
points if the curves were combined (MSE),

2. angular difference between the user motion and the di-
rection between the two curves’ endpoints (diffθ), and

3. difference between colors adjacent to the edges.

The first search completes structure by minimizing the
weighted sum of these metrics subject to MSE < T1 and
diffθ < T2, where the thresholds T1 and T2 specify max-
imum values allowed for a specific criterion. Figure 3d
shows the result after the first search is implemented on
the image and structures shown in Figure 3c when the user
strokes the cursor in a vertical direction.

2.3.2 Second Search (Remaining Edges)

The second search then uses the following metrics to deter-
mine whether the remaining curves should be combined:

1. mean squared error for the combined sets of edge
points if the curves were combined (MSE),

2. difference between colors adjacent to the edges,

3. Euclidean distance between the endpoints of the
curves,

4. difference between curve orientations.

The second search completes structure by minimizing the
weighted sum of these metrics subject to MSE < T1, where
the threshold T1 is the same as in Section 2.3.1. Figure 3e
shows the result after the second search connects the struc-
tures remaining from Figure 3d.

2.4. Texture Synthesis

Once the surrounding structure has been completed
through the damaged region, we can then fill in the dam-
aged region with appropriate texture as constrained by the
detected and completed structure. We use a pixel-based syn-
thesis similar to that of Efros and Leung [13], with some
modifications. As with their method, texture is propagated
by estimating a conditional distribution of a pixel’s value
given its neighbors. This conditional distribution is com-
puted by querying the sample image and finding all similar
neighborhoods. Our method differs from [13] in three im-
portant ways:

1. Our method iterates more than once when determin-
ing which pixel to fill in and uses pixels filled in from
the previous iteration in calculating the conditional dis-
tribution, similar to [15] (and in a way related to the
loopy belief propagation in [20]).

2. Besides just referencing the neighboring pixels in the
search, a smoothness prior based on the local color and
intensity is also used.

3. Instead of searching through the entire image to build
the conditional distribution, only the regions that are
considered valid source data (as specified by the user)
are used to influence the distribution.

While calculating these conditional distributions can be
computationally expensive for large regions, and better or
faster methods have been proposed [1, 8, 12, 15, 22, 23, for
example], we have found this method sufficient for this ap-
plication, especially when the user has already limited the
area for source textures. Many of these other techniques are
more efficient for generating large amounts of texture be-
cause they use patches [8, 12] or build more efficient struc-
tures for comparing potentially matching pixels [22], but
we found that the initial set-up required in these methods
often negates these advantages when generating only small
amounts of texture from limited source areas.

When searching for matching pixel areas, we consider
only source pixels that share the same relationships relative
to the detected and completed structures [14, 20]. For exam-
ple, in Figure 3f we consider only the region marked by “A”
when filling in the region marked with a “?”. In some cases,
such as in Figure 3g, there may still be some areas for which
there are no sources areas that are topologically consistent
with the structure. This situation is where the ambiguity in

IEEE Workshop on Applications of Computer Vision (WACV'07)
0-7695-2794-9/07 $20.00 © 2007

(a) Before (b) Structure (c) After

Figure 4. Simple structure example. The scratch (a) is removed with a single mouse click. The
algorithm preserves the edge between the textured dark and light regions by first detecting the
structure (b) of the edges on each side of the damaged area, then filling in the damaged area with
appropriate texture from each side of the edge (c).

(a) Before (b) Structure (c) After

Figure 5. Curved structure completion. Note that the curve in the lower left hand corner of the
triangle is correctly completed, a difficult task for texture synthesis alone.

(a) Before (b) Structure (c) After

Figure 6. Another example. A spurious edge was found in the middle of the butterfly’s wing, which
does not affect the result since the texture is the same on both sides. No structure was found in
the soft edge along the top of the wing, but in this case failure to detect structure does not stop the
algorithm from completing using texture alone.

IEEE Workshop on Applications of Computer Vision (WACV'07)
0-7695-2794-9/07 $20.00 © 2007

(a) Before (b) After

(c) Before (Inset) (d) Structure (Inset) (e) After (Inset)

Figure 7. Structure and texture example. The
two black squares and the black oval (a) are
removed (b). One black square is located
in the girl’s forehead while the other black
square is located between the other girl’s
chin and the background. The black oval oc-
cludes the edge between the red shirt and
the girl’s neck (c). The algorithm successfully
fills in both structure (d) and texture (e).

filling-in occurs. In these cases, we must loosen the con-
straints and consider only some of the detected/completed
structures but not all. If the user has directed us to fill in
a certain way by gesturing with the mouse in the direction
of the desired completion, we choose the pair of structure
curves that are nearest in the direction orthogonal to the di-
rection of the user’s gesture, thus allowing us to fill in as
directed by the user (Figure 3h).

