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EXPRESSION AND EVOLUTIONARY RELATIONSHIPS OF THE CHENOPODIUM
QUINOA 11S SEED STORAGE PROTEIN GENE

Marie R. B. Balzotti,* Jennifer N. Thornton,* Peter J. Maughan,* David A. McClellan,y Mikel R. Stevens,*
Eric N. Jellen,* Daniel J. Fairbanks,* and Craig E. Coleman1,*

*Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah 84602, U.S.A.;
and yDepartment of Biology, Brigham Young University, Provo, Utah 84602, U.S.A.

Quinoa (Chenopodium quinoa Willd.) is a food crop cultivated by subsistence farmers and commercial growers
on the high Andean plateau, primarily in Bolivia, Peru, and Chile. Present interest in quinoa is due to its tolerance
of harsh environments and its nutritional value. It is thought that the seed storage proteins of quinoa, particularly
the 11S globulins and 2S albumins, are responsible for the relatively high protein content and ideal amino acid
balance of the quinoa seed. Here we report the genomic and cDNA sequences for two 11S genes representing two
orthologous loci from the quinoa genome. Important features of the genes and the proteins they encode are
described on the basis of a comparison with homologous 11S sequences from other plant species. Gene expression
and protein accumulation determined via reverse transcriptase real-time PCR and SDS-PAGE analyses are
described. Additionally, we report the phylogenetic relationships between quinoa and 49 other species by using
the coding DNA sequence for the well-conserved 11S basic subunit.

Keywords: quinoa, RT-PCR, 11S globulin, seed storage protein, gene expression.

Introduction

Quinoa (Chenopodium quinoa Willd.) is a dicotyledonous
pseudocereal native to the Andean Altiplano (high plains). It
is an important cultural and dietary component of the Quechua
and Aymara people, who have lived on the Altiplano for cen-
turies (Risi and Galwey 1984). Quinoa thrives in a wide variety
of environments extending from mountain valleys and coastal
foothills to the semiarid and cool Andean Altiplano. Ca. 12%–
14% of the dry mass of quinoa seed is protein (Cardoza and
Tapia 1979; Chauhan et al. 1992), and its amino acid com-
position exceeds the Food and Agriculture Organization’s rec-
ommendations for human protein consumption (Ruas et al.
1999). The percent protein in quinoa seed is high compared
with that in the seeds of cereal crops such as rice, corn, and
millet (Charalampopoulos et al. 2002). Seed storage proteins
are thought to play a vital role in determining the nutritional
value of quinoa seed (Brinegar 1997).

Storage proteins accumulate in developing seeds as a source
of nitrogen, carbon, sulfur, and amino acids for use in germi-
nation and growth of the developing seedling. These protein
reserves are stored in the cells of the endosperm and embryo
in protein storage vacuoles or specialized aggregates called pro-
tein bodies, which are assembled within the endoplasmic retic-
ulum (Herman and Larkins 1999). Seed storage proteins are
generally classified according to their solubility: albumins, glob-
ulins, prolamins, and glutelins, which are soluble in water, saline
solutions, alcohol, and alkali solutions, respectively (Osborne
1924). They are further classified on the basis of their sedimen-
tation coefficients (S20, W). Globulins generally fall into two

major groups based on these coefficients: the 7–8S vicilin type
and the 11–12S legumin type. Because legumin-type seed stor-
age proteins vary in size, the 11–12S globulins are referred to
collectively in other species as legumins.

The nucleotide sequence of genes encoding legumins has
been reported for economically important seed crops such as
rice (Okita et al. 1989; Wen et al. 1989; Takaiwa et al. 1991),
oat (Shotwell et al. 1988; Schubert et al. 1990; Tanchak et al.
1995), maize (Woo et al. 2001; Yamagata et al. 2003), and
soybean (Momma et al. 1985; Utsumi et al. 1987; Nielsen
et al. 1989; Xue et al. 1992), and the crystal structure of an
11S globulin from soybean has been determined (Adachi et al.
2003). The 11S globulin is a hexamer consisting of six pairs of
acidic and basic subunits, with each subunit pair connected by
a disulfide bond. It is translated as a single precursor containing
acidic and basic subunits as well as a signal peptide responsi-
ble for translocation of the precursor into the endoplasmic re-
ticulum (ER). The 11S proprotein assembles as a trimer in the
ER and is transported to the vacuole via the Golgi apparatus.
In the vacuole, the proprotein is cleaved by asparaginyl endo-
peptidase to yield the acidic and basic subunits connected by a
disulfide linkage. The hexamer assembles directly after this
cleavage event (Dickinson et al. 1989).

