
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Faculty Publications

2007-07-01

A Dynamic Attribute-Based Load Shedding Scheme for Data A Dynamic Attribute-Based Load Shedding Scheme for Data

Stream Management Systems Stream Management Systems

Amit Ahuja

Yiu-Kai D. Ng
ng@cs.byu.edu

Follow this and additional works at: https://scholarsarchive.byu.edu/facpub

 Part of the Computer Sciences Commons

Original Publication Citation Original Publication Citation
Amit Ahuja and Yiu-Kai Ng, "A Dynamic Attribute-Based Load Shedding Scheme for Data Stream

Management Systems." In Proceedings of the First International Workshop on Data Stream

Processing (STREAM 27), pp. 2-25, July 1-6, 27, Silicon Valley, USA.

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Ahuja, Amit and Ng, Yiu-Kai D., "A Dynamic Attribute-Based Load Shedding Scheme for Data Stream
Management Systems" (2007). Faculty Publications. 247.
https://scholarsarchive.byu.edu/facpub/247

This Peer-Reviewed Article is brought to you for free and open access by BYU ScholarsArchive. It has been
accepted for inclusion in Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more
information, please contact ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/facpub
https://scholarsarchive.byu.edu/facpub?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F247&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F247&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/facpub/247?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F247&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ellen_amatangelo@byu.edu

A Dynamic Attribute-Based Load Shedding Scheme
for Data Stream Management Systems

Amit Ahuja
San Jose, CA 95111, U.S.A.

Email: amit ahuja83@yahoo.com

Yiu-Kai Ng
Department of Computer Science

Brigham Young University
Provo, Utah 84602, U.S.A.

Email: ng@cs.byu.edu

Abstract—A data stream being transmitted over a network
channel with capacity less than the data transmission rate of
the data stream causes sequential network problems. In this
paper, we present a new approach for shedding less-informative
attribute data from a data stream to maintain a data transmission
rate less than the network channel capacity1. A scheme for
shedding attributes and their data, instead of tuples, becomes
imperative in data stream load shedding, since shedding a
complete tuple would lead to shedding informative attribute
data along with less-informative attribute data in the tuple. Our
load shedding approach handles intra-stream, as well as inter-
stream, load shedding such that the former sheds less-informative
attribute data in a single data stream, whereas the latter sheds
less-informative attribute data from multiple streams. Our load
shedding approach, (i) handles wide range of data streams in
different application domains, and (ii) is dynamic in nature.

I. INTRODUCTION

In recent years we have seen tremendous change in the
way data are transferred over the network on which data
streams are defined. As the high-rate stresses are introduced
in the communication and computing infrastructure, so it
may become impossible to (i) transmit the entire input to
an application program, (ii) compute sophisticated functions
on large pieces of inputs at the rate it is presented, and (iii)
store temporarily or archive a data stream. To handle these
problems, load shedding has been proposed as a solution.

We note that all data streams have a static schema, which
means that the involved attributes and their corresponding
data types do not change, but have a high dynamic data
transmission rate. Moreover, some of the data values of an
attribute vary more often than the values of other attributes,
whereas others may remain nearly constant. Many applications
process stream data in which all tuples are important, and some
attribute values are more “informative” than the others. These
scenarios demand a new approach towards shedding stream
data by dropping less-informative attribute (values) in tuples,
instead of the entire tuples, which is the attribute-based load-
shedding approach presented in this paper.

Our load shedding approach differs from existing ones,
since none of the existing ones consider a load shedding
system for data streams with focus on dropping attributes in
a tuple, rather than the tuple itself, to minimize information
loss during the load shedding process. Our load shedding

1This work was partially funded by Cisco Systems, Inc.

approach preprocesses all data values in a data stream S using
moving averages, which serves the purpose of diminishing
any rare irregularities in the data values of S. The data after
preprocessing are used to compute the load shedding scheme
of S, which comprises of the designated attributes and their
data to be dropped. Furthermore, our load shedding approach
is (i) dynamic, since the load shedding scheme that controls
the data of S to be shed is computed and updated in real-
time on each sliding window of S and (ii) adaptive, since it
minimizes unnecessary load shedding scheme re-evaluations
by re-evaluating in a pattern according to the data pattern of S
which may cause changes of attribute ranking (in determining
which attribute data to be shed) in S.

