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Exploring the Solvability of the Jaynes-Cummings and
Jaynes-Cummings-like Models: Implementing Quantum

Control

Austen Couvertier

August 19, 2017

Abstract

In this paper we aim to explore the dynamics and overall solvability of the Jaynes-Cummings
& Jaynes-Cummings-Like models. As a lens to understand these dynamics, we focused on cases
where the parameters of the system were made time-dependent. All previous work on solv-
ing the dynamics of the Jaynes-Cummings models has relied heavily on the use of differential
methods and setting the parameters as time-independent constants which were zero or one. To
account for this, we utilized the Wei-Norman method which allowed us to analytical solve the
time-dependent Hamiltonian. Through the use of this method, we can understand the more
general characteristics of the dynamics associated with the Jaynes-Cummings model. This
research related back to the field of Quantum information and control as the model highlights
interactions with qubits and our time-dependent parameters can force certain transitions.

1 Introduction
This work will focus primarily on quantum control and how it relates back to quantum information.
In our sense, quantum control involves the use of external factors in an experiment that affect the
system at a quantum level to dictate how the states evolve in time. Understanding how quantum
systems can evolve in time and be manipulated in experiment is interesting in both a general sense
as well as an interest to the field of quantum information. In general, quantum system evolution has
only recently been understood with respect to realistic systems. Furthermore, some of these realistic
systems are only analyzed through special conditions. With respect to quantum information,
when analyzing the evolution of two-state, or even three-state, systems these can be related back
to the qubits, and qutrits, that underly the entire field. Specifically manipulating how these
qubits and qutrits interact as they involve in time can allow for different degrees of entanglement
which is another cornerstone of quantum information. To study these quantum states, we will an
experimental models related to quantum optics. Quantum optics is an ideal field for Quantum
Information because experimentation is performed in vacuum where many assumptions in models
are realistic and achievable. Furthermore being related to Optics the field focuses on Light-Matter
interactions where the matter is normally quantum states while the light is simple electromagnetic
fields in cavities. This allows us to manipulate qubits directly and ask the following question:
To what extent can quantum control, in the form of time-dependent field frequency and field-
atom interaction, be imposed in Jaynes-Cummings-like Models to produce quantum effects such
as entanglement?
One can note that this question resolves how this study will model our theoretical system. By
utilizing the Jaynes-Cummings Model, which focuses on one atom and one single mode field, we
aim to create an equivalent two atom model where the atoms are non-directly interacting. To
analyze these models and create important operators, such as the time-evolution operator, we
will be utilizing the Wei Norman Method. The chosen system and method will be described in
the next section. Lastly, although the Jaynes-Cummings Model has been analytically solved on
numerous accounts the results found are not immediately relevant to my questions beyond the aid
they provide to check my Method’s results against known results.
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2 Jaynes-Cummings & Wei-Norman
In this section, the Model and Method analyzed in this paper will described shortly. As well as
general overview, the advantages and disadvantages will be highlighted.

2.1 Jaynes-Cummings:
The Jaynes-Cummings Model is basic model used in Quantum Optics to represent a system that
is comprised of a two-state system and a single-mode field in a cavity. It is important to note that
this model is an approximation of the Quantum Rabi Model, both models are described by the
equation below:

HRabi = 1/2h̄ω0σ3 + h̄ω(N + 1/2) + h̄λ(a+ a†)(σ+ + σ−) (1)

HJC = (1/2)h̄ω0σ3 + h̄ω(N + 1/2) + h̄λ(aσ+ + a†σ−) (2)

As can bee seen in both Hamiltonian, there is a term dedicated to the particle’s energy (σ3),
a term for the field’s energy (N + 1/2), and a term for the interaction ((a + a†)(σ+ + σ−) and
a†σ− + aσ+ for Rabi and Jaynes-Cummings respectively) The approximation made, the Rotating
Wave Approximation, results in the deletion of two terms: a†σ+ and aσ−. These two terms can
be ignored because once evolved in time they vary rapidly as they correspond to the summation of
the two frequencies rather than the different. Beside being a model that captures the dynamics we
aim to study, the Jaynes-Cummings Model is fairly popular and thus has many different methods
that produce complete analytic solutions.[GK08] Since there has yet to be any work applying the
Wei-Norman method to the Jaynes-Cummings Model this allows us to check the validity of our
method. As far as Quantum Control is concerned, this model has two main means of control.
These controls are present in the interaction factor, λ, and the frequencies of the field and atom,
ω&ω0, which in this simple Hamiltonian have been taken to be constants. In this work, we will
attempt to add time dependence in these parameters to enforce stronger quantum control. Lastly,
we will explore other Jaynes-Cummings like models enforce restrictions on allowed interactions.

2.2 Wei-Norman
The Wei-Norman Method is an algebraic technique used to study they dynamics of quantum
mechanical systems. This method has been studied in great depth, so a brief overview will be
given.[WN63, Say12] This is accomplished by forming an algebra from the operators present in the
Hamiltonian. In quantum mechanics the Hamiltonian describes the energy of the system. Once
the algebra is formed it has to be proven to close under the relations specified by Lie. In this
case, the commutators of all elements in the algebra must produce elements in the algebra. If a
new operator is produced by a commutator relation, it is added to the algebra and it must be
commuted with every element.

Once the algebra closes and can be defined Lie Algebra, you can define a time-evolution oper-
ator. The time-evolution operator, U(t) is defined below and is a unitary operator that can evolve
a state to a desired time.

U(t) =
∏
i

= 0Neαi(t)Ai (3)

In this definition the Ai correspond to elements of your defined Lie Algebra. It is important
to note that not Ai will be present in your Hamiltonian. The αi(t) are time-dependent functions
that will dictate how the state evolves in time. Although initially unknown, they can be solved by
inputting the time-evolution operator into the Schroedinger Equation.

ih̄
∂U

∂t
U−1 = H (4)

As you can see, if you have a time-independent Hamiltonian the results are identical to evolution
of energy eigenstates seen in introductory quantum mechanics. However, once you add time-
dependence this becomes a series of non-linear coupled differential equations that determine the
αi. The main benefit of this method is that we can write our Hamiltonians in terms of time-
independent operators, and only have to solve differential equations for the αs. Once the complex
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coefficients, αs, are known, the system can be studied in time. Then the dynamics can be fully
understood.

It is important to note that no literature could be found showcasing the results of the Wei-
Norman method on the Jaynes-Cummings Model. Thus, the first step toward studying the creation
of entanglement relies heavily on verifying the effectiveness of this method. In the next section we
aim to confirm our Wei-Norman analytic results to those found in literature.

