C₃ and C₄ Species Changes Identified by δ¹³C values of soil organic matter in a Colorado prairie

Penelope Sinton
University of Colorado, Boulder

Tim Seastedt
University of Colorado, Boulder

Barry Bennett
University of Colorado, Boulder

Carl Bock
University of Colorado, Boulder

Jane Bock
University of Colorado, Boulder

Follow this and additional works at: https://scholarsarchive.byu.edu/wnan

Part of the [Anatomy Commons](https://scholarsarchive.byu.edu/wnan), [Botany Commons](https://scholarsarchive.byu.edu/wnan), [Physiology Commons](https://scholarsarchive.byu.edu/wnan), and the [Zoology Commons](https://scholarsarchive.byu.edu/wnan)

Recommended Citation

Sinton, Penelope; Seastedt, Tim; Bennett, Barry; Bock, Carl; and Bock, Jane (2000) "C₃ and C₄ Species Changes Identified by δ¹³C values of soil organic matter in a Colorado prairie," *Western North American Naturalist*: Vol. 60 : No. 4 , Article 12.
Available at: https://scholarsarchive.byu.edu/wnan/vol60/iss4/12

This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Western North American Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
Human activities have caused wide-scale alteration of grassland communities. Cattle grazing, irrigation, and fire suppression have been practiced along the Front Range of Colorado for about 130 yr. In addition, many nonindigenous plant species have been introduced into the area (Bennett 1997). Increased atmospheric deposition of inorganic nitrogen (Williams et al. 1996), in conjunction with increases in atmospheric CO$_2$ and climatic changes, are also believed to be influencing ecosystem processes of grasslands that historically contained both C$_3$ and C$_4$ species, with C$_3$ plants more abundant in mixed-grass than in native tall- or shortgrass prairies. The δ^{13}C signatures were not significantly different for grassland types; however, management treatments (grazing, no grazing, haying) significantly influenced changes in soil δ^{13}C signatures from the 0–10 cm to 10–20 cm soil depth intervals. We observed a correlation ($r = 0.63$) between isotopic values of surface soils and percent native species in total vegetation cover. Overall, the community type with the lowest percentage of nonindigenous species cover had the most enriched δ^{13}C signature.

Sites currently grazed by prairie dogs, cattle, or both herbivores had stronger C$_3$ signatures, indicating that grazing may have increased C$_3$ plant productivity in these communities at the expense of C$_4$ grasses. This finding differs from studies of native shortgrass steppe where grazing has the opposite effect on the relative abundance of these 2 functional groups of plants. This result, along with the correlation between C$_3$ isotopic values and nonnative vegetation abundance, provides evidence that management practices that maintain dominance of C$_4$ grasses should be encouraged.

Key words: δ^{13}C, C$_3$, C$_4$, carbon, grassland, Colorado, prairie.
Long-term decomposition rates of C\textsubscript{3} and C\textsubscript{4} plant substrates are unknown, which adds some uncertainty to the analyses. However, the relatively large difference in carbon isotope signatures of the 2 plant groups should dominate soil organic matter signatures (Dzurec et al. 1985, Kelly et al. 1993, Boutton 1996). Assuming that soil organic matter is derived from past plant associations and not deposited as loess, we can therefore estimate relative historical C\textsubscript{3} and C\textsubscript{4} species abundances by assuming that the isotopic signature is correlated to relative productivity of each plant group (Dzurec et al. 1985, Wang et al. 1993).

Average age of soil carbon in temperate grassland soils is variable. As a general rule, less than half of soil organic matter is composed of recalcitrant materials, humus, and precursors of humus that may average over 1000 yr in age. The remainder is composed of relatively young material produced in the last decades (Parton et al. 1996). Older carbon is also found deeper in the soil (e.g., Tiezsen et al. 1997). Identifying the photosynthetic pathway source of this carbon therefore provides information on the historical composition of the area as well as an indication of how much the current community may differ from the past.

