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Visual Multiple Target Tracking From a Descending Aerial Platform

Parker C. Lusk and Randal W. Beard

Abstract— A real-time visual multiple target tracker is
demonstrated onboard a descending multirotor. Measurements
of moving ground targets are generated using the Kanade-
Lucas-Tomasi (KLT) tracking method. Homography-based im-
age registration is used to align the measurements into the same
coordinate frame, allowing for the detection of independently
moving objects. The recently developed Recursive-RANSAC
algorithm uses the visual measurements to estimate targets
in clutter. Altitude-dependent tuning increases track continuity
and coverage during the descent of the vehicle. The algorithm
requires no operator interaction and increases the situation
awareness of the unmanned aerial system. Real-time tracking
efficiency is analyzed on GPUs and CPUs. Tracking results are
presented and discussed using the MOTA and MOTP metrics.

I. INTRODUCTION

Autonomous vehicles are quickly becoming ideal plat-
forms in research, commercial, military, and civil applica-
tions. Typical autonomous systems include self-driving cars,
personal air vehicles, and small unmanned aerial systems
(sUAS). As these vehicles are integrated into our society
and infrastructure, an increased level of autonomy will be
required – both for safety and for mission capability. This
higher level of autonomy will allow vehicles to perceive their
environment and act within certain parameters to achieve
their goal. This construct of sensory-based decision making
is modeled by situation awareness [1].

Situation awareness (SA) is a term that originated in
the military aircraft pilot community and is defined as the
human process of perceiving details in the environment,
comprehending how those details affect the current goal, and
projecting that comprehension to what will happen in the
near future [2]. This process of SA allows human operators to
make critical decisions in a timely and effective manner. Sim-
ilarly, adding a sense of SA in autonomous vehicles allows
them to operate effectively in dynamic environments [3].
The main contribution of this paper is in enhancing the SA
perception stage of sUAS through altitude-dependent visual
multiple target tracking during a descent.

Beyond visual line of sight (BVLOS) operation is an
important aspect of truly autonomous vehicles. The challenge
of understanding the environment and avoiding obstacles at
the beginning and end of a sUAS flight has been referred to
as the “first/last 50 feet problem” [4]. Specifically, difficulties
arise when sUAS must descend and possibly land in an
environment with obstacle uncertainty, such as in the case of
forced landings or package delivery [5]. Situation awareness
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Fig. 1: Visual tracking system architecture. The altitude of the sUAS
is used to tune the parameters of the Recursive-RANSAC visual
tracker during a descent. Real-time tracking is performed with an
onboard NVIDIA Jetson TX2.

is crucial for these tasks to minimize the risk of damage
to moving ground obstacles. In work by McAree et al. [6],
the authors simulate UAS during landing at prepared sites in
the presence of multiple agents and state uncertainty. The
SA of the UAS is enhanced using automated dependant
surveillance-broadcast (ADS-B) for cooperative sensing of
other agents. The landing approach taken by Scherer et al. [7]
uses lidar for non-cooperative sensing to autonomously
land a full-scale helicopter at unprepared sites. Mejias et
al. [8] demonstrate a camera-based landing zone detection
algorithm for UAS in emergency landing scenarios. In this
work, a visual multiple target tracker is used to perceive
information about moving ground targets. We focus on the
target tracking information needed to refine an unprepared
landing site that has already been selected by other means.

Visual target tracking has been an active area of computer
vision research [9]–[11]. Tracking can focus on single or
multiple objects and can take place on a static or moving plat-
form. Initialization of tracking typically falls in the category
of tracking-by-detection or detection-free tracking. Tracking-
by-detection performs frame-to-frame association of detec-
tions generated by pre-trained object classifiers [12], feature
descriptors [13], or even a simple corner detector [14]. Con-
versely, detection-free tracking must be manually initialized,
as in the work of Kalal et al. [15].

Visual tracking gives sUAS situation awareness and can
enable many autonomous applications. Cameras are ideal
sensor packages for sUAS because they are low-cost, small,
and rich with visual information. In the work of Thomas et
al. [16], a small quadrotor with a downward-facing camera
is used to track and follow a single object with known
geometry. Teulière et al. [17] also track and follow a single
object using a template image, removing the need of prior
target geometry. A color-based tracker and a particle filter are
used, allowing tracking robustness in partial or full occlusion



of the target selected by the user. Pestana et al. [18] performs
visual servoing from a sUAS by tracking a single user-
specified object.