3 Verification of Wei-Norman on Jaynes-Cummings
In this section we will outline the efforts made to find analytic solutions to the Jaynes-Cummings
Model utilizing the Wei-Norman method. After direct solutions have been found, each Lie algebra
ordering will be used to evolve initial states and determine expectation values. These results will
then be compared to analytic results determined for zero detuning in the literature.[GK08]

3.1 Closing the Algebra
When applying the Wei-Norman method, the initial algebra from the Hamiltonian is described
below

LieAlgebra = {N, σ3, a†σ−, aσ+} (5)

After evaluating the commutators between these four elements, the commutators including N
and σ3 add no new terms to the algebra. This is due to the fact that an element in the algebra
also accounts for any scalar multiple of itself. The main issue of this algebra comes from the
commutator of aσ+ and a†σ−. The commutator’s final solution is shown below.

[a†σ−, aσ+] = Nσ3 + 1/2(1 + σ3) (6)

This commutator relation adds one new terms to the algebra, Nσ3. This new term clearly
commutes with N and σ3. However, the commutator between Nσ3 and the terms that created
it (aσ+ and a†σ−) produce two new terms. These terms are Naσ+ and Na†σ−. Taking the
commutator of these new terms in the manner outline below, two new terms are acquired.

[a†σ−, Na
†σ−] = N2a†σ− (7)

[aσ+, Naσ+] = N2aσ+ (8)

It is important to recognize that scalar multiples of a†σ− and aσ+ are produced in the respective
cases, yet they are ignored here because they add nothing to the algebra. This produces a cyclic
pattern where the n-th commutator between aσ+ and the previous commutator results in Nnaσ+.
Similar results will occur when starting with a†σ−. In short, this constant addition of terms
prevents the algebra from closing. In order to lead the algebra to closure, new operators must be
defined which in turn will reshape the Hamiltonian.

The correction of the algebra is found from the first commutator between a†σ− and aσ+. Its
current form is the linear combination of Nσ3 and σ3. However, when we utilize the fact that
σ2
3 = 1 we find the following relation.

1/2(1 + σ3) = 1/2(1 + σ3)σ3 (9)

Due to this symmetry, it is easy to see that the commutator solution can be rewritten as such:

[a†σ−, aσ+] = (N + 1/2(1 + σ3))σ3 (10)

This new term N + 1/2(1 + σ3) is nothing more than the total quanta of the system which we
will define below:

M = N + 1/2(1 + σ3). (11)

It is important to note, that this new M is also a constant of motion as it commutes with every
other term in the Hamiltonian. Knowing this, we rescale aσ+ and a†σ− with M so they commute.
To this end, we define two operators b and b† below:
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b = aσ+/
√
M (12)

b† = a†σ−/
√
M. (13)

The square root of M in the denominator effectively acts as a normalization for any product of
two-state ket with a number ket. Furthermore, since M commutes with both aσ+ and a†σ−, the
commutator of b and b† can be simplified as follows.

[b, b†] = 1/M [aσ+, a
†σ−] = (1/M)Mσ3 = σ3 (14)

Utilizing these new operators, the following Lie Algebra closes with the corresponding commu-
tator relations.

LieJC = {M, b†, b, σ3} (15)

[M,σ3] = 0 (16)

[M, b] = 0 (17)

[M, b†] = 0 (18)

[σ3, b] = 2b (19)

[σ3, b
†] = −2b† (20)

[b, b†] = σ3 (21)

Lastly the Hamiltonian must be redefined in terms of these new operators as seen below.

HJC = 1/2h̄∆σ3 + h̄ωNM + h̄λ
√
M(b+ b†) (22)

∆ = ωσ − ωN (23)

It is important to note that this substitution results in the addition of new term ∆ defined below
as the detuning. The detuning corresponds to the difference in frequencies between the radiation
field and qubit. More advanced levels of quantum control assume this term to be time-dependent.
Furthermore, since M is a constant of the motion, we will be considering

√
M to be a constant

during calculations. In the next section we will underline the steps taken to find the characteristic
coefficients αi for the Lie algebra. LieJC

3.2 Solving for Alphas
In order to determine the coefficients αi(i = 1−4) for the Lie Algebra above, we used a Mathematica
program created by BYU graduate student Ty Beus. In this section, key steps of the Wei-Norman
method will be outlined as well as simplification made to recover the results found in the Gerry &
Knight text.

Taking the general structure for the time-evolution operator from section 2.2, one can find ∂U
∂t

and U−1 as

∂U

∂t
= Mα̇1e

Mα1(t)eb
†α2(t)ebα3(t)eσ3α4(t)

+ eMα1(t)b†α̇2e
b†α2(t)ebα3(t)eσ3α4(t)

+ eMα1(t)eb
†α2(t)bα̇3e

bα3(t)eσ3α4(t)

+ eMα1(t)eb
†α2(t)ebα3(t)σ3α̇4e

σ3α4(t)

(24)

and
U(t)−1 = e−α4σ3e−α3be−α2b

†
e−α1M , (25)

where the time-evolution operator is factorized according to the Lie algebra in the expanded
Schroedinger equation. In this case, α1, α2, α3, α4 correspond to M, b†, b and σ3 respectively. Uti-
lizing the Baker-Campbell-Hausdorff (BCH), one can obtain the following differential equations.

4



α̇1 = −iw (26)

α̇2 = i(−λ
√
M + ∆α2 + λ

√
Mα2

2) (27)

α̇3 = −i(λ
√
M + (∆ + 2λ

√
Mα2)α3) (28)

α̇4 = −i/2(∆ + 2λ
√
Mα2) (29)

Solving these equations is rigorous and the generic results are left out this paper. However,
when observing zero detuning (∆ = 0) the alpha solutions simplify to the following.

α1(t) = −iwt (30)

α2(t) = −i tan (λ
√
Mt) (31)

α3(t) = −i sin(λ
√
Mt) cos(λ

√
Mt) (32)

α4(t) = ln[− cosλ
√
Mt]− iπ (33)

These alphas and their effect on the expectation value of σ3 and the unitary operator are
outlined in the next section.

3.3 Results: Graphs of Alphas
Using the results from the previous section, the functions for the alphas have been plotted below.