In Section II, we discuss related works in load shedding
in data streams. In Sections III, IV, and V, we present
our intra-stream and inter-stream load shedding approaches.
In Section VI, we include the experimental results, and in
Section VII, we give a concluding remark.

II. RELATED WORK

Many efforts have been made in the past to handle load
shedding mechanisms in data stream management systems
(DSMS). Borealis [2] accomplishes load shedding by tem-
porarily adding “drop” operators to the Borealis processing
network as a way to shed tuples, either according to the values
of the tuples or in a randomized fashion. Borealis uses a static
QoS based approach for shedding tuples, whereas we use a
dynamic approach to determine the attribute data to shed.

Data Triage [8], which treats load shedding as a problem
to deal with bursty data arrival, sheds load to maintain low
latency but keeps enough data to produce a relatively accurate
picture of what happened during the burst, whereas Loadstar
[5] considers a QoD-based load shedding, which is more
adaptive than QoS. Loadstar, however, lacks the ability to
control the communication rates of the data streams.

[6] reduce the amount of data in the sliding windows by
prematurely evicting tuples from their windows, which is
beneficial, since premature eviction saves any processing time
which would have been spent on them before they would have
been evicted later. [6], however, does not address the problem
on dynamically scaling the optimization applied to reduce the
window data to be shed.

Second International Conference on Digital Telecommunications (ICDT'07)
0-7695-2910-0/07 $20.00 © 2007

In [4], the authors handle load shedding by introducing load
shedder at various points in a query plan, in which every
incoming tuple is passed onto the next load shedder with a
probability, called the sampling rate. Aurora [1], [10], another
DSMS, relies on QoS information to guide the load-shedding
process by using a QoS monitor that watches over system
performance and activates the load shedder whenever an
overload is detected. Since Aurora uses the QoS information,
which is predefined, it lacks the dynamic nature.

STREAM [7] uses query plans for handling data streams,
and its CQL [3] is capable of handling relation-to-relation,
stream-to-relation, and relation-to-stream operators. One of
the relation-to-stream operators in CQL, the stream-sample
operator, drops a specified fraction of stream tuples from
its input queue based on a uniform random sample. The
designers of STREAM use approximation techniques to reduce
the synopsis and queue sizes, and further suggest that if the
queues grow too large, then simply dropping packets could
also help, which may not be optimal.

III. OUR LOAD SHEDDING APPROACHES

In this paper, we propose two different load shedding strate-
gies: the intra-stream and inter-stream load shedding. The
intra-stream load shedding approach sheds less-informative
attributes within a data stream to lower the data transmission
rate at the source site to meet the limited data transmission
channel capacity. Our intra-stream load shedding approach
is unique, since it minimizes information loss by shedding
less-informative attributes instead of tuples as complete tuples
may contain less-informative as well as (more-) informative
attributes.

The inter-stream load shedding, on the other hand, deals
with shedding on various data streams when multiple streams
have to be transmitted over a single local channel with the
channel capacity less than the cumulative data rate of the
data streams. The inter-stream load shedding may have been
preceded by intra-stream load shedding individually on each of
the involved data streams. Our inter-stream load shedding ap-
proach sheds zero or more less-informative attributes and their
data from each involved data stream to bring the cumulative
data transmission rate below the local channel capacity. The
uniqueness of our inter-stream load shedding is (i) its ability
to reduce the load on the transmission channel when multiple
streams are being transmitted over the channel, and (ii) each
involved data stream co-ordinates with the central load shedder
and obtains information to perform (further) load shedding on
its own data stream at the inter-stream site.

IV. THE INTRA-STREAM LOAD SHEDDING APPROACH

Our intra-stream load shedding approach first identifies the
less-informative attributes, i.e., attributes whose data vary less
compared to the data of other attributes, in an incoming data
stream. The major function of our intra-stream load shedding
strategy, as well as our inter-stream load shedding approach, is
to create the load shedding scheme of a data stream S, which
sheds attribute data from S by the load shedder.