Multiple object tracking (MOT) from a moving camera is
of particular interest in sUAS applications because it adds
robustness to surveillance techniques where the number of
targets or the nature of the camera motion is not known be-
forehand. Rodriguez-Canosa et al. [19] use Parallel Tracking
and Mapping (PTAM) [20] for motion estimation which is
then used to create an artificial optical flow field. The dif-
ference between Lucas-Kanade optical flow and the artificial
flow field exposes dynamically moving objects; however, this
technique requires initialization using a marker map and may
struggle to detect objects moving with similar velocity to
the multirotor. Jiang and Cao [21] are able to track multiple
objects in post-processed aerial video using detections based
on background modeling, but do not use Bayesian filtering
for track management. Li et al. [22] successfully track other
sUAS for sense and avoid applications in post-processed
aerial footage using a similar visual tracking front-end to
ours; however, they assume targets are non-deformable which
limits the types of objects that can be tracked. Teutsch
and Krüger [23] post-process aerial videos and demonstrate
traffic surveillance and tracking from a constant altitude.
Their approach is most similar to our tracking pipeline,
but assumes constant altitude stable flight over structured
environments, which results in smooth video input.

We perform real-time visual multiple object tracking on-
board a sUAS using an algorithm known as the Recursive-
RANSAC (R-RANSAC) visual tracker. In contrast to ex-
isting tracking solutions, our algorithm runs on a moving
platform, requires no manual initialization, can run in real-
time during a flight, and can track an arbitrary number of
moving objects in clutter. In addition, we propose an altitude-
dependent tuning scheme that increases track continuity
during a descent, as shown in Figure 1. This coupling of
aircraft state and tracker increase the situation awareness of
the sUAS allowing future work to autonomously plan safe
trajectories during the “last 50 feet” [4].

The organization of this paper is as follows. Section II
gives an overview of R-RANSAC and the visual measure-
ment front-end. In Section III we present the proposed
tuning scheme to increase track continuity during a de-
scent. Section IV discusses the hardware implementation and
demonstration. Tracking results are reported and discussed
in Section V and future research directions are given in
Section VI.

II. VISUAL TRACKING

As shown in Figure 1, the visual multiple target tracker
used in this work consists of two major components: the
visual measurement front-end and the Recursive-RANSAC
(R-RANSAC) tracker. Using the visual tracker in conjunction
with an altitude-dependent tuning scheme allows the algo-
rithm to continuously track objects as the sUAS descends.
We discuss these components in the following subsections.

(a) Propagation

1

2

3

(b) Initialization

2

(c) Update (d) Elevation

Fig. 2: The four steps of R-RANSAC demonstrated on a surveil-
lance region in R2. Timesteps are denoted by the grey vertical
lines, the current timestep is rightmost. Measurements (◦) may be
clutter or from targets. (a) Hypothesis models (4) are predicted
forward in time (dotted). New measurements are associated as
inliers or outliers. (b) Outliers are used to generate RANSAC
hypotheses (1, 2, 3). (c) Inlier measurements are used to correct the
model prediction. The RANSAC hypothesis with the most support
(hypothesis 2) is stored as a model. (d) Models that have good
support and have been tracked for a while without too many missed
detections are elevated to a track (∗).

A. Recursive-RANSAC Tracker

R-RANSAC is an online estimation algorithm capable of
tracking an arbitrary number of objects in clutter [24]–[27].
Measurements are contained in the surveilance region R of
the system, where R ⊂ R2 in this work. Using the incoming
measurements, the algorithm forms hypothesis models that
fit the specified motion dynamics. At every timestep, the
following four tasks are performed, as shown in Figure 2.

Model propagation: Existing models are propagated for-
ward with nearly constant jerk motion dynamics. The new
scan of measurements are classified as inliers or outliers to
each predicted model position based on Euclidean distance.
Measurements within the inlier region defined by a circle of
radius τR are classified as inliers.

Model initialization: For each measurement that is an
outlier to all models, a RANSAC-based initialization step
is performed to find models that fit nearly constant velocity
dynamics. Only the best RANSAC hypothesis model is kept.

Model update: At the end of each timestep, each model
uses its associated inliers to perform a Kalman update.