Figure 1: Coefficient α1 is depicted as a function of time in units inversely proportional to the
interaction factor.
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As can be seen in Fig. 1, α1 is a simple linear plot and purely imaginary. One can recall that
α1 is associated with the M operator which conserves the of quanta for the system. Knowing this
association exists, these results show that constant of motion have no affect on the evolution of an
initial state. This conclusion comes from the fact that the time-evolution operator is defined using
the exponentials of the alphas multiplied by their respective operator. Thus, an exponential of a
linear imaginary function is a phase typically seen in quantum mechanics. Thus when multiplying
by complex conjugates, all potential effects of M will be removed. Lastly, the results obtained for
this alpha are independent of detuning. In particular they are valid whether or not ∆ = 0 zero
due to the relation of M in the time evolution operator to M in the Hamiltonian.

Figure 2: Coefficient α2 as a function of time in units inversely proportional to the interaction
factor. This plot is specific for zero detuning and matches the equation outlined in section 3.2.

Figure 3: Coefficient α2 as a function of time in units inversely proportional to the interaction
factor. This plot is specific for a ∆ = 5.98.
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For α2 two plots have been given to depict the changes that occur when detuning is taken to
be zero verse non-zero. For the zero detuning case (Fig. 2), it is a purely imaginary and periodic.
Further, being a tangent function, the alpha has intermediate values that are positive and negative
infinity. Physically, this can be interpreted as a time where this transition is highly allowed or
impossible depending on the sign of the infinity. Fortunately, as will be seen in the final evolved
state, the fact that α2 increases toward infinity is compensated. In the case for a non-zero detuning,
the graph changes to an imaginary cosine function and real cosine squared function. Similar to
the zero-detuning case, this showcases that this alpha is periodic.

Figure 4: Coefficient α3 as a function of time in units inversely proportional to the interaction
factor. These results are for zero detuning and thus take the form of the equations in Section 3.2.

Figure 5: Coefficient α3 as a function of time in units inversely proportional to the interaction
factor. These results depict a ∆ = 5.98 and showcases transition from a purely imaginary function
to a complex function.
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As with α2, α3 has detuning dependence in the coefficient’s most general form. Thus two plots
have been made to highlight the differences. For zero-detuning the function is a purely imaginary
negative cosine. However, once detuning is added it’s real part is a cosine squared function and an
imaginary cosine function. When compared to detuning results for α2, the real part of the functions
of alpha only differ by a sign. This can be interpreted as a correlation due to the similar effects
that b and b† have in the Hamiltonian. While b corresponds to photon field losing a photon and
the atom becoming excited, b† represented the reverse operation. This reversal of operations can
be mathematical seen as the sign difference in their general solutions.Lastly, both results showcase
that α3 is periodic.

Figure 6: Coefficient α4 as a function of time in units inversely proportional to the interaction
factor. This is for the case of zero detuning and follows the results of section 3.2.

Figure 7: Coefficient α4 as a function of time in units inversely proportional to the interaction
factor. This graph depicts the results of ∆ = 5.98. Notice the function remains piecewise yet it is
now linear as opposed to horizontal.
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Lastly, α4 is associated with σ3 and has detuning dependence in its most general form. For
zero-detuning it’s imaginary part becomes piece wise, while the real part is again periodic similar
to the other alphas. When detuning is large enough, the real part of the general function becomes
a cosine function with a small amplitude while the imaginary part becomes a periodic linear plot
similar to α1. This last alpha showcases the periodicity that this model causes in the evolution as
only two states are allowed.

3.4 Results: Expectation Values of Atomic Transitions & Photon Field
With generic, analytic alphas, we checked our results. In order to ensure that the Wei-Norman
method produces correct results, we compared our solutions to well known literature. [citation]
The specific result used was the expectation of σ3 in time. With σ3 being an operator, < σ3(t) >
describes which state the atom is in at any given time. Utilizing numerics to describe atomic states,
a value of 1 corresponds to the excited state while 0 corresponds to the ground state. By evolving
a state initially excited with n-photons, using differential methods, Gerry & Knight obtained the
expectation value

< σ3(t) >= cos[2Ω ∗ t], (34)

where Ω is the Rabi frequency of the system. The Rabi frequency is the frequency of oscillation
between atomic levels which is defined for this system as,

Ω = λ
√

(n+ 1) (35)

Utilizing Mathematica, one can plot this for a specific n and λ. For the rest of this comparison
n will be set equal to 0 and λ will be set equal to 1. This results in Fig. 8

Figure 8: <σ3(t)> is depicted for time in units inversely proportional to the interaction factor.
These results are taken directly from literature for the case of zero detuning. Notice that the
frequency of this cosine graph is twice the Rabi Frequency.
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As seen in the Fig. 8, the expectation value is sinusoidal in nature with a frequency equal
to twice the Rabi frequency. In order to produce a plot for an expectation value we must first
determine the Heisenberg representation of σ3 for this particular Lie algebra. The analytic result
is

σ3(t) = σ3(0)−2 exp[2α4(t)]b†(0)α2(t)+2σ3(0)α2(t)α3(t)+2 exp[−2α4(t)]b(0)α3(t)(1+2α2(t)α3(t)).
(36)

This new equation for σ3(t) can be sandwiched between a bra and ket for an excited state with
zero photons in the field. This is equivalent to the time-dependent expectation of σ3

< e, 0|σ3(t)|e, 0 >= 1 + 2α2(t)α3(t) > (37)

One can see that when evaluated for the zero-detuning alphas from the previous section <
σ3(t) > simplifies to match the results from literature. To show this, the general results were
plotted for zero-detuning against the results from literature.

Figure 9: <σ3(t)> is depicted for time in units proportional to the interaction factor. In yellow
the literatures results are highlighted while the analytical results are in black. The graphs directly
overlap as the functions are identical.
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As further verification, the expectation value of the number of photons in the system has been
plotted. The method is exactly the same as for the expectation value of < σ3(t) >, except that
the graph should depict transitions that correspond to the atomic transitions.

Figure 10: <σ3(t)> and <N(t)> as a function of time in units inversely proportional to the
interaction factor. The graphs are related as the peaks and troughs are anti-correlated.

As can be seen in Fig. 10, the number of photons does oscillate between zero and one. When com-
pared to the graphs from Gerry & Knight, the decrease in a photon corresponds to the excitation
of the atom.

By comparing results with those well established in literature we were able to verify the results
obtained from Wei-Norman. Although this is only shown for one Lie algebra ordering, the other
orderings produce matching results and have been left out of this report. With this verification, we
can move on to examine how the model is changed as detuning is applied to the system. We first do
this analytically for time-independent parameters and then try to impose quantum control on the
system through time-dependent parameters. For this particularly model, the changing parameters
will be the frequencies of the atom and field as well as the interaction intensity factor.