The load shedding scheme generation step is preceded by
a preprocessing step that smoothens out any “irregularities”
in the source data. (See Section IV-B for details.) After the
preprocessing step, the load shedding scheme can be generated
according to (i) the amount of attribute data to be shed based
on the channel capacity at the data stream source site, and (ii)
the chosen attributes (and their data) to be shed. To determine
the attributes of a data stream S to be shed, we use standard
deviation to compute the ranking amongst the attributes of S.
Hereafter, the data from the source site is shed according to
the load shedding scheme, which is re-evaluated in real-time
and is dynamic in nature. Since a complete data stream can
not be stored at the source site due to the continously flowing
nature of streaming data, the load shedding scheme generation
algorithm uses an excerpt of the data stream S, called sliding
window, to generate the load shedding scheme of S. We use
each current sliding window of S to capture such an excerpt
of S, and subsequent excerpts can be used to update the load
shedding scheme at various time intervals.

A. Sliding Window Size

Different segments of a data stream S, which convey up-to-
the-moment information, are separated by the cycle identifier
(CID, for short), which is defined as either a single attribute
or a combination of attributes, of S. The values of a CID
follow a fixed-length repetitive cycle in S, which consists of
tuples in S such that the order of appearances of various CID
values in the tuples fall in the same cycle, and the number
of tuples in each fixed-length repetitive cycle in S is called
the cycle length of S. The cycle length of S is treated as
the size of each sliding window of S for load shedding. The
data streams we deal with have a static schema and regular
(repeated) patterns of tuples, such as, the attributes “Company
Name”, and “City Name” in data streams on Stock exchange
information at a stock exchange, and weather information of
capitals of different states in a country, demonstrate that cycles
of data values in “real-world” data streams exists. In this
section, we present a method in determining the CID of S
and thus the cycle length of S.

The CID of S is detected during the training phase of
S, before our load shedding system actually starts shedding
data from S. All the attributes in S whose values individually
follow a repetitive pattern form the set of replicated attributes
(RepAs, for short) of S, and whenever a replicated attribute
is detected, its cycle length is also recorded.

The replicated attributes in RepAs are partitioned into sets
S1,. . ., Sn (n ≥ 1) according to the cycle length of each
attribute such that each Si (1 ≤ i ≤ n) contains all the
attributes with the same cycle length. Furthermore, all the
attributes in each Si have a one-to-one relationship with each
other, i.e., the value of each of these attributes in a tuple t in Si

of S can uniquely identify the values for all the other attributes
in t of Si. Since the replicated attributes in each Si have a
one-to-one relationship with all the other attributes in Si, only
one (i.e., anyone) attribute from each Si is required to form
the chosen attributes, which yield the CID of S. Moreover,

Second International Conference on Digital Telecommunications (ICDT'07)
0-7695-2910-0/07 $20.00 © 2007

A1 A2 A3 A4 A1 A2 A3 A4

a1 aaaa a 29.91 a3 cccc a 30.18
a2 bbbb b 27.96 a1 aaaa b 29.94
a3 cccc c 30.09 a2 bbbb c 29.91
a1 aaaa d 30.09 a3 cccc d 30.00
a2 bbbb a 29.91 a1 aaaa a 30.00
a3 cccc b 29.80 a2 bbbb b 30.09
a1 aaaa c 29.77 a3 cccc c 29.78
a2 bbbb d 30.09 : : : : : : : :

TABLE I
A SAMPLE DATA STREAM TRAINING DATA SET

the multiplication of the cycle length of each chosen attribute
yields the fixed cycle length of S. The amount of computation
required to identify the CID of S is one time.

Example 1: Consider the training data in Table I, in which
attributes A1, A2, and A3 are replicated with Cyclen(A1)
= 3, Cyclen(A2) = 3, and Cyclen(A3) = 4. Partitioning the
attributes in RepAs into sets, with each set having attributes
of the same cycle length, yields sets S1 = {A1, A2} and S2

= {A3}. If A1 is selected to form the CID, then the CID
of S is {A1, A3}, and the cycle length of S is Cyclen(A1)×
Cyclen(A3) = 3 × 4 = 12. �

B. Exponential Moving Average

Occasionally, data in a sliding window are found to have
sudden and short-lived changes, deviating from the data
stream variation properties, i.e., the variation of data val-
ues of attributes. For example, the values of “precipitation”
would remain more constant than other attributes, such as
“temperature,” of a desert weather data stream over a long
period of time, making “precipitation” less-informative, and
the candidate attribute to be shed. However, due to sudden
rains, there may be a significant change in precipitation. The
precipitation over the next several hours, however, may remain
relatively constant. Though this abrupt change does not really
represent the weather conditions in the desert on a regular,
consistent basis, it may cause other informative attributes,
such as “temperature,” being treated as less-informative (false
positives) and less-informative attribute, i.e., “precipitation,”
being treated as informative (false negatives). In order to (i)
smoothen the data, (ii) suppress any short and sudden change
in data, and (iii) reduce the number of false positives and
false negatives, Moving Averages (MAs) is employed as a
preprocessing step for determining less- and more-informative
attributes in the current sliding window of a data stream to
smoothen the fluctuations so that distortions are reduced to a
minimum in volatile data.

The two most popular types of MAs are the simple moving
average (SMA) and exponential moving average (EMA)2.
We have considered both SMA and EMA as the MA for
the preprocessing step in our load shedding approach. Unlike
SMA, EMA have the ability to stay closer to the actual data
than SMA. Unarguably, the smoothened data is desired to be
close to, and as accurate as possible to, the original data. Thus,
EMA is an obvious choice as the MA for our preprocessing
step to smoothen the data in a current sliding window.

2http://www.stockcharts.com/education/IndicatorAnalysis/indic movingAv
g.html

Fig. 1. Values of the Last Sale attribute of a stock exchange data stream,
quotes.nasdaq.com/quote.dll?page=nasdaq100, collected on September 13,
2005, before and after preprocessing

Example 2: Comparing the data values of the “Last Sale”
attribute in a stock exchange data stream in Figure 1, before
and after the preprocessing step using EMA, we can clearly
see that the curve for the training data values after prepro-
cessing is smoother than the values before preprocessing. �

C. Load Shedding Scheme Generation and Re-Evaluation

Using the first sliding window of a data stream S, the first
load shedding scheme of S is created. For the subsequent
updates to the load shedding scheme of S, only the current
sliding window of S is used. There are two design issues in
intra-stream load shedding scheme generation: (i) how much
data should be shed, and (ii) which attributes should be shed.

1) Amount of data to shed: According to various studies in
computer networks [9], it is known that every channel has a
capacity depending on the noise and bandwidth of the channel.
If data are transmitted at a rate higher than the capacity of the
channel, then data errors and collisions occur exponentially.
To overcome these problems, the rate should be lower than
the capacity of the channel, and if needed, attributes and their
corresponding data are shed at the source site to bring down
the data transmission rate.

Our intra-stream load shedding approach is designed to
maintain a transfer rate R

′
not larger than its corresponding

channel capacity C. Whenever R > C, attributes and their
data are shed from its data stream being transmitted over the
network, starting with shedding the less-informative attributes
such that the transfer rate R falls to R

′
(≤ C). Depending on

the sizes of different attributes, one or more less-informative
attributes are shed so that R falls to R

′
(≤ C). The amount

of data to be shed is r = R - C. Number of attributes to shed
to attain the required data shedding r depends on the sizes
of the individual attributes, since different attributes may have
different sizes.

2) Attribute Shedding Using Standard Deviation: Having
determined the amount of attribute data r (r ≥ 0) to be
shed from a sliding window W of a data stream S, we must
decide which attributes should be shed from W . We start out
by determining a ranking amongst the attributes in W using
standard deviation SD, which calculates how spread out the
values in a list of data is. The values that are more closely
bound, i.e., having less variation (smaller SD) in its data
values, are “less-informative,” whereas values which are less
closely bound, i.e., having more variation (larger SD) in its
data values, are “more-informative.” We apply SD to the data

Second International Conference on Digital Telecommunications (ICDT'07)
0-7695-2910-0/07 $20.00 © 2007

values of each attribute A in W to calculate how closely the
data values of A are. After the SD for each attribute in W is
computed, all the attributes are ranked, with attributes having
lower SD ranked higher and attributes having higher SD
ranked lower.