Model elevation: A model is elevated to a track once
it has survived τT iterations without having more than
τCMD consecutive missed detections. This step is also where
models with poor support are pruned and models with similar
positions are merged if within τx and τy of each other.

R-RANSAC’s strength lies in its ability to initialize new
hypothesis models from noisy data and subsequently manage
those models without operator intervention. This allows the
use of computationally cheap computer vision algorithms



(a) KLT Tracking (b) Homography (c) Moving Features (d) Tracking Results

Fig. 3: The three steps (a)-(c) of the visual measurement front-end with the resulting tracks (d) from R-RANSAC. Images are taken from
sequence run2a. Feature correspondences from (a) are used to estimate a homography. Note how the homography-compensated difference
image in (b) masks out the feature motion resulting from camera motion and exposes independently moving objects.

with less precision. Additionally, R-RANSAC is not strictly a
computer vision algorithm; it can filter measurements from
diverse sensor modalities [28]. The work of fusing differ-
ent measurement sources in R-RANSAC is currently being
investigated. For more information about the R-RANSAC
derivation we refer the reader to [24].

B. Visual Measurement Front-end

In this work, R-RANSAC receives data from a visual
measurement front-end. The vision processing is done with
a calibrated camera in a three-step pipeline in order to (i)
find feature correspondences between images, (ii) compute
a homography, and (iii) detect true object motion. The
input video rate is controlled by the frame stride parameter
which dictates how many frames to skip. For example,
with incoming video at 30fps, stride = 3 results in 10Hz
processing.

(i) Feature management: At each timestep k, features from
the last image Xk−1 are propagated forward into the current
image as X+

k−1 using optical flow. Feature correspondences
(Xk−1, X

+
k−1) are sent as input to the next step in the

pipeline for further processing. A new set of features Xk

are then found using the Shi-Tomasi corner detection method
for the current image Ik. These features will be propagated
on the next iteration. This step is known as Kanade-Lucas-
Tomasi (KLT) tracking and is depicted in Figure 3a.

(ii) Homography generation: Using the feature correspon-
dences (Xk−1, X

+
k−1) from the KLT tracker, a perspective

transformation H known as a homography is estimated using
a RANSAC-based scheme. This step is crucial for moving
platform tracking because it allows the set of features Xk−1
and Xk to be represented in the same coordinate frame
through image registration. The quality of a homography
estimation between camera views can be visualized via
difference imaging (see Figure 3b), defined as

Dk = Ik − I+k−1 = Ik −HIk−1. (1)

Note that the R-RANSAC visual tracker only makes use of
KLT features and that the difference image Dk is only com-
puted when assessing the homography estimation quality.

(iii) Moving object detection: Equipped with a homogra-
phy and a set of feature correspondences, the velocity of
each of the feature points can be calculated as

V = X+
k−1 −HXk−1. (2)

If the homography estimate is good, then the velocity of
static features will be nearly zero, leaving behind the motion
of independent objects only, as shown in Figure 3c. Measure-
ments (zj = [x, y, vx, vy]

>) of independently moving objects
are defined as feature points that have a velocity magnitude
within predefined thresholds, given by

Z = {(xi, vi) : xi ∈ X+
k−1, vi ∈ V, τvmin ≤ vi ≤ τvmax}.

This scan of measurements is then given to R-RANSAC to
estimate the position of targets. Figure 3d shows the tracking
results.

Note that the calibration parameters of the camera are used
to undistort the features extracted in step (i). Further, the
camera matrix is used to project features from 2D pixel space
to the normalized image plane in 3D space where coordinates
are normalized such that the depth is unity. This results in
tracker parameters that are less sensitive to differences in
calibrated cameras and allows tuning to be done in more
intuitive units, as described below.

III. ALTITUDE-DEPENDENT TUNING

Track continuity is an important attribute of situationally
aware systems. This attribute implies that moving targets
maintain a unique track ID throughout its lifetime. As the
aerial vehicle changes altitude, objects will change in size
with respect to the camera field of view. This can cause
tracks to fragment into multiple IDs.

In order to maintain track continuity during a UAS de-
scent, we propose using the vehicle altitude to tune parame-
ters of the R-RANSAC visual tracking system. The relevant
tuning parameters for R-RANSAC are the inlier region τR
and the absolute difference threshold for model merging,
τx and τy . The visual front-end feature velocity thresholds
τvmin and τvmax are also tuned during flight. Denote the UAS
altitude as h. The parameters are then

τR =
s

2h
; τx = τy =

dmerge

h
(3)

τvmin =
vmin

h
; τvmax =

vmax

h
, (4)



where the tuning parameters are: s, the object size in meters;
dmerge, the distance for model merging in meters; vmin and
vmax the minimum and maximum target velocities in meters
per second.