Figure 11: <σ3(t)> as a function of time in units inversely proportional to the interaction factor.
The results of Gerry & Knight are in yellow while the positive detuning results are in black.
Although the cosine function is maintained, the graph is shifted upward and the frequency increases.

In Fig. 11, one can see the original results from Gerry & Knight compared to analytic results with
detuning. The two main differences are the increased frequency and the upward shift of the overall
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graph. Looking back at the literature, one can find a general equation for the Rabi frequency in
terms of detuning

Ω(∆) =
√

∆2 + 4λ2(n+ 1) (38)

This explains why the graph shows an increase in frequency. The amplitude decrease is mostly
like due to the energy difference associated with the different frequencies. That difference now
decreases the likelihood of atomic transition so the expectation value can no longer reach the full
range. A way to understand this is to see the expectation value as a sum of the possible values
multiplied by a time dependent probability of the value occurring. As the probability of being in the
ground state decreases the minimum value is shifted upward; yet the general shape is maintained.

With results from this simple model understood and generalized to account for all of the expec-
tation variables, the model can be expanded to allow for more complex interactions. In the next
section we will present a model that adds a second two-state system to the Jayne-Cummings Model
and then explore the behavior of the system in time through expectation values and numerical plots
for time-dependent variables.

4 Jaynes-Cummings-like Models: Two Two-State Systems &
Multi-Photon Transitions

4.1 Two Two-Level System Jaynes-Cummings: Determining The Dy-
namics

4.1.1 Equivalent Hamiltonian and New Operators

To fully analyze non-directly interacting qubit dynamics, the Jaynes-Cummings Model must be
extrapolated to include a second two-state system. The way to ensure that the Hamiltonian
contains no terms related to atom-atom interactions is to ignore all terms that combine σ+ and
σ− with τ+ or τ−. From this point on, the τ terms correspond to operators that only act on the
second atom. It is important to note that any τ operators commute with any σ operators and any
operators associated with the photon field (N , a, and a†).

In order to avoid direct interaction terms, we followed the Jaynes-Cummings model closely and
only added a new interaction term for the second atom

HJC2−atom = (1/2)h̄ωσσ3+(1/2)h̄ωττ3+h̄ωN (N+1/2)+h̄λσ(aσ++a†σ−)+h̄λτ (aτ++a†τ−). (39)

Analyzing this equation in a similar fashion to the one atom case, the same Lie algebra non-
closure occurs when taking the commutator between the interaction terms for each qubit separately.
In order to avoid problem, a global constant of motion must be utilized. The constant of motion
can then be used to remove terms that cause the algebra to expand. This model, being a sum of
two individual atom models, allows us to utilize each atom’s local constant of motion (C.O.M).
These C.O.Ms are related to the M in the previous section but are written out below for clarity

Mσ = N + (1/2)(1 + σ3) (40)

Mτ = N + (1/2)(1 + τ3). (41)

Using the fact that both of these commute with their respective interaction terms (as well as
with N , σ3 and τ3), we need only find a linear combination of the two and a function of N , σ3 and
τ3 to make our global C.O.M. For this simple case the two local C.O.Ms can be added together
and the function is simply minus N. This results in the following equation.

M2−atom = N + 1/2(1 + σ3) + 1/2(1 + τ3) (42)

Identically to the one atom case, this C.O.M corresponds to the total quanta of the system. The
main issue that should be immediately apparent is this new C.O.M doesn’t cancel the additional
terms from the interaction commutators. This can be offset by dividing by the square root of Mτ

orMσ and havingM2−atom occur in the Hamiltonian as an approximation of the interactions. The
results for the new operators for the algebra are
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b =
aσ+√
M2−atom

(43)

b† =
a†σ−√
M2−atom

(44)

c =
aτ+√
M2−atom

(45)

c† =
a†τ−√
M2−atom

. (46)

In this form the commutators between the same atom interaction terms now stay within the
algebra. However, it should be noted that these terms do not commute between the atoms. More
specifically, b doesn’t commute with c†, nor b† with c. To account for this, our model assumes
that terms between different atoms immediately commute. Thus, the commutator relations and
Lie Algebra of the system can be outline below.

LieAlgebra = {M2−atom, b
†, b, c†, c, σ3, τ3} (47)

[σ3, b
†] = −2b† (48)

[σ3, b] = 2b (49)

[τ3, c
†] = −2c† (50)

[τ3, c] = 2c (51)

[b, b†] = σ3 (52)

[c, c†] = τ3 (53)

Now the Hamiltonian can be written in terms of these new operators similarly to what was done
in the previous section.

HJC2−atom = (1/2)h̄∆σσ3 + (1/2)h̄∆ττ3 + h̄ωN (M2−atom− 1/2) + h̄λσ(b+ b†) + h̄λτ (c+ c†) (54)

The two new terms that appear in the Hamiltonian are known from the previous section as
detuning. The subscript denotes which atom the detuning describes. The definitions of these new
symbols are

∆σ = ωσ − ωN (55)

∆τ = ωτ − ωN . (56)

Moving forward, this model is rich with terms that can lend the system to quantum control.
The frequency of the photon field as well as the interaction factor strength (λ) between the atoms
and field can be made time-dependent. Furthermore, through use of quantum effects, the frequency
of the atom can be made time-dependent. To ensure every combination of variable types has been
tested, analytic results for time-independent variables will be found followed by numerical results
of time-dependent variables. In the next section the Wei-Norman method will be applied to the
Hamiltonian and the results will be analyzed.

4.1.2 Solving for Alphas (Time-Independent Lambdas and Deltas

This section aims to show the process for finding the alphas with the following Lie Algebra.

LieAlgebra = {M2−atom, b
†, c†, b, c, σ3, τ3} (57)

We first used the Wei-Norman Mathematica program with the commutator relations outlined
in the previous section. This produced the following list of differential equations for 7 alphas.

α̇1 = −iωN (58)

α̇2 = i(−λσ
√
M + ∆σα2 + λσ

√
M2−atomα

2
2) (59)
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α̇4 = −i(λσ
√
M2−atom + (∆σ + 2λσ

√
M2−atomα2)α4) (60)

α̇6 = −i/2(∆σ + 2λσ
√
M2−atomα2) (61)

α̇3 = i(−λτ
√
M2−atom + ∆τα3 + λτ

√
M2−atomα

2
3) (62)

α̇5 = −i(λτ
√
M2−atom + (∆τ + 2λτ

√
M2−atomα3)α5) (63)

α̇7 = −i/2(∆τ + 2λτ
√
M2−atomα3) (64)

We note that rather than one set of seven coupled equations, these results show two sets of
coupled equations. For this ordering, the coupling separates the alphas associated with sigma from
the tau alphas. Furthermore the coupled equations match the equations for the one atom model
in all aspects besides the specific detuning. In this section, the specific results will be in terms of
detuning for simplicity but the calculation will be based on the explicit form with frequencies, ωs.
This is a precaution necessary for this model as each detuning is not independent of the other as
through the mutual field frequency present in both equations. With these facts known, we can
obtain analytic equations for the αs. Due to the symmetry in τ and σ αs, the results are identical
to the one-atom case expect the τ αs have λτ and ωτ instead of the corresponding σ terms.