Example 3: Consider the three sample attributes A, B, and
C with data items <0, 0, 14, 14>, <0, 6, 8, 14>, and <6,
6, 8, 8>. The SDs are 7, 5, and 1, respectively. The attributes
are ranked as A, B, and C, from high to low. �

3) Re-Evaluation of a Load Shedding Scheme: The load
shedding scheme of a data stream S requires regular re-
evaluation as the standard deviations of different attributes
in subsequent sliding windows of S may change, causing
the ranking amongst the attributes to change. We may adopt
a simple non-adaptive load shedding scheme re-evaluation
algorithm to re-evaluate the load shedding scheme at regular
intervals. One major problem with using a non-adaptive re-
evaluation algorithm is that if the time interval is short, the
source site would re-evaluate the load shedding scheme too
often, which imposes a lot of burden on the source site
in terms of computational time required for re-evaluations.
However, if the time interval is too large, the source site
would not be re-evaluating the load shedding scheme often
enough, which creates the risk of an obsolete load shedding
scheme being used for a long time.

Our adaptive re-evaluation algorithm starts out with a very
small re-evaluation time interval, referred as the original time
interval. For the first time, the proposed algorithm re-evaluates
an existing load shedding scheme after waiting for the original
time interval, and then checks if the re-evaluated (i.e., the
newly generated) load shedding scheme of the current sliding
window of the same data stream with smoothened data (due to
EMA preprocessing) is differed (in terms of attributes to be
shed) from the previous load shedding scheme. If the attributes
to be shed are the same, the time interval is doubled so that the
re-evaluation is invoked after a longer interval. However, if the
attributes to be shed are different, then (i) the time interval is
reset to the original time interval, since a change in the load
shedding scheme has just been detected, and we anticipate
changes in the load shedding scheme in near future, and (ii)
the load shedding scheme is updated. The time interval keeps
growing in its usual manner every time the anticipated change
in the attributes to be shed is proved incorrect.

Our adaptive load shedding scheme re-evaluation algorithm
will notice the change in the load shedding scheme that its non-
adaptive counterpart may not notice. Consider a data stream
such that attribute A is the least-informative attribute during
the first thirty minutes of every hour and attribute B is the
least-informative attribute during the last thirty minutes of
every hour. Assume that one attribute needs to be shed and
a non-adaptive load shedding scheme re-evaluation algorithm
is invoked every hour, starting five minutes past the first
hour. Since A is the least-informative attribute during the first
thirty minutes of every hour, every time the load shedding
scheme re-evaluation algorithm is invoked, A is found to be the
least-informative attribute and is shed, and the load shedding

(a) Intra-stream (b) Inter-stream

Fig. 2. Architecture of our load shedding system

scheme never changes. In such a scenario, this non-adaptive
re-evaluation algorithm would fail to notice the change in the
load shedding scheme.

Consider our adaptive load shedding scheme re-evaluation
algorithm, in the same scenario. Every time our adaptive
load shedding re-evaluation algorithm is invoked at the first
five minutes, i.e., ∆t of the current clock hour, it finds A
as the least-informative attribute, and it would double the
current value of ∆t. Eventually, ∆t would reach a value
such that the current clock time + ∆t would fall within the
last thirty minutes of the current clock hour, resulting in B
being detected as the least-informative attribute. At this point,
the load shedding scheme is updated, and ∆t is reset to the
original time interval, i.e., five minutes. Thus, our adaptive
load shedding re-evaluation algorithm would notice the change
in the load shedding scheme, which cannot be accomplished
by the non-adative counterpart.

4) The Architecture of our Intra-Stream Load Shedding
Sub-System: Figure 2(a) shows the intra-stream load shedding
architecture of our DSMS. The current sliding window of a
data stream S is fed into the (intra-stream) load shedding
scheme generation and re-evaluation sub-system, denoted LSS-
RES, which (i) preprocesses the data in the current sliding
window, (ii) computes the rankings of the attributes of S,
(iii) determines the amount of attribute data to be shed, and
(iv) generates and re-evaluates the (intra-stream) load shedding
scheme. Hereafter, the unshed current sliding window from the
data stream is shed by the shedder, if needed. A data stream
with or without undergone shedding by the shedder is referred
as an ‘intra stream’.