C\textsubscript{4} species comprise most native grass species in the Boulder area (Bennett 1997). They have historically dominated both tallgrass and shortgrass prairies and are a significant component of mixed-grass prairie (Brown 1989). We hypothesize that (1) the tallgrass prairie will exhibit the strongest C\textsubscript{4} carbon isotopic signature because this community type is believed to have the strongest dominance of warm-season (C\textsubscript{4}) grasses; and (2) given that all nonnative plants currently abundant in the Boulder area are C\textsubscript{3} species, we expect the strongest C\textsubscript{3} carbon isotopic signature will be found in nonnative vegetation areas. To test these hypotheses, we used carbon isotope signatures of soil organic matter as an index of change in the community composition of C\textsubscript{3} and C\textsubscript{4} plant species (e.g., Boutton 1991). We also evaluated whether isotopic signatures in the soil would identify functional shifts in vegetation due to grazing and haying activities.

STUDY SITE AND METHODS

Plots were sampled in Boulder Open Space grasslands (ca 40°N, 105°W, 1645 m elevation) used in Bennett’s (1997) study of grassland diversity. Precipitation averages about 46 cm per year, and soils are mostly cobbly clay loams or sandy clay loams classified as Aridic Argustolls (Moreland and Moreland 1975). These grasslands were formed on alluvial and colluvial deposits generated from Pleistocene outwash from the Front Range. Parent materials are of igneous or metamorphic composition and are noncarbonaceous. Shale sites or sites with suspected carbonate materials were excluded from the study. Native vegetation in the area ranges from tallgrass sites dominated by Andropogon gerardii (C\textsubscript{4}) and Panicum virgatum (C\textsubscript{4}), to mixed-grass sites dominated by Agropyron smithii (C\textsubscript{4}), Stipa comata (C\textsubscript{3}), and Koeleria pyramidata (C\textsubscript{4}), and grazed mixed-grass areas with extensive Bouteloua gracilis (C\textsubscript{4}) and Buchloe dactyloides (C\textsubscript{4}). These native grasses are often accompanied or dominated by non-native C\textsubscript{3} species such as Bromus spp., Poa pratensis, and Alyssum minus (Bennett 1997). Bennett’s data were summarized by Craig et al. (in press), who found that tall-, short-, and mixed-grass prairies consisted of 45%, 44%, and 29%, respectively, nonindigenous plant species. Hay meadows on former tall- and mixed-grass prairies averaged 85% nonnative species in terms of percent vegetation cover.

Plots were located in areas that were (1) grazed by cattle, prairie dogs, or both herbivores; (2) hayed; or (3) in exclosures where there was no grazing or haying for about the last decade. We classified plots as either mixed-grass or tallgrass prairie. A subset of the mixed-grass sites had vegetation characteristics consistent with shortgrass steppe, but we lacked sufficient replicates of these sites for a separate analysis.

Soil cores of 1.7-cm diameter to a depth of 20 cm were obtained at each site. Of the 66 plots surveyed by Bennett (1997), only 42 could be sampled in this manner. Sites with shale substrate were excluded from analysis because of high CaCO\textsubscript{3} content. We assumed there was very little or no CaCO\textsubscript{3} at sites with soils derived from noncarbonaceous parent material. Each soil core was divided into samples 0–10 cm deep and 10–20 cm deep. Soil samples were air-dried, and the dry soil was shaken onto a series of increasingly smaller-diameter sieves. Visible particulate debris such as
roots and rocks was manually removed. Samples were ground to a fine powder and combusted in a VG Isochron mass spectrophotometer to measure the amount of 13C present.

Results here are expressed in standard δ13C notation where

$$\delta^{13}C{\%e} = \left[\frac{R_{\text{sample}}}{R_{\text{standard}}} - 1\right] \times 10^3$$

and $R = {^{13}}C/{^{12}}C$ (Craig 1957). All samples are reported relative to the international PDB standard (O’Leary 1988). Repeated measurements of a soil standard yielded a precision of 0.1‰. We performed two 2-way analysis of variance (ANOVA) procedures to test for isotopic differences attributable to grassland type and land use treatment. We compared average isotopic value for the entire 20-cm profiles (weighted equally for each horizon) in 1 analysis, and in the 2nd we tested for changes in δ13C values between the 0–10 cm and 10–20 cm cores related to grassland type and land use effect. This 2nd test assumed that larger differences in the top-to-bottom δ13C values would potentially identify more recent changes in the functional composition of grasslands. Younger carbon is assumed to dominate surface horizons, while older, more recalcitrant forms of carbon occupy lower horizons (Nadelhoffer and Fry 1988). We used the Student-Newman-Keuls multiple range test when significant differences were detected to identify cell differences in land use type (SAS 1988).