Upon calculation of the differential equations, trigonometric functions and their inverses are
used heavily. For that reason, alphas may vary based on the sign of the variables involved. In this
model, the only variable that can change signs is the detuning. M2−atom is always positive because
the quanta can never be negative and the interaction variables are assumed positive.

In this section the alphas will not be plotted because they correspond directly to the alphas
from the one atom section. The symmetry seen throughout this section will have strong effects on
the expectation values that are plotted in the next section.

4.1.3 Results & Implications

Due to the fact that this system mirrors the single atom system, the derivations will be ignored
and only the expectation values and their interpretations will be emphasized. The below figures
depicts analytic plots of time-independent variables for <σ3(t)>.

Figure 12: In this figure, the plot of <σ3(t)> is depicted for time in units proportional to the
interaction factor. The results of this graph or specific for zero detunings for both atoms as well
as all interaction factors equaling one. However, this graph remains unaffected by any changes in
tau based parameter. Further, the same Jaynes-Cummings dynamics are maintained for changes
in sigma parameters.

The top figure is set at zero detuning with a value of M2−atom and λσ of 1. One can note
that this results matches the results found in the one atom section. This is true down to the
Rabi frequency of the system. These results are expected as the differential equations and initial
conditions are identical.

The following changes were also explored: an increased ∆τ and an increased λτ . The previous
values for the sigma parameters were held constant. The most important find from these results
is changing the factor associated with the tau atom have no effect on the expectation of sigma.
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This is most likely due to the fact that the atoms are non-directly interacting and the field can
be assumed sufficiently saturated with photons to allow for transitions in the one atom despite
interacting with the second.

The results for just the expectation value of τ3 are identical to the σ atom. Again, the most
important result is the fact that the tau atom is also independent of the sigma atom.

For the purpose of this paper, we will move next to the sum of the two expectation values.
The graph below showcase how varying detuning differently between the two atoms as well as their
interaction factors may lead to quantum control.

Figure 13: In this figure, the plot of <σ3(t) + τ3(t)> is depicted for time in units proportional to
the interaction factors. The results of this graph are specific for zero detunings for both atoms as
well as all interaction factors equaling one. You can see this graph looks identical to the results
from the one atom model.The main difference is the bounds. Two corresponds to both excited and
-2 to both decayed.

The first graph is the trivial case of zero detuning and comparable interaction factors. In this
case the graph oscillates with the communal Rabi frequency and now goes between plus and minus
two. For clarification, positive two is a double excited state and minus two is a double ground
state.

Figure 14: In this figure, the plot of <σ3(t) + τ3(t)> is depicted for time in units proportional to
the interaction factor. The results of this graph or specific for one non-zero detuning for the tau
atom as well as all interaction factors equaling one. As one can see, the creation of pulses can be
seen at this detuning value.

The next graph showcases comparable interaction factors as well as detuning in one atom only.
For low detuning, the production of pulses can be seen. This allows is simply a consequence of
the simple oscillatory functions that make up each expectation value. However, relating back to
quantum control, these results suggest that the mismatch can be varied such that the expectation
may collapse toward a value of zero.
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Figure 15: In this figure, the plot of <σ3(t) + τ3(t)> is depicted for time in units proportional to
the interaction factor. The results of this graph or specific for non-zero detunings for both atoms
that are equal as well as all interaction factors equaling one. Note that the graph looks identical
to the double zero detuning except the the lower bound is raised to correspond to the decreased
probability of transition.

The next graph, which has both atoms at comparable detuning, looks similar to the zero
detuning case. However, the lower bound of the graph is shifted up which corresponds to the
decrease in likelihood of transitions in both atoms.

Figure 16: In this figure, the plot of <σ3(t) + τ3(t)> is depicted for time in units proportional to
the interaction factor. The results of this graph or specific for zero detunings for both atoms as
well as one interaction factor greater than one. In the one-atom model, an increase in the factor
corresponds to an increase in oscillation frequency. seeing as this graph is a sum of two, you see
this a oscillation with two frequencies.

The following graph depicts zero detuning with an increase in one atom’s interaction factor. In the
individual expectation values, this increase corresponds to a frequency increase. Thus, the sum of
these will result in a an oscillating oscillation. This particular plot focuses on an increased factor
for sigma, however, similar results occur for tau so it is not depicted.
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Figure 17: In this figure, the plot of <σ3(t)+τ3(t)> is depicted for time in units proportional to the
interaction factor. This graph has unequal detunings such that the greater detuning corresponds
to a lower interaction factor in that atom. The results are pulses shifted greatly up for the lowest
value of -2. Unlike the previous pulses, these aren’t as well defined because the non-one interaction
factors balance the detuning to an extent.

Lastly, the most interesting case occurs when a mismatch occurs such that the detuning of one
atom is large than the other and the larger detuning corresponds to a smaller interaction factor.
In this graph, the sigma atom has the smaller detuning and larger interaction factor. The results
become defined periodic pulses. These pulses do not oscillate but a fixed around a central value
which can never be zero. This is due to the fact that both detuning being non-zero raise the overall
graph and prevent symmetry around the center. Overall, these results speak very little to the idea
of quantum control. This is due to the fact that both expectations are oscillatory in all cases. In
short, this prevents the possibility of controlling the system toward staying in a particular state
without time-dependence. Thus, the only "quantum control" would be the new information of the
exact time to wait before the system has evolved to the desired results.

4.2 Two Photon Transition With Two Atoms
After getting physically expected results from the previous Jaynes-Cummings-like model, we next
decided to affect how the qubits interact with the photon field. In this next model, we explore how
the dynamics will change when the qubits interact with two photons at a time.