The origin and early evolution of legumin structure has
been discussed by Shutov and Bäumlein (1999), who describe
legumin evolution from a germinlike ancestor. After diver-
gence of seed storage proteins into vicilin and legumin classes,
each independently acquired their storage-related properties.
Seed storage proteins and analogous proteins seem to have an
ancient history, as they are present in the early progenitors of
plants, including mosses and fungi (Shutov et al. 2003). Thus,
these gene sequences may prove useful as phylogenetic markers
in molecular evolution studies and may provide insight into
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evolutionary modifications under the selective constraints of
either better storage capabilities or degradation. The study of
conserved and variable regions and how they relate to struc-
ture and metabolism may provide valuable information about
how these protein sequences may be altered and improved for
nutritional purposes in quinoa and other species.

The 11S globulin and the 2S albumin are the two major
storage proteins in quinoa seed (Brinegar 1997). The 11S glob-
ulin in quinoa has a typical 11S quaternary structure, with an
estimated native molecular mass of 320 kDa. The acidic and
basic polypeptides have average relative molecular masses of
35.5 and 22.5 kDa, respectively (Brinegar and Goundan 1993).
Here we report the genomic and cDNA sequences of two or-
thologous 11S genes from quinoa. We present data on 11S gene
expression during seed development and the corresponding
accumulation of 11S globulin within the seed. Coding DNA
sequences were used to conduct a phylogenetic study between
the 11S sequence in quinoa and the homologous seed storage
proteins of diverse species. We discuss legumin molecular evo-
lution in light of the results of our analysis.

Material and Methods

Plant Materials

Quinoa Real was grown under greenhouse conditions at
Brigham Young University. Tissue for use in DNA extractions
was collected from the first two true leaves of 2- to 4-wk-old
plants. Harvested tissue was immediately frozen and stored at
�80�C. Quinoa accessions NL-6, KU-2, Maniqueña, Mocko,
Ollague, Ratuqui, Sayaña, Chucapaca, and 0654 were planted
simultaneously and grown under greenhouse conditions. Tem-
peratures were 20�–25�C during the day and 15�–18�C at
night, and plants were exposed to 12 h of daylight. Seed was
collected at 8-d intervals after anthesis until maturity from each
accession and was immediately frozen and stored at �80�C.

cDNA and Genomic Sequencing

Genomic DNA was extracted from quinoa Real according
to the protocol reported by Saghai-Maroof et al. (1984). An
initial fragment of the quinoa 11S gene was obtained by am-
plification of genomic DNA using degenerate PCR primers de-
signed from a partial quinoa 11S amino acid sequence (Brinegar
and Goundan 1993) as well as an alignment of a cDNA se-
quence from Amaranthus hypochondriacus (Barba de la Rosa
et al. 1996). The forward primer sequence was 59-AATGGKG-
TGGARGARACYATTTGC-39, and the reverse was 59-TGT-
KKGCGTTKAGGTTSYAGTG-39. The gene fragment was
used as a probe to screen the quinoa developing seed cDNA
library reported by Coles et al. (2005). Positive clones were se-
lected and their identities confirmed by Southern blotting.
Two clones homologous to 11S genes from other species were
isolated from the cDNA library and have been assigned Gen-
Bank accession numbers AY562549 and AY562550. A quinoa
bacterial artificial chromosome (BAC) library was screened as
previously described, and a second nonoverlapping clone was
identified in addition to the clone already reported by Stevens
et al. (2006). The 11S genomic and cDNA inserts within posi-
tively identified clones were sequenced by primer walking at

the Brigham Young University DNA Sequencing Center (Provo,
UT).

RNA Extraction and Relative Quantification

Seeds were ground to a fine powder in liquid nitrogen, and
total RNA was extracted using an RNeasy Plant Mini Kit
(Qiagen, Valencia, CA). The RNA was quantified using a
NanoDrop ND-1000 spectrophotometer (NanoDrop Technol-
ogies, Wilmington, DE). Primers and probes were designed
for the 11S gene and the GAPDH gene: 11S forward 59-GGC-
GGTCGCTTCCAAGA-39, reverse 59-TTGCGAAAATGT-
GGCCTTGAC-39, probe 59-CCAACACCAGAAGATCA-39;
GAPDH forward 59-GGTTACAGTCATTCAGACACCA-
TCA-39, reverse 59-AACAAAGGGAGCCAAGCAGTT-39, probe
59-CGCTTCCTGTACCAC-39. Using the GAPDH gene as an
endogenous control, we quantified multiplexed RNA samples
by using a TaqMan One-Step RT-PCR Master Mix Reagents
Kit on a 7300 Real-Time PCR System (Applied Biosystems,
Foster City, CA). Each sample contained 0.5 mg of total RNA.
The samples were held at 48�C for 30 min, heated to 95�C
and held for 10 min, followed by 40 repetitions of tempera-
tures at 95�C for 15 s and 60�C for 60 s.