V. INTER-STREAM LOAD SHEDDING

Our inter-stream load shedding management system, de-
noted Interstream-LSMS, which consists of (i) multiple Inter-
Subs, one for each intra stream for (further) load shedding, and
(ii) a central load shedder, which manages the transmission of
multiple intra streams over a single multiplexed channel where
the cumulative data rate of all the intra streams is sometimes
more than the multiplexed channels capacity. The central load

Second International Conference on Digital Telecommunications (ICDT'07)
0-7695-2910-0/07 $20.00 © 2007

shedder notifies each Inter-Sub with the amount of data to be
(further) shed from its intra stream.

The basic architecture of our Interstream-LSMS is shown
in Figure 2(b). Each Inter-Sub consists of the same basic
components as in the intra-stream load shedding sub-system.
Unshed source data streams, labeled S1,. . ., Sn in Figure 2(b),
are originated from different sources and transmitted through
different channels, called simplex channels (after data are
shedded, if necesssary), to reach the Interstream-LSMS, as
intra streams, i.e., S′

1,. . ., S′
n. Each LSS-RES of an Inter-Sub

individually determines the less-informative attribute values in
its intra stream to be shed, and together with the LSS-RESs in
other Inter-Subs reduce the combined data transmission rate
to be less than the multiplexed channel capacity.
Amount of Data to be shed

In our Interstream-LSMS, since each LSS-RESs of an Inter-
Sub cannot directly sense the capacity of the multiplexed
channel, the central load shedder must inform each LSS-
RES individually about the amount of data to shed from its
intra stream. The central load shedder, which uses two pieces
of information, i.e., (i) the data transmission rate of each
intra stream and (ii) the channel capacity of the multiplexed
channel, computes the amount of data to be (further) shed
from each intra stream, and forward this information to its
corresponding LSS-RES. Consider R as the cumulative data
transmission rate of all the data streams, which is computed
by the central load shedder, and let C be the channel capacity
of the multiplexed channel, the data transmission rate at which
data has to be shed from the accumulation of all intra streams
is R − C. R must fall to R

′
(≤ C), if R > C, and the

cumulative percentage of data to be shed from all the data
streams is (R − C)/R. If an intra stream n (n ≥ 1) has
data tranmission rate Rn, then the amount of attribute data
to be shed from the intra stream n, denoted Rn’, is Rn′

= ((R − C)/R) × Rn, where (R − C)/R is the drop rate.
Again, less-informative attributes of n are shed, until the
required amount of attribute data Rn’ is shed. Depending
on the sizes of the different attributes, one or more less-
informative attributes of n will be shed. After the inter-stream
load shedding scheme is generated (or updated) at each Inter-
Sub, the current (shedded) sliding windows from all the intra
streams are then transmitted over the multiplexed channel to
the destination asynchronously, in parallel.

VI. EXPERIMENTAL RESULTS ON LOAD SHEDDING

SCHEME GENERATION

In this section, we evaluate our load shedding scheme
generation and re-evaluation approach. Since the verifications
of CID detection, less-informative attribute detection, and load
shedding scheme generation and re-evaluation apply to both
intra-stream and inter-stream load shedding approaches, the
verifications apply to both.

A. Verifying the accuracy of detecting CIDs

If the attribute(s) of a training data stream S chosen as the
CID of S has (have) the same replicated values (in the same

Data Stream Source Detected CID on Detected CID on
(Sets 1, 2, 3) Training Data Test Data

Weather Information
W1 Location Location
W2
W3

Stock Exchange Information
S1 Company Name Company Name
S2
S3

Internet Traffic Information
I1 Router Name Router Name
I2
I3

* For each Set i (i = 1, 2, 3), the training data and test data are disjoint

TABLE II
RESULTS ON USING TRAINING AND TEST DATA FOR CID DETECTION WITH

100% ACCURACY USING TRAINING DATA SETS (OF 30MB EACH), AND
TEST DATA FROM TABLE III

On Each Data Set
Number

Number Sliding of
Data Stream Source Size of Window Sliding
(Sets 1, 2, 3) (GB) Tuples Size Windows