IV. HARDWARE DEMONSTRATION
The R-RANSAC visual tracker software with altitude-

dependent tuning is demonstrated in real-time during four
flight tests. A GPU implementation is discussed that en-
hances the tracking ability of the algorithm. The flight
scenario is described, along with performance metrics for
multiple object tracking.

A. GPU Implementation
The most computationally expensive portion of the

R-RANSAC visual tracker is the KLT optical flow feature
tracking. Leveraging OpenCV libraries allowed for a GPU
implementation of the visual front-end. Although able to run
on mobile CPU machines, using a GPU gives the visual
tracker extra processing time between each frame, allowing
more features to be extracted at a higher frame rate (i.e.,
lower stride). It also allows processing time for higher level
functions such as mapping, localization, and path planning.

An increase of feature correspondences between frames
allows for a more robust homography estimation process.
A homography describes the perspective transformation of
a plane from one view to another. In low-altitude scenarios
there is often more depth in the scene from tall structures and
trees, causing parallax and making it more difficult to find a
single plane to describe the entire image. However, moving
objects are most often found on local planes (e.g., streets,
grass, etc). With more feature points used in the homography
estimation process, there will be a higher likelihood of
choosing the local plane of the targets and rejecting the
parallax points as outliers. This increases the ability of the
visual front-end to maintain detection of independent object
motion.

Using the flight test data, we perform a comparison of real-
time tracking efficiency on various CPU and GPU platforms.
Efficiency is expressed in terms of utilization, which is
measured per frame as the ratio of time spent processing
to total time available ( 1

fps ).

B. Flight Scenario
The selected sUAS for testing is the 3DR Y6 multiro-

tor with an onboard NVIDIA Jetson TX2, as shown in
Figure 4. Four flight tests were performed to demonstrate
the R-RANSAC visual tracker in real-time. Each scenario
lasted 2 minutes starting at an altitude of 122 meters and
ending at 20 meters. The descent was controlled by four
pre-programmed waypoints resulting in a 45◦ descent. The
multirotor stops at each waypoint for 10 seconds.

During the descent, targets move at various rates in the
camera field of view. Using the Robot Operating System
(ROS), all stages of the visual tracking system are recorded,
including vehicle state and tracking results. ROS manages
the initialization and communication of the software as soon
as the flight computer is powered on.

Fig. 4: 3DR Y6 multirotor used in hardware demonstration. The
Pixhawk autopilot runs APM:Copter firmware. The camera has a
resolution of 800× 600 at 30fps and is mounted at a 45◦ angle.

C. Performance Metrics for Multiple Object Tracking

To measure the performance of multiple object track-
ing, we use the CLEAR MOT metrics, MOTP and
MOTA [29]. These metrics provide an overall performance
measure of tracker precision (MOTP) and accuracy (MOTA).
MOTP measures the ability of the tracker to precisely
estimate the true position of objects. In this work, an
intersection-over-union (IOU) ratio of bounding boxes is
used; thus, a MOTP score of 1.00 represents perfect pre-
cision. MOTA gives a measure of how well the tracker
detects objects and their trajectories, being penalized for false
positives, track mismatches, and missed detections. A given
track is associated with ground truth if there is at least 10%
overlap (IOU) between bounding boxes.

In addition to the CLEAR MOT metrics, we provide a
measure of track coverage for each ground truth object in
the flight test. It is defined as the ratio of total frames tracked
to total frames present (and moving); thus, it is a means of
breaking down the MOTA score to each object. False positive
(FP) coverage is defined as the ratio of false positives to the
number of frames in the sequence.

In order to calculate these metrics, ground truth is required.
Flight video was manually annotated using a VATIC-inspired
JavaScript implementation1 [30].