Globulin Extraction, Quantification, and
Separation by SDS-PAGE

Fifty milligrams of seed collected at 8-d intervals after an-
thesis was ground to a fine powder, and 500 mL of water was
added to each sample. The samples were shaken at 4�C for
more than 1 h and centrifuged at 13,000 g, and the superna-
tant containing the albumin fraction was removed. The pellet
was washed twice, using the same procedure described above,
and dried. To each pellet, 400 mL 0.5 M NaCl/50 mM Tris-
HCl, pH 8.0, was added. The suspension was shaken at 4�C
for more than 1 h and was centrifuged at 13,000 g, and the
supernatant containing the globulin fraction was collected
into separate tubes. Total protein in the globulin fraction was
quantified using a BCA Protein Assay Kit (Pierce, Rockford,
IL) on a NanoDrop ND-1000 spectrophotometer. The sam-
ples were diluted 1 : 2 with Laemmli Sample Buffer and sepa-
rated with SDS-PAGE on Ready Gels (BioRad, Hercules, CA).
Gels were fixed overnight according to the manufacturer’s in-
structions and visualized using Flamingo Fluorescent Gel Stain
(BioRad) under UV light.

Taxonomic Sampling and Sequence Alignment

Legumin sequences from 50 different species of plants were
assembled using MEGA3 software (Kumar et al. 2004). These
species and the GenBank accession numbers for their legumin
sequences are listed in table 2. Coding DNA sequences were
downloaded from GenBank. Using the amino acid sequence
of the 11S seed storage protein from Chenopodium quinoa
(GenBank accession no. AAS67037) as a query sequence, we
preformed a BLASTp search (Altschul et al. 1990). Only legu-
min sequences from different plant species with E values less
than 1e-10 were chosen, as to include sequences substantially
similar and likely related by descent to the 11S gene in quinoa.
One coding DNA legumin sequence from each species, except
for quinoa and species from the Fabaceae family, was selected
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on the basis of similarity to the quinoa 11S sequence. Two ma-
jor legumin genes are present in many species in the Fabaceae
family (Yagasaki et al. 1997), and sequence information for
both genes from these species, if available, was included in the
analyses. The two quinoa sequences included in the analysis
corresponded to the coding DNA sequences of cDNA clones
17B7 and 8B14 (GenBank accession nos. AY562549 and
AY562550, respectively). The legumin basic subunit, a well-
conserved sequence region, was chosen to improve the align-
ment because distantly related sequences were being compared.
The selected coding DNA legumin sequences were translated
into amino acid sequences by using MEGA3. Amino acid se-
quences were aligned with CLUSTAL W using the BLOSUM
matrix and used as a template for the nucleotide alignment.
CLUSTAL W performs multiple sequence alignments of nu-
cleotide or protein sequences by using a progressive alignment
algorithm including a gap cost model, which penalizes inser-
tions and deletions according to a linear function and sequence
similarity, for construction of a guide tree (Thompson et al.
1994).

Phylogenetic Reconstruction

Trees were constructed using distance, maximum parsi-
mony, and Bayesian methods. Branch support of parsimony
and Bayesian reconstructions was tested using bootstrap-
ping and posterior probabilities, respectively. MODELTEST
(Posada and Crandall 1998) was used to select the most ap-
propriate likelihood-based nucleotide substitution model.

Distance, maximum parsimony, and Bayesian analyses are
three kinds of tree reconstruction methods that rely on differ-
ent assumptions. Neighbor-joining is a distance method that
expresses distance as a fraction of sites that differ between se-
quences. Maximum parsimony assumes that the tree gener-
ated by the fewest number of sequence changes between taxa
is the most likely one. Bayesian analysis relies on the concept
of posterior probabilities, based on a postulated model of evo-
lution that represents the probability of the relationship given
the data. Trees are generated on the basis of the model and the
sequence alignment. Periodic sampling, in this case every 1000
tree generations, allowed us to compute a consensus tree by us-
ing the software package PAUP* (Swofford 2001).

MODELTEST (Posada and Crandall 1998) is a program
designed to assign the most statistically appropriate model of
evolution to the alignment under evaluation. It employs two
statistical approaches to model selection, the likelihood ratio
test (LRT) and the Akaike Information Criterion (AIC). The
LRT is generated by pairwise comparisons between the likeli-
hood score of nested alternative hypotheses under a complex
model. The AIC compares several models concurrently to
determine the model that best fits the data while penalizing
increasing numbers of parameters in the model (increasing
parameters will always generate a better fit for the data but
does not always represent the best model). The general time-
reversible (GTR) model assumes that the probability of chang-
ing from one base into another is the same in one direction as
it is in the reverse direction. Therefore, among four nucleotides,
there are six possible substitution rates. Additional parame-
ters allow probabilities to be assigned to each site for desig-
nation to a specific rate category.

Measures of branch support for parsimony and Bayesian
reconstructions can be tested by using bootstrapping and
posterior probabilities, respectively. Bootstrap values are ex-
pressed as probabilities that