Iterating the texture synthesis process not only produces
better texture results, but it also causes multiple stochasti-
cally generated results to be presented to the user. Thus, the
user can survey multiple options and indicate satisfaction
with the results by clicking once more.

3. Results and Discussion

The interactive filling-in algorithm successfully detects
and completes a variety of structure, including both curves
and lines. In these examples, it should be kept in mind that
the point is not to demonstrate that this method produces
better images than previous methods. Rather, the point is to
show that this framework for interactive repair can produce
acceptable results in real time with minimal user interaction.

Figure 4 shows a simple example of structure comple-
tion. Notice that the detected and completed structure (blue

(a) Inset (b) Arm (c) Tie

Figure 8. Ambiguous case. The damaged re-
gion (a) may be completed with the arm over
the tie (b) or the tie over the arm (c). Struc-
ture and texture are completed based on user
motion indicating valid regions to search and
desired structures to complete.

line) in Figure 4b divides the edge between the textured
dark and light regions. Figure 4c shows that this edge is
preserved to correctly fill in the defect.

The interactive filling-in algorithm can also preserve
curved structures. Figure 5 presents an example where the
algorithm completes curves. The black lines and squares
are successfully removed from the image, specifically the
lines that occluded the lower left corner of the red triangle.
Figure 5b shows the curves that are completed in the de-
fective region in the lower right corner of the red triangle.
Notice some of these curves extrapolate beyond the valid
edge point data, but they do not prevent a valid completion
of the damaged portion (Figure 5c).

Figure 6 shows an example of the completion algorithm
successfully filling in the damaged area in spite of spurious
or missing edges.

In Figure 7a, the two black squares and the black oval
are removed. Notice that the algorithm correctly fills in the
texture of the faces and the texture of the red shirt. The
images in Figure 7c–e show the detection and completion
of the edge between the red shirt and the girl’s neck.

Figures 1 and 8 show images with ambiguous structure.
In Figure 8, the red square is removed. Structure and texture
is completed based on the user motion in identifying which
valid regions to search and which structures to complete.
To complete the arm over the tie, the user moves the cursor
along the arm when identifying which valid data to use to
fill in. The user also strokes horizontally to complete the
structure across the arm (Figure 8c). Likewise, if the user
wants to complete the tie over the arm, they move the cursor
along the tie to identify the blue tie structure and texture as
the valid data to search to fill in. In addition, the user strokes
vertically to complete the tie structure (Figure 8d).

IEEE Workshop on Applications of Computer Vision (WACV'07)
0-7695-2794-9/07 $20.00 © 2007

4. Conclusion

This paper has presented a framework for interactive im-
age repair that allows a user to repair defects of moderate
size through minimal interaction. In some cases the user
need only click within the damaged area and loosely paint
both the damaged area and the surrounding “good” image
data. If necessary, the user can also guide the structure-
completion process through minimal mouse strokes, allow-
ing proper reconstruction even in ambiguous cases.

This framework uses a combination of region growing
(to detect the defect), edge detection (to detect the surround-
ing structure), curve fitting (to fit the surrounding structure
and complete it through the defect), and constrained texture
synthesis (to reconstruct the damaged area). While more so-
phisticated methods may be used for each of these portions
of the framework, the overall process is limited by the need
to maintain interactive speeds on current processors.

The method here is limited to fairly simple structures that
extend across the defect in relatively straightforward ways,
much like in [14]. If more complicated structure exists, one
could use approaches similar to [20], in which the user ex-
plicitly draws the desired structure within the damaged re-
gion. We see these methods as complementary: minimal
interaction for simplistic (but potentially ambiguous) struc-
tures, and more detailed interaction for more complicated
structures.

References

[1] M. Ashikhmin. Synthesizing natural textures. In Interna-
tional Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH 2001), pages 217–226, 2001.