We also used a Pearson’s correlation analysis to relate our soil isotope values with summary findings from Bennett’s (1997) vegetation analysis. Isotopic values from each plot were correlated with the value of native plants as percent of total vegetation cover.

Results

The 0–10 cm depth interval averaged δ13C values of about –21‰, with a range from –16.3‰ to –23.8‰, while soils at lower depths exhibited a less negative δ13C signature and ranged from –13.8‰ to –22.7‰ (Table 1). Surprisingly, soils with the highest 13C content were from ungrazed mixed-grass sites. Grazed mixed-grass sites with or without prairie dogs, or sites identified as potential shortgrass sites, all showed similar values (Table 1).

Hay meadows are dominated by nonnative C$_3$ grasses (Bennett 1997) and therefore were expected to have a stronger C$_3$ influence than soils of native grasslands; this trend was evident (Table 1). Grazing also produced significantly different δ13C values than ungrazed sites (SNK test; Fig. 1). Isotope values of grazed mixed-grass sites indicated a larger C$_3$ increase than did grazed tallgrass sites (Fig. 1), which produced a marginally significant ($P = 0.06$) interaction effect between treatment and prairie type.

Differences in isotopic abundance between upper (0–10 cm) and lower (10–20 cm) soil depths showed no effect due to plant community type, but did show a significant effect of treatment type ($F_{2,36} = 9.94, P < 0.001$) and a strong interaction effect ($F_{2,36} = 5.53, P = 0.008$) between community and treatment. Of the plant communities, tallgrass prairie showed the largest changes in isotopic abundance between upper and lower soil depths (Table 1). While this difference for tallgrass communities was maximized for hay meadows, the difference was minimized in hay meadows of mixed-grass sites, thereby producing the interaction (Table 1).

Table 1. Carbon isotope signatures from 0–10 and 10–20 cm deep soil samples from grasslands near Boulder, Colorado. Values are means with standard errors in parentheses.

<table>
<thead>
<tr>
<th>Grassland</th>
<th>Treatment</th>
<th>Number of samples</th>
<th>0–10 (\text{cm})</th>
<th>10–20 (\text{cm})</th>
<th>Difference (top–bottom)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tallgrass</td>
<td>Ungrazed</td>
<td>4</td>
<td>–20.6 (0.5)</td>
<td>–17.4 (0.2)</td>
<td>3.1 (0.4)</td>
</tr>
<tr>
<td></td>
<td>Grazed</td>
<td>3</td>
<td>–22.6 (1.3)</td>
<td>–20.2 (1.7)</td>
<td>2.4 (0.5)</td>
</tr>
<tr>
<td></td>
<td>Hay meadow</td>
<td>5</td>
<td>–23.7 (0.6)</td>
<td>–19.0 (0.6)</td>
<td>4.7 (0.5)</td>
</tr>
<tr>
<td>Mixed-grass</td>
<td>Ungrazed</td>
<td>10</td>
<td>–16.3 (1.4)</td>
<td>–13.8 (1.6)</td>
<td>2.5 (0.5)</td>
</tr>
<tr>
<td></td>
<td>Grazed (total)</td>
<td>13</td>
<td>–20.9 (0.6)</td>
<td>–18.3 (0.9)</td>
<td>2.6 (0.5)</td>
</tr>
<tr>
<td></td>
<td>(with prairie dogs)</td>
<td>6</td>
<td>–20.5 (1.2)</td>
<td>–17.4 (1.7)</td>
<td>3.0 (1.0)</td>
</tr>
<tr>
<td></td>
<td>(without prairie dogs)</td>
<td>7</td>
<td>–22.1 (0.6)</td>
<td>–19.2 (1.4)</td>
<td>2.9 (0.8)</td>
</tr>
<tr>
<td></td>
<td>(shortgrass)</td>
<td>3</td>
<td>–20.3 (0.9)</td>
<td>–18.8 (0.7)</td>
<td>1.5 (0.2)</td>
</tr>
<tr>
<td></td>
<td>Hay meadow</td>
<td>7</td>
<td>–23.8 (0.3)</td>
<td>–22.7 (0.3)</td>
<td>1.0 (0.3)</td>
</tr>
</tbody>
</table>
We observed a positive correlation between isotopic values and percent exotic vegetation at each site (Fig. 2). This relationship exists for the entire data set ($r = 0.62$), as well as when hayfields were excluded from the analysis ($r = 0.63$).