Weather Information 15.6
W1 - weather.yahoo.com/ 2 28036790 75 373823
W2 - www.wunderground.com/ 1.2 37063068 500 74126
W3 - www.weather.com 2 32819280 250 131277

Stock Exchange Information 21
S1 - quotes.nasdaq.com/quote.dll? 3 52516326 100 525163
page=nasdaq100
S2 - finance.indiamart.com/ 3 64860370 488 132910

markets/bse/bse100.html
S3 - www.channelnewsasia.com/c 1 33288126 1235 26953

na/finance/sg/stockmonitor.htm

Internet Traffic Information 12
I1 - www.Internettrafficreport.com 2 16332958 96 170134
europe.htm
I2 - average.miq.net/index.html 1 11689810 50 233796
I3 - watt.nlanr.net/ampmap 1 10866072 86 126349

active.php

TABLE III
DATA SOURCES OF TEST/TRAINING STREAM DATA COLLECTED ON

MARCH 1, 2006 (EXCEPT FOR

HTTP://WWW.CHANNELNEWSASIA.COM/CNA/FINANCE/SG/STOCKMONITOR,
WHICH WAS COLLECTED ON MARCH 29, 2006)

sequence) within each sliding window of S during actual load
shedding, then the accuracy of our CID detection approach is
confirmed. The sliding window size of each data stream S used
in the experiments was also verified along with the detection
of the CID of S, since the cycle length of each detected
CID yields the corresponding window size. The experimental
results of detecting CIDs using training and test data are
presented in Table II, which shows a 100% accuracy rate.

B. Verifying the accuracy of detecting less-informative at-
tributes

To verify the accuracy of our approach in determining the
informativeness of an attribute, i.e., the ranking of attributes,
of a data stream S, which determines the attributes of S
to be shed, we performed experiments on the test data of
various data streams. We captured the standard deviations of
different attributes in a data stream S and verified that the
attributes detected as less-informative are indeed less varying
as compared to the attributes detected as more-informative in
S. Figures 3(a), 3(b), and 3(c), show the standard deviation
(rankings) for different attributes of a stock exchange, weather,
and Internet traffic data stream, respectively. The results show

Second International Conference on Digital Telecommunications (ICDT'07)
0-7695-2910-0/07 $20.00 © 2007

(a) Stock exchange data stream (b) Weather data stream (c) Internet traffic data stream

Fig. 3. Detecting less-informative attributes on stream data downloaded on March 1, 2006 from Indiamart.com, Yahoo.com, and InternetTrafficReport.com

Fig. 4. Variations in the number of attributes to be shed with var-
ious channel capacities and data transmission rates on the data from
http://www.wunderground.com with seven attributes

that our less-informative attribute detection approach using
standard deviation on attribute values correctly identifies all
the less-informative attributes, which are “Weight,” “Sun Set,”
and “Minimum Delay” for the stock exchange, weather, and
Internet traffic data stream, respectively.

C. Verification of our load shedding scheme generation and
re-evaluation approach

As discussed in Section IV-C, our load shedding approach
utilizes an adaptive load shedding scheme, which is re-
evaluated at various time intervals. The verification of the load
shedding scheme involves verifying the correctness of the re-
evaluation of the load shedding scheme in between the pre-
defined time intervals. The verification results are shown in
Table IV. Figure 4 shows how the number of attributes to be
shed varies with (i) the capacity of the channel C and (ii)
the data transmission rate R of a data stream. As shown in
Figure 4, the number of attributes to be shed increases linearly
with increase in R when C is kept constant.

VII. CONCLUSIONS

In this paper, we propose a dynamic (intra-stream and inter-
stream) load shedding approach that shed data while reducing
information loss. Our load shedding approach is dynamic,
since it is re-evaluated in real-time, and is adoptive, since it
(i) selects less-informative attributes of a data stream to be
shed based on the standard deviations of the attributes and is
applicable to any kind of data stream, and (ii) minimizes the
number of unnecessary load shedding scheme re-evaluations.

We have conducted experiments to verify (i) the correctness
of our less-informative attribute load shedding approach, with
100% accuracy in choosing the less-informative attributes of a
data stream, and (ii) the accuracy of our load shedding scheme
generation and re-evaluation, with 94% accuracy in generating
and re-evaluating a load shedding scheme.