[2] C. Ballester, M. Bertalmio, V. Caselles, G. Sapiro, and
J. Verdera. Filling-in by joint interpolation of vector fields
and grey levels. IEEE Transactions on Image Processing,
10:1200–1211, August 2001.

[3] C. Ballester, V. Casalles, J. Verdera, M. Bertalmio, and
G. Sapiro. A variational model for filling-in gray level and
color images. In Proceedings International Conference on
Computer Vision (ICCV), 2001.

[4] M. Bertalmio, A. L. Bertozzi, and G. Sapiro. Navier-stokes,
fluid dynamics, and image and video inpainting. In Pro-
ceedings IEEE Computer Vision and Pattern Recognition
(CVPR), 2001.

[5] M. Bertalmio, G. Sapiro, C. Ballester, and V. Caselles. Im-
age inpainting. In Computer Graphics Proceedings, Annual
Conference Series. ACM SIGGRAPH, 2000.

[6] M. Bertalmio, L. Vese, G. Sapiro, and S. Osher. Simultane-
ous structure and texture inpainting. In Computer Graphics
Proceedings, Annual Conference Series, 2003.

[7] T. Chan and J. Shen. Non-texture inpainting by curvature-
driven diffusions (CCD). Technical Report 00-11, UCLA
CAM, 2000.

[8] M. Cohen, J. Shade, S. Hiller, and O. Deussen. Wang tiles
for image and texture generation. In International Con-
ference on Computer Graphics and Interactive Techniques
(SIGGRAPH 2003), volume 22, pages 287–294, July 2003.

[9] A. Criminisi, P. Pérez, and K. Toyama. Object removal
by exemplar-based inpainting. In Proceedings IEEE Con-
ference on Computer Vision and Pattern Recognition, vol-
ume 2, pages 721–728, June 2003.

[10] L. Demanet, B. Song, and T. Chan. Image inpainting by
correspondance maps: A deterministic approach. Technical
Report 03-40, UCLA CAM, August 2003.

[11] I. Drori, D. Cohen-Or, and H. Yeshurun. Fragment-Based
image completion. In International Conference on Com-
puter Graphics and Interactive Techniques (SIGGRAPH
2003), pages 303 – 317, July 2003.

[12] A. Efros and W. Freeman. Image quilting for texture synthe-
sis and transfer. In International Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH 2001),
August 2001.

[13] A. Efros and T. Leung. Texture synthesis by non-parametric
sampling. In IEEE International Conference on Computer
Vision, pages 1033–1038, September 1999.

[14] J. Jia and C. Tang. Image repairing: robust image synthesis
by adaptive ND tensor voting. In Proceedings IEEE Con-
ference on Computer Vision and Pattern Recognition, vol-
ume 1, pages 643–650, June 2003.

[15] V. Kwatra, I. Essa, A. Bobick, and N. Kwatra. Texture opti-
mization for example-based synthesis. In ACM SIGGRAPH
2005, 2005.

[16] Y. Ohta, T. Kanade, and T. Sakai. Color information for
region segmentation. Computer Graphics and Image Pro-
cessing, 13:222–241, July 1980.

[17] M. Oliveira, B. Bowen, R. McKenna, and Y. Chang. Fast
digital image inpainting. In International Conference on Vi-
sualization, Image and Image Processing, pages 261–266,
September 2001.

[18] P. Perona and J. Malik. Scale-space and edge detection using
anisotropic diffusion. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 12:629–639, 1990.

[19] T. W. Sederberg, F. Chen, and K. Klimaszewski. Rotated
explicit curves. In Proceedings of the Fifth International
Conference on CAD & Graphics, pages 358–361, 1997.

[20] J. Sun, L. Yuan, J. Jia, and H.-Y. Shum. Image completion
with structure propagation. In Proceedings of ACM SIG-
GRAPH 2005, pages 861–868, 2005.

[21] A. Telea. An image inpainting technique based on the fast
marching method. Journal of Graphics Tools, 9(1):25–36,
2004.

[22] L. Wei and M. Levoy. Fast texture synthesis using tree-
structured vector quantization. In International Conference
on Computer Graphics and Interactive Techniques (SIG-
GRAPH 2000), pages 479–488, July 2000.

[23] S. Zelinka and M. Garland. Towards real-time texture syn-
thesis with the jump map. In Proceedings Eurographics
2002, 2002.

IEEE Workshop on Applications of Computer Vision (WACV'07)
0-7695-2794-9/07 $20.00 © 2007