DISCUSSION

Changes in plant species composition can produce feedbacks that further alter ecosystem components (D’Antonio and Vistousek 1992, Bowman and Steltzer 1998). In particular, the shift from C4 to C3 species dominance in temperate grasslands is thought to be associated with higher levels of nitrogen availability (Wedin and Tilman 1996), which would benefit nitrogen-loving species, including many weeds. Understanding how changes in land use practices have affected particular grassland communities is difficult because the effects of one practice are often compounded with those of others. Collectively, these changes have undoubtedly created a new environment for remaining plant communities. At a minimum, these communities are clearly outside the historical range of variability in natural disturbance agents (such as fire) responsible for the vegetation composition occurring prior to European settlement (e.g., Hobbs and Huenneke 1992, Swanson et al. 1993).

We reject our 1st hypothesis that tallgrass communities in the Boulder area would exhibit the strongest C4 carbon isotope signature. Average isotopic signatures observed in soils from the Boulder area indicate that C3 grasses are present in all community types. Indeed, δ^{13}C values were very different from the average of $-13\%e$ reported for tallgrass soils in eastern Kansas (Smith and Johnson 1997). We conclude instead that Front Range tallgrass areas likely had a higher C3 species component than their eastern counterparts.

The more depleted δ^{13}C values in surface soils are consistent with increases in C3 species contribution to soil organic matter. These results correlated with Bennett’s (1997) findings, lending support to his suggestion of an overall shift in community dominance from C4 to C3 species in the grasslands around Boulder. We therefore accept our 2nd hypothesis that the C3 carbon isotopic signature is associated with nonnative (C3) vegetation. These observations are also consistent with other studies that suggest a trend toward more C3-dominated grasslands in North America (Tieszen et al. 1997). Causal mechanisms for these changes remain unidentified, but atmospheric nitrogen enrichment, fire suppression, and the introduction of a large number of nonindigenous C3 plants into the region could all contribute to the trend.

Results from this study suggest that we need to reconsider our preconceptions regarding the historic composition of tallgrass, mixed-grass, and shortgrass communities. Strongest C4 signatures in soils were not found in tallgrass sites, but in areas of currently ungrazed, mixed-grass prairie. These sites appear to have a higher contribution of warm-season C4 grasses than the tallgrass areas. Grazing by cattle, prairie dogs, or both species has increased the relative abundance of C3 species in all sites, but particularly in mixed-grass sites (Fig. 1). In the Boulder area, grazing in tallgrass prairie is often restricted to winter or early spring, which would favor the persistence of warm-season C4 grasses. Nevertheless, our data suggest that this grazing regime has resulted in an increase in relative C3 productivity.

Prairie dog colonies are known to favor forb growth over grasses (e.g., Whicker and Detling 1988) and should therefore enhance the C3 carbon isotopic signature. However, grazing by ungulates has been reported to enhance C4 species abundance in more xeric grasslands (Mulchunas et al. 1989, Frank et al. 1995). Our results indicate a consistent effect of grazing toward C3 species dominance. While interpre-
tations remain speculative, the increase in non-indigenous, largely C_3 species such as cheatgrass (*Bromus tectorum*) and a variety of forbs on these lands (e.g., Bennett 1997, Reever-Morgahan and Seastedt 1999) is hypothesized as the causal mechanism for the soil carbon isotope grazing response observed in the Boulder area. Indeed, the community type with the highest contribution of C_4 carbon to the soil, the mixed-grass prairie, correlated with the lowest percentage composition of non-indigenous species (29% vs. over 44% for all other sites) reported by Craig et al. (in press).

Changes in plant community composition will likely affect community productivity, soil carbon storage, and other ecosystem properties that can impact surviving prairie grasslands around the Boulder area. If the dominance of native, warm-season grasses in these systems is a priority management goal, more proactive measures to enhance C_4 grasses in this area are warranted.

ACKNOWLEDGMENTS

We thank Lynn Reidel and the Boulder Open Space Department for access to sites and for supplementary information. Isotopic data were obtained by Dan Ruess at the Colorado Laboratory for Environmental Mass Spectrometry at Colorado State University. Ideas expressed herein benefited from discussions with Alan Townsend and from comments and suggestions from several anonymous reviewers. This research was supported by an NSF-REU grant and the Undergraduate Research Opportunity Program at University of Colorado.

LITERATURE CITED

Received 31 August 1998
Accepted 3 December 1999