11-15-2001

Sexual dimorphism and body temperatures of Sceloporus siniferus from Guerrero, México

Julio A. Lemos-Espinal
Laboratorio de Ecología, Unidad de Biología, Tecnología y Prototipos, Escuela Nacional de Estudios Profesionales Iztacala, Avenida los Barrios s/n, Los Reyes Iztacala, Estado de México

Geoffrey R. Smith
William Jewell College, Liberty, Missouri

Royce E. Ballinger
University of Nebraska, Lincoln

Follow this and additional works at: https://scholarsarchive.byu.edu/wnan

Recommended Citation
Available at: https://scholarsarchive.byu.edu/wnan/vol61/iss4/15
SEXUAL DIMORPHISM AND BODY TEMPERATURES OF
SCELPORUS SINIFERUS FROM GUERRERO, MÉXICO

Julio A. Lemos-Espinal¹, Geoffrey R. Smith², ⁴, and Royce E. Ballinger³

Key words: lizards, sexual dimorphism, Sceloporus, México, thermal ecology.

The biology of temperate North American lizards of the genus Sceloporus is relatively well known. We know substantially less about the majority of Mexican and Latin American Sceloporus species. Indeed, for too many species we know only what has been published in the original descriptions. Recently, herpetologists have begun to recognize the importance of studying the biology of tropical reptiles (see Vitt and Zani 1996). In some cases studies on tropical species have obtained results counter to those obtained in temperate systems that were sometimes thought to pertain to all reptiles (e.g., Shine and Madsen 1996). Thus, it is important to study the general biology and ecology of previously unstudied species, especially those from tropical or subtropical regions. Such information hopefully can serve as the basis of future syntheses on the biology of lizards. This note concerns the sexual dimorphism and body temperature of Sceloporus siniferus, a relatively unstudied species from the seasonal semiarid tropics of México.

The study population was located in a tropical deciduous forest located near the Bahía Papanoa (Km 161, Highway Mex 200 Acapulco-Zihuatanejo: 17°2'0.4"N, 101°3'0.0"W). Lizards were collected by rubber band during May 1996. We measured snout-vent length (SVL; to nearest mm) in the field. In addition, we took body temperatures (Tb; nearest 0.1°C) with a quick-reading cloacal thermometer immediately upon capture. We also measured air temperature (Ta; shaded thermometer 1 cm above substrate where individual first observed) and substrate temperature (Ts; shaded thermometer touching substrate where individual first observed). We also made various morphological measurements to analyze sexual dimorphism. We measured head width (HW; at the widest point), head length (HL; from anterior edge of ear to tip of snout), and femur length (FL; from knee to middle of pelvic region) using calipers.

Mean SVL was 51.2 ± 0.8 mm (N = 56; range = 38–62 mm). For all morphometric variables, the relationship with SVL was highly significant (all r² > 0.80; P < 0.0001); thus, we used ANCOVA to analyze for sexual dimorphism (on log-transformed data; after assumptions checked).

Males were larger on average than females (Table 1; df = 59, t = 4.37, P < 0.0001). Males had relatively wider heads than females (Fig. 1; Table 1; ANCOVA with SVL as covariate: F₁,₅₈ = 7.6, P = 0.008). The interaction between sex and the covariate was not significant and was not included in the final model.

Males and females did not differ in the length of their heads after the effects of SVL were removed using ANCOVA (Table 1; ANCOVA with SVL as covariate: F₁,₅₈ = 1.61, P = 0.21). The interaction between sex and the covariate was not significant and was not included in the final model. The length of a male’s femur was, on average, the same as the length of a female’s femur (Table 1; ANCOVA with SVL as covariate: F₁,₅₈ = 0.47, P = 0.50). The interaction between sex and the covariate was not significant and was not included in the final model.
Mean Tb was 36.2 ± 0.3°C (N = 64; range 27.6–39.4°C). Mean Ta was 30.4 ± 0.2°C (N = 64; range 25.9–36.8°C), and mean Ts was 34.0 ± 0.7°C (N = 64; range 27.1–49.6°C). Body temperature was significantly influenced by both Ta (N = 64, r² = 0.42, P < 0.0001; Tb = 13.10 + 0.76Tₐ) and Ts (N = 64, r² = 0.28, P < 0.0001; Tb = 28.2 + 0.24Tₚ). Body temperatures showed some diel fluctuations, as did Ta and Ts (Fig. 2). Body size did not influence Tb (N = 56, r² = 0.02, P = 0.36). Males and females had the same mean Tb (36.2°C; ANCOVA with Ta as covariate; F₁,61 = 0.12, P = 0.72).

Sceloporus siniferus are sexually dimorphic in both body size and head width, but not in head length or length of femur. Males were larger and had wider heads than females. Several other Sceloporus species are sexually dimorphic, with males larger than females; however, not all Sceloporus species are sexually dimorphic (Fitch 1978). Male-biased sexual dimorphism in head size is relatively common in lizards (e.g., Vitt and Cooper 1985, Perez-Mellado and de la Riva 1993, Smith et al. 1997). We do not have enough information to determine the cause of sexual dimorphism in S. siniferus (i.e., whether it is due to sexual selection or niche diversification; see Shine 1989). However, the widespread occurrence of sexual dimorphism in Sceloporus suggests it may have a historical origin in the genus.

The mean Tb of S. siniferus in this study was 36.2°C, which places it among species having the highest mean Tb reported in the genus Sceloporus. Mean Tb ranges from 28.9°C in S. variabilis (Benabib and Congdon 1992) to 37.5°C in S. horridus (Lemos-Espinal et al. 1997b; see Lemos-Espinal et al. 1997c for a review). Environmental temperatures appear to play a relatively large role in determining the Tb of individual S. siniferus, as evidenced by the relatively large r² value for Tb on Ta regression, and the diel variation in Tb. Male and female S. siniferus did not have significantly different mean Tb, a situation that has been observed in other studies on Mexican Sceloporus (e.g., S. grammicus, Lemos-Espinal and Ballinger 1995; S. gadovae, Lemos-Espinal et al. 1997c; S. ochoteranae, Lemos-Espinal et al. 1997a). Such a lack of difference in Tb between males and females may suggest that in these species males and females behave similarly, such as using similar microhabitats or being active at the same time. Further work comparing the microhabitat use and activity of males and females in species with sexual Tb differences with those without sexual Tb differences would be useful.

Table 1.

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVL</td>
<td>52.8 ± 0.9</td>
<td>47.1 ± 0.8</td>
</tr>
<tr>
<td>Head width</td>
<td>10.13 ± 0.09</td>
<td>9.73 ± 0.11</td>
</tr>
<tr>
<td>Head length</td>
<td>11.54 ± 0.09</td>
<td>11.36 ± 0.11</td>
</tr>
<tr>
<td>Femur length</td>
<td>14.56 ± 0.12</td>
<td>14.70 ± 0.14</td>
</tr>
</tbody>
</table>

Fig. 1. The relationship between head width and SVL for male (closed circles; upper regression line) and female (open circles; lower regression line) Sceloporus siniferus from Guerrero, México.

Fig. 2. Diel variation in body temperature (closed circles), air temperature (open circles), and substrate temperature (closed triangles) in Sceloporus siniferus from Guerrero, México. Means are given ± 1 sx.
We thank W.E. Cooper, Jr., and an anonymous reviewer for their comments on the manuscript.

LITERATURE CITED

Received 24 January 2000
Accepted 6 June 2000