Povidone-Iodine Vapor Kills MRSA

Benjamin Ogilvie
Brigham Young University - Provo, ogilviebenjamin@gmail.com

Jon Mitton
Brigham Young University - Provo

Jordan Tucker
Brigham Young University - Provo

Dennis L. Eggett
Brigham Young University

Richard A. Robison
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/studentpub

Part of the [Microbiology Commons](https://scholarsarchive.byu.edu/studentpub)

BYU ScholarsArchive Citation

Ogilvie, Benjamin; Mitton, Jon; Tucker, Jordan; Eggett, Dennis L.; and Robison, Richard A., "Povidone-Iodine Vapor Kills MRSA" (2018). *All Student Publications*. 228.
https://scholarsarchive.byu.edu/studentpub/228

This Poster is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Student Publications by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
Purpose
Background
Povidone-iodine antiseptics are often used to clean and de-germ skin prior to surgery.
- Povidone, a polymer, slowly releases iodine, which kills microbes.
- FDA regulations recently changed, requiring hospitals to use single-use bottles of povidone-iodine instead of larger, multi-use ones.
 - This is to prevent patient fluids from contaminating bottles.
 - O'Rourke and colleagues found S. aureus, a bacterium notorious for causing hospital-associated infections, on the rim of two multi-use povidone-iodine bottles in a Pennsylvania hospital.1

Problem
Single-use povidone-iodine bottles are expensive.
- Cost: 2-3 times as much per ounce as multi-use bottles
- This means hundreds of millions of dollars per year in extra healthcare costs.
Multi-use bottles should theoretically be safe.
- Povidone-iodine should be able to kill most vegetative bacteria that get inside.

Hypothesis
Bottles of povidone-iodine should disinfect themselves.
- Povidone-iodine releases iodine vapor, killing bacteria inside the bottle that are not in contact with the solution.
- This should hold true for S. aureus.
Multi-use bottles of povidone-iodine may be safe to use in a clinical setting.

Methods
Potato Experiment
Goal: Demonstrate that povidone-iodine gives off iodine vapor.
- Chunks of potato were made and hung inside of plastic bottles containing povidone-iodine.
- Potatoes contain starch, which reacts with iodine to turn a deep purple.
- After 24 hours, potato chunks turned purple, so iodine must have been present.

Potato Experiment
Goal: Demonstrate that povidone-iodine vapor kills methicillin-resistant S. aureus (MRSA) bacteria.
1. Small metal cylinders called penicylinders were soaked in MRSA and dried.
2. Penicylinders were hung inside of bottles containing povidone-iodine for 20, 40, and 80 minute periods.
3. Penicylinders were dropped into glass tubes containing saline and gently sonicated to release bacteria.
4. A serial dilution was performed, and the resulting liquid was spread onto plates. Plates were incubated, colonies were counted, and total kill was assessed.

Results
Potato Experiment
Povidone-iodine does give off iodine vapor as manifested by the purple color of the exposed potato pieces.
- Iodine is the only component of povidone-iodine vapor that is likely to kill microbes.

MRSA experiment
Povidone-iodine vapor killed MRSA, and the amount of kill increased over time.
- For each time increment and sample, log reduction was computed. 1 log reduction = 90% kill, 2 log reduction = 99% kill, and so on.
- Kill clearly increased with contact time, and 98% or better kill occurred after 80 minutes.

Conclusion
Povidone-iodine releases iodine vapor, which kills MRSA.
- After 80 minutes, nearly complete kill occurred. It may be possible to safely reuse povidone-iodine bottles.
 - Most major surgical procedures last longer than 80 minutes. So, if povidone-iodine is used at the beginning of a surgery, any MRSA contamination is likely gone by the time the next surgery begins.

Pursuing these findings further could lead to significant cost savings.
- Based on a rough estimate, around $300 million in healthcare costs could be saved by switching to multi-use povidone-iodine bottles.

Future Research Possibilities
This experiment should be repeated using Pseudomonas aeruginosa or another similar gram-negative bacterium.
- MRSA is gram-positive, but research suggests that gram-negative bacteria are more resistant to povidone-iodine.2
- Pseudomonas aeruginosa, a gram-negative bacterium, is notorious for resisting disinfection, making it particularly relevant.

Bibliography & Acknowledgements
Special thanks to Dr. Dennis Eggett and Kristofer Bolinger, who performed the statistical analyses.