4.2.1 Definition an Equivalent JC & Closing the Algebra

We chose this next physical change because this corresponds to a2 and (a†)2 terms in the Hamil-
tonian. When the photon terms appear squared, this might result in effects related to non-linear
optics. In this case,

H2γ = (1/2)h̄ωσσ3+(1/2)h̄ωττ3+h̄ωN (N+1/2)+h̄λσ(a2)σ++a†2σ−)+h̄λτ (a2)τ++a†2τ−). (65)

It can be noted that the only difference compared to the 2-atom 1-photon model is substitution
of the interaction terms. However, similar to the two atom with one photon interaction model, the
commutator between the interaction terms prevent the algebra from closing. This can be further
supported by the expanded version of the sigma interaction commutator below.

[a2σ+, a
†2σ−] = (N2 +N)σ3 + (2N + 1)(1 + σ3) (66)

Similar to the expansions seen in the 1-atom Jaynes-Cummings section, the N2σ3 and Nσ3
terms being added to the Lie Algebra will produce an infinite number of terms. We used the
relation between (1 + σ3), σ3, and σ2

3 to rewrite the following commutator relation in terms of an
operator Mσ

Mσ = (N + σ3)2 + (N + σ3) (67)
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[a2σ+, a
†2σ−] = Mσσ3. (68)

It is important to note that this new Mσ is a C.O.M. for the system as it commutes with all
terms in the Hamiltonian. More specifically, it corresponds to the quanta of the σ-photon system
squared plus itself. Thus, we can define a new b and b† for the σ system using Mσ. Similarly, an
Mτ can be defined for the τ interaction terms where the σ3 terms are replaced by τ3. Using Mτ ,
we can redefine the τ -photon interaction terms as new c and c†. These new operators are outlined
below

b =
a2σ+
Mσ

(69)

b† =
a†2σ−
Mσ

(70)

Mτ = (N + τ3)2 + (N + τ3) (71)

c =
a2τ+
Mτ

(72)

c† =
a†2τ−
Mτ

. (73)

It is important to note, that in this model we will be making the assumption the commutator
between interaction term operators (b,c,b†,c†) of different atoms equal 0. Similar to the the 2-atom
Jaynes-Cummings, we will need to use the local C.O.M.s (Mσ and Mτ ) to create a global C.O.M.
because in terms of the local C.O.M.s the Lie algebra will not close.

In order to accomplish this task, we started with a general structure for the global C.O.M.
defined as M2γ

M2γ = Mσ +Mτ + f(N, σ3, τ3) (74)

Where f(N, σ3, τ3) is a function of N , σ3, and τ3 used to conserve the quanta of the system. The
reason we choose a function of these terms is these terms correspond to measuring the quanta of
the system which should be conserved. Now the question becomes one of determining the function
f . First, we defined f to cancel mutual terms betweenMσ andMτ . This will cancel out a N shared
between the two. Lastly, through utilizing the the commutator relations between the interaction
terms and the global M2γ we find

f(N, σ3, τ3) = σ3τ3 −N. (75)

In this case the global C.O.M. can be simplified to clearly see the conserved quanta

M2γ = (N + σ3 + τ3 + 1)(N + σ3 + τ3)− 2. (76)

Now the global C.O.M. mirrors the form of the local C.O.M.s. This shows M2γ is the quanta
of the system squared plus the quanta of the system with a scaling factor. With all operators for
the system defined, we can define the 2-γ transition Lie algebra below.

LieAlgebra = {
√
M2γ , b

†, c†, b, c, σ3, τ3} (77)

In terms of the Lie algebra of the system, the effective Hamiltonian becomes

H2γ = 1/2h̄∆σσ3 + 1/2h̄∆ττ3 + h̄ωN

√
M2γ + 1/4 + h̄λσ(b+ b†) + h̄λτ (c+ c†). (78)

One can notice the M2γ which contains the non-linear effects of N2 only appears underneath a
square root. Thus the effect of M is similar to a N, negating any non-linear affects.

Furthermore, this Hamiltonian is interesting because it’s commutator relations between opera-
tors mirror the results of the 2 atoms with 1 photon transitions. The main difference is seen in the
new definitions for the ∆’s which again are the effective detunings for the atoms with the photon
field

∆σ = ωσ − 2ωN (79)
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∆τ = ωτ − 2ωN . (80)

Compared to the 1-γ transition case, these new detunings are different from the 1-γ transition.
This further showcases the similarities to the previous section’s model. Knowing that these results
mirror the previous sections, we will not repeat derivations of coefficients αi and turn to the
implications associated with this similarity.

4.2.2 Results and Implications

The results associated with this particular model mirror the results for the previous model. For
this reason, we will avoid adding plots and focus more on the implications.

In this model, both atoms interacting with two-photons at a time is just equivalent to interacting
with a photon at twice the frequency. This can be seen if you replace 2ωN with a new variable
ω2N . For this new variable, the field is twice as energetic and the Hamiltonian is now identical
to the one-photon transition case. What this model shows is the fact that we must attempt to
remove the symmetry of the interactions between the atoms and the field if we hope to affect the
non-direct interactions between the atoms. Thus, in the next section we shall see what happens
when one atom has a 1-γ transition and the other a 2-γ transition.

4.3 Mixed Photon Transitions Between Two Atoms
In a last attempt to impose quantum control in a Jaynes-Cummings-like system, we focused on
an asymmetric case. In the case of two atoms where one has a 1-γ interaction and the other has
a 2-γ interaction, we wanted to see whether this asymmetric photon requirement would result in
new effects between the two atoms.

4.3.1 Defining the Hamiltonian & Closing the Algebra

The first step toward determining the dynamics of this new system is to define the Hamiltonian.
To describe these field-atom interactions, one atom will have interaction operators with a and a†
while the other depends on a2 and a†2. Thus, the Hamiltonian is defined below

Hmix = (1/2)h̄ωσσ3 + (1/2)h̄ωττ3 + h̄ωN (N + 1/2) + h̄λσ(a2σ+ +a†2σ−) + h̄λτ (aτ+ +a†τ−). (81)

The necessity of a C.O.M> for the Hamiltonian is obvious. Even utilizing the assumption that
the different atom interaction terms commute, we now have both commutator problems outlined
previously. Specifically the commutator relation between the sigma interaction terms produces
infinite terms. The same can be shown for the tau interaction terms. Seeing as this issue has
occurred with most Jaynes-Cummings-like models, we will lay out a generic way to close Lie
Algebras for these multi-atom models:

1. Determine the local constants of motion associated with the individual atom-field interac-
tions.

2. Sum the local constants of motion and subtract off any terms mutual to both, such that it
only appears once.

3. Add a generic f(N, σ3, τ3) which is defined as a sum of all combinations of N, σ3 and τ3.
(Note: The highest order of N should be the same as the highest order associated with a and
a†)

4. Next, apply the new global C.O.M to similar states for each atom (eg a2σ+ and aτ+)

5. Use the relations between the terms associated with the sum of the local C.O.Ms to make a
system of linear equations for the coefficients associated with the operators in f .