V. TRACKING RESULTS

A. Tracking Performance

The results of the CLEAR MOT tracking analysis are
found in Table I. The arrows in the heading indicate if
low (↓) or high (↑) ratios are preferred. The overall results
for each test flight sequence are given as well as a breakdown
according to alitude ranges dictated by the four waypoints
(122m, 84m, 53m, 20m). Targets 1–3 are people and target 4
is a small RC vehicle. Runs 1 and 2 are smoother and more
visually consistent, while runs 3 and 4 are more difficult
because of harsh lighting, strong winds, and many strong
edges in the scene. This difficulty is reflected in the MOTA
and MOTP scores.

1Source code can be found at github.com/plusk01/vatic.js



TABLE I: Tracking Performance2

Sequence Duration [s] Altitudes [m] MOTA ↑ MOTP ↑ FP ↓ Target Coverage ↑

1 2 3 4

run1a 123 122 to 20 0.75 0.52 0.28 1.00 0.94 0.87
49 122 to 84 0.66 0.53 0.43 1.00 0.98 0.82
37 84 to 53 0.81 0.52 0.17 1.00 0.92 0.88
37 53 to 20 0.78 0.52 0.22 1.00 0.87 0.93

run2a 120 122 to 20 0.90 0.59 0.10 0.99 0.97 0.91
49 122 to 84 0.91 0.52 0.13 1.00 0.98 0.97
36 84 to 53 0.89 0.67 0.13 1.00 0.94 0.91
35 53 to 20 0.90 0.60 0.05 0.99 1.00 0.83

run3a 123 122 to 25 0.47 0.39 0.27 0.93 0.55
50 122 to 85 0.42 0.48 0.54 0.98 0.63
40 85 to 49 0.53 0.36 0.11 0.91 0.35
33 49 to 25 0.48 0.29 0.10 0.90 0.73

run4a 120 123 to 25 0.25 0.30 0.39 0.62 0.33
53 123 to 83 0.45 0.30 0.38 0.74 0.33
38 83 to 49 0.10 0.28 0.40 0.33 0.14
29 49 to 25 0.23 0.32 0.38 0.66 0.59

Note that scores tend to improve as the altitude decreases.
This is expected because moving objects have more detail
in the frame, allowing more features to be extracted and
tracked. We expect that scores would improve further if we
employed a feature parallax detection and rejection scheme.

For the smoother video in runs 1 and 2, the visual tracker
performs very well. This is in contrast to the erratic, wind-
induced camera motion in runs 3 and 4. We note that the
most apparent difference in the two pairs of sequences is that
runs 1 and 2 tended to have the targets in the middle of the
frame while the targets were more often on the edge of the
frame in runs 3 and 4. This caused the targets to frequently
move in and out of the camera field of view, incurring
track fragmentation and missed detection costs. We suggest
that using an object detection method (feature descriptors,
template matching, etc) or tracking measurements in the 3D
world coordinate frame would mitigate these issues.

B. GPU vs CPU Utilization

Figure 5 shows the results of running the four video
sequences on three different machines while holding the
parameters constant. Each machine has an associated pair of
bars, with the left representing CPU-only and the right GPU-
enabled. The i7Mobile is a Gigabyte Brix computer with
only a CPU. An i7Desktop machine is listed for comparison.
Each bar breaks down how much time is spent in each part
of the tracking pipline during one period ( 1

fps ). The algorithm
is running in real-time if utilization is under 100%.

Note that the i7Mobile computer can on average run in
real-time with a frame stride of 3; however, there is almost
no extra processing time for higher-level tasks. The TX2 on
the other hand performs comfortably in real-time for strides
of 1, 2, and 3. We choose to process at stride = 3 (10Hz)
so that there is more target motion between frames at higher
altitudes and so there is plenty of computational resources
available for future higher-level tasks.

2Video results can be found at https://youtu.be/UIlvXSdVvqA
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Fig. 5: R-RANSAC visual tracker utilization for frame strides of
1, 2, and 3. Each of the three bar pairs represent a single machine.
The left bar in each pair shows the utilization on CPU-only tracking
and the right bar shows the utilization with the GPU (if available)
enabled. The tracker is running in real-time if utilization is below
the dotted line (100%).

VI. CONCLUSION

In this paper we have demonstrated a visual multiple target
tracker running in real-time onboard a descending multirotor.
With a robust target tracking solution, the situation awareness
of autonomous vehicles is increased. A utilization analysis
shows that extra processing time is available for tracking
improvements and higher-level tasks such as path planning
and control. Future work will include parallax compensation,
world frame tracking, and trajectory optimization for ground
target avoidance during landing.
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