Data Stream Source # Hits # Misses
(Sets S1, S2, S3) S1 S2 S3 S1 S2 S3

Weather Information

weather.yahoo.com/ 94 94 93 6 6 7
www.wunderground.com/ 95 94 95 5 6 5
www.weather.com 96 96 96 4 4 4

Stock Exchange Information

quotes.nasdaq.com/quote.dll? 94 95 95 6 5 5
page=nasdaq100

finance.indiamart. 95 95 95 5 5 5
com/markets/bse/

www.channelnewsasia.com/cna/ 93 94 93 7 6 7
finance/sg/stockmonitor.htm

Internet Traffic Information

www.Internettrafficreport.com 94 95 95 6 5 5
average.miq.net/index.html 92 93 93 8 7 7
watt.nlanr.net/active/maps/ 95 94 94 5 6 6

ampmap active.php

Average 94.3 5.7
Hit: a match of manually and automatically generated less-informative attribute(s). Miss:

a mismatch. Number of Randomly Chosen Sliding Windows from Table III for each test

data set: 100 TABLE IV
EXPERIMENTAL RESULTS OF TEST DATA USED FOR VERIFYING THE

CORRECTNESS OF OUR LOAD SHEDDING SCHEME GENERATION AND

RE-EVALUATION APPROACH WITH AN AVERAGE NUMBER OF hits OF 94.3%
AND AN AVERAGE NUMBER OF misses OF 5.7%

REFERENCES

[1] D. Abadi, D. Carney, U. Etintemel, M. Cherniack, C. Convey, S. Lee,
M. Stonebraker, N. Tatbul, and S. Zdonik. Aurora: A New Model
and Architecture for Data Stream Management. Journal of VLDB,
12(2):120–139, 2003.

[2] Y. Ahmad, B. Berg, U. Cetintemel, M. Humphrey, J. Hwang, A. Jhin-
gran, A. Maskey, O. Papaemmanouil, A. Rasin, N. Tatbul, W. Xing,
Y. Xing, and S. Zdonik. Distributed Operation in the Borealis Stream
Processing Engine. In Proc. of SIGMOD, pages 882–884, 2005.

[3] A. Arasu, S. Babu, and J. Widom. The CQL Continuous Query
Language: Semantic Foundations and Query Execution. Technical
Report 2003-67, Computer Science Dept., Stanford University, 2003.

[4] B. Babcock, M. Datar, and R. Motwani. Load Shedding for Aggregation
Queries over Data Streams. In Proc. of ICDE, pages 350–361, 2004.

[5] Y. Chi, H. Wang, and P. Yu. Loadstar: Load Shedding in Data Stream
Mining. In Proc. of VLDB, pages 1302–1305, 2005.

[6] L. Golab. Querying Sliding Windows over On-Line Data Streams. In
Proc. of ICDE/EDBT Ph.D. Workshop, pages 1–10, March 2004.

[7] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datarand,
G. Manku, C. Olston, J. Rosenstein, and R. Varma. Query Processing,
Resource Management, and Approximation in a Data Stream Man-
agement System. In Proc. of the Conf. on Innovative Data Systems
Research, pages 1–16, 2003.

[8] F. Reiss and J. Hellerstein. Data Triage: An Adaptive Architecture for
Load Shedding in TelegraphCQ. In Proc. of ICDE, pages 155–156,
2005.

[9] C. Shannon. The Mathematical Theory of Information. Urbana,
University of Illinois Press, 1949. (Reprinted 1998).

[10] S. Zdonik, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman,
M. Stonebraker, N. Tatbul, and D. Carney. Monitoring Streams - A New
Class of Data Management Applications. In Proc. of VLDB, pages 215–
226, 2002.

Second International Conference on Digital Telecommunications (ICDT'07)
0-7695-2910-0/07 $20.00 © 2007

	A Dynamic Attribute-Based Load Shedding Scheme for Data Stream Management Systems
	Original Publication Citation
	BYU ScholarsArchive Citation

	A Dynamic Attribute-Based Load Shedding Scheme for Data Stream Management Systems