6. Solve and verify the new C.O.M for the remaining interaction terms. Due to the symmetry
of σ3, τ3, and N , this always commutes.
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Applying this generic method to our varied photon-transitions Hamiltonian we can find a
function, f , that created a C.O.M. that we will call Mmixed.

f(N, σ3, τ3) = c2N + c2σ3 +
c2
2
τ3 + σ3τ3 +Nτ3 (82)

Mmixed = N2 + 2Nσ3 +Nτ3 + σ3τ3 + (1 + c2)N + (1 + c2)σ3 +
(1 + c2)

2
τ3 + 3/2 (83)

These solutions are dependent on a scalar factor c2. when writing our generic f to create
our C.O.M, c2 corresponded to the σ3 operator. In this particular model, the conditions set by
the commutator relations between f(N, σ3, τ3) dictate that the non-linear interaction term must
commute with f while the linear term must account for extra terms. Thus, the τ interaction term
commuted with the σ3 so it’s value had less restrictions than other terms. We set c2 equal to zero.

With this new C.O.M., we define b’s and c’s as we normally do where they will use their local
C.O.M.s. In this model, b’s will correspond to σ3 and c’s will correspond to τ3.

b =
a2σ+√
Mσ

(84)

b† =
a†2σ−√
Mσ

(85)

c =
aτ+√
Mτ

(86)

c† =
a†τ−√
Mτ

(87)

As with the previous model, we will assume that the commutator relations between b and c
go to zero because the atoms aren’t interacting. Lastly, we define our model such that Mmixed is
comparable to the Mσ and Mτ . This allows us to write our final Hamiltonian in terms of Mmixed

alone. It is important to note that these operators maintain the same relations as the other models.

Hmixed = (1/2)h̄∆σσ3+(1/2)h̄∆ττ3+h̄ωN
√
Mmixed+h̄λσ

√
Mmixed(b+b†)+h̄λτ

√
Mmixed(c+c†)

(88)
The difference between this and the other two Jaynes-Cummings-like Hamiltonians lies in the

definition of the detuning. These definitions also showcase the fact that this model destroys any
nonlinear effect for a generic state.

∆σ = ωσ − 2ωN (89)

δτ = ωτ − ωN (90)

With these definitions of the detunings, you can see the model is equivalent to one atom
interacting with a photon that is twice the frequency of the other’s photon. In the next section,
we will talk about the general results as plots for this particular model are difficult to obtain with
Mathematica.

4.3.2 Results & Implications

In this model we see that despite the fact that the atoms interact with a different number of
photons, as long as the field is assumed sufficiently excited no interesting physics will occur. In
this case, sufficiently excited refers to a field that has enough photons to create all possible states.
All the alphas derived are oscillatory because they are functions of hyperbolic sines and cosines.
Thus, the corresponding expectation values of atomic transitions are periodic and lend themselves
to limited quantum control. Furthermore, the Jaynes-Cummings model is an approximation of
the Quantum Rabi. This leads to some of the full physical description being lost. When we close
the Lie algebra, our Hamiltonians in terms of a global C.O.M is a Jaynes-Cummings-like model
approximation.
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However, as mentioned previously, this originally expectation values assume a sufficiently ex-
cited photon field. In this model especially, there are implications that choosing states that cor-
respond to insufficiently excited fields can lead to more interesting physics. Furthermore if the
parameters such as frequencies or interaction factors were varied in non-periodic ways, more in-
teresting physics can be obtained. In the next section we explore the effects that time-dependent
factors can have on the Jaynes-Cummings Model. We specifically look at the original Jaynes-
Cummings Models to begin to understand they time-dependent dynamics.

4.4 Time-Dependence In the 1-Atom 1-Photon Transition
The analytic Mathematica solver used to originally solved the differential alpha equations from the
Wei-Norman method is not robust enough to tackle multiple time-dependent function. To counter
this, we utilize numerical differential solvers for selective time ranges. In this study we utilized
time dependence in the atom and field’s frequencies (ωσ and ωN ) as well as the interaction factor
(λ). As a time-dependent Jaynes-Cummings Model is relatively unexplored we took a systematic
approach to understanding the dynamics. We decided to plot expectation values of σ3. This was
a natural choice because the expectation value shows one how the state oscillates between it’s
allowed values. In short, if we can get this plot to get trapped in a specific value, we can verify
that a degree of quantum control can be imposed.

We first by decided which time-dependence to use in our parameters vary. These included:

1. Constant

2. Linear t

3. Quadratic t2

4. Periodic (Sine and Cosine)

5. Exponential et

6. Logarithmic. ln[t]

To decide how the function should be varied, we initially varied one parameters at a time. Then
we varied two parameters at time while holding one at a constant. After primary plots had been
made, we saw that the effects of changing one frequency while the other remained constant were
constant. Thus, we decided to only focus on changes in the field frequency to obtain more results.

Below are specific numeric results that showcase a state transitioning from excited to the ground
state and being completely trapped in the ground state after a certain time. This corresponds to
the following parameter functions.

Figure 18: <σ3(t)> as a function time in units inversely proportional to the interaction factor.
The results of this graph are specific for time-dependence in one frequency and the interaction
factor. The graph collapse to a value close to −1. This showcases control over the transition of
the atom.

ωσ[t] = 3 (91)
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ωN [t] = Cosh[t] (92)

λσ[t] = t (93)

One can note that Fig. 18 gets stuck at a value just above −1 with only slight oscillations.
When examining the functions that made this graph you can see that the frequency of the field
increases more rapidly then the interaction factor. So physically, the rate of interaction cannot
make up for the mismatch in frequencies. Thus, after the time of transition, it as if the field and
atom are no longer interaction.

In Fig. 19 below, we can see a graph where the value is stuck extremely close to zero. Although
this value doesn’t correspond to an pure state (excited or ground), it does correspond to a super-
position. In this case the atom and field are maximally entangled. For this case, the functions are
showcased below:

Figure 19: <σ3(t)> as a function time in units inversely proportional to the interaction factor.
The results of this graph are specific for time-dependence in the field frequency alone. The graph
collapse to a value close to −.01. This showcases control over the transition of the atom from
excited to an almost completely entangled superposition.

ωσ[t] = 1 (94)

ωN [t] = Cosh[t] (95)

λσ = 1 (96)

Fig. 19 again shows a situation where the detuning of the system becomes sufficiently greater
than the interaction factor after a certain time. The time it takes for the system to reach this
condition happens to correspond to when the system becomes maximally entangled.

From these two promising results we first see that quantum control can be enforced for systems
once the parameters are allowed to vary in time. However, the mechanics behind this quantum
control are rather simple:

1. The interaction factor tends to zero (not shown)

2. The frequency difference becomes comparable to the interaction factor.

In the first case, once the interaction factor tends to zero it is apparent that no interactions
can take place and the state is frozen. In the second case, the interactions are again stopped.
However, now it is due to the fact that the energy mismatch prevents transition due to the specific
quanta needed. Unfortunately, in both cases, these results should be expected as they correspond
to the two logical cases that would lead to a state being confined to a particular value. Thus,
these graphs serve as verification of expected behavior. They are interesting in the fact that these
chosen functions can be altered by scalars to affect the time of transition trapping or the specific
value they get trapped in.

The next logical step, now that the dynamics of Jaynes-Cummings are understood, would be to
apply time-dependence to a two-atom system. However, plotting the expectation values associated
with those atomic transitions become harder to read as you can not distinguish between different
ordering of states (eg |e, g > and |g, e >) when plotting the sum. Thus we must introduce the
notion of inter-particle purity to determine how entangled we can get a state in time.
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4.5 Inter-particle Purity of Two-Atom One-Photon Transition
The term "Inter-Particle Purity" was coined in the 1980s as a method to quantize the entanglement
of a system.[HS08] When first introduced, it was for system described in position representation
and not abstract kets. Thus, the first thing to be done was to translate the integral based equation
to a summation. From that point, we can then solve the equation analytically in terms of generic
coefficients of our evolved two-state ket. With the Inter-Particle Purity being defined as "K(t)"
the general equation is defined for a generic two spin state |Ψ(t) >.

K(t) = 1− 2|C1(t)C4(t)− C2(t)C3(t)|2, (97)

|Ψ(t) >= C1(t)|e, e, n > +C2(t)|e, g, n+ 1 > +C3(t)|g, e, n+ 1 > +C4(t)|g, g, n+ 2 > . (98)

It is important to note that K(t), as originally defined for wave functions, is bounded between
1 and 0. A value of 1 corresponds to no entanglement. A value of zero corresponds to a maximally
entangled infinite system. This comes from its definition being defined for continuous variables. In
our discrete two two-state system, the value of maximal entanglement corresponds to K(t) = 1/2.

To ensure all cases have been thoroughly checked, we started with three different states listed
below. We then evolved them with our unitary operator for the following Lie Algebra and calculated
K(t).

LieAlgebra = {M2−atom, b
†, c†, b, c, σ3, τ3} (99)

1. Single State: |e, e, n >

2. Separable State: 1√
2
(|g, e, n+ 1 > +|g, g, n+ 2 >)

3. Entangled State: 1√
2
(|g, e, n+ 1 > +|e.g, n+ 1 >)

The mathematics of the result have been left out of the paper but the results bode poorly for the
notion of creation of entanglement. For the two non-entangled initial states (single and separable),
K(t) = 1. These results were found completely analytically so changing parameters should have no
effect on this relation. This means that a state that starts non-entangled will remain non-entangled
for all time. Similar results are found for the case of state starting entangled. After simplification,
one finds K(t) = 1/2 for completely generic coefficients of the evolved state. This corresponds to
entangled states maintaining entanglement for all time. The underlying reason for this is the fact
that C1(t)C4(t)−C2(t)C3(t) is either 0 (non-entangled) or 1√

2
(entangled). We found this was due

to the inherent symmetry that came from having a highly excited photon field.
When that photon-field is assumed, all states are allowed and the dependence on the coefficients

runs the risk of canceling itself out. To counter this, we next went to a case of a non-entangled state
that has a photon-field with an M = 2. This specific ket is defined as 1√

2
(|g, e, 0 > +|g, g, 1 >). As

you can note, the field is exhausted (set to 0) before a double excited state can be formed. Thus,
when the state is evolved there will be only three coefficients, and K(t) = 1 will only occur when
the final evolved state is in a pure state.

When analytically calculating this inter-particle purity, numerical errors occurred and this is
currently being investigated. What we would expect is an oscillatory inter-particle purity. It
would range and start at 1 and go as low was 1/2. This minimal value would correspond to
1√
2
(|e, g > +|g, e >)|0 >, which is actually a Bell State.

5 Conclusion
Although the ten weeks has gone by rather fast, it is apparent that a lot of analytic work has been
accomplished for the Jaynes-Cummings Model. We first verified that the Wei-Norman Method
could be applied to this particular Quantum Optics Model. It was this fact that allowed us to later
add time-dependence in the parameters.

After solving the original Jaynes-Cummings Model and recovering results for literature, we
were able to solve several variations of the model. These included the addition of a second atom,
changes in the interaction operators and a combination of both. In every case, we saw that

23



the dynamics between the atoms and field remained similar but for different parameter values.
Despite this fact, we were able to determine a general system for solving any Jaynes-Cummings
like model. This general method relies heavily on the dynamics and C.O.Ms found for the one
and two photon transition models. We also found that true non-linearity is more complex than a
change in interaction terms.

Once we had the models analytically solved, we set out to determine how quantum control
could be imposed on the system. The first attempt revolved around varying the parameters in
time. These results served a confirmation of the two ways to stop interactions between the field
and photon. The first being a large detuning and the second being a low interaction factor. Despite
being simplistic, full quantum control was achieved through the creation of superpositions and
state transition in the original Jaynes-Cummings Model. Lastly, we moved away from checking the
specific transitions of states and saw how we could impose quantum control to create entanglement.
The general results were rather unexpected, but showcase the limitations of the model as far as
the symmetry in the system with a sufficient photon field. Once that field is insufficiently excited
for full transitions, results should reveal that entanglement can be created in time. Overall, these
results showcase that quantum control can be imposed in Jaynes-Cummings like models for specific
cases.

With regards to future work, one could explore numerical solutions for more complex time-
dependent functions. Also, implementing time-dependence in a two-atom model could prove valu-
able as the detuning between the atoms can now vary in different ways. With regards to the further
Jaynes-Cummings-like model, if a field is described by a N2 in the Hamiltonian, this may result
in stronger non-linear effects. Lastly, in our Models, we approximate the local C.O.M.s for the
calculated global C.O.M. If the models were explored with their local C.O.M.s more interesting
physics could be uncovered at the price of more rigerous analytics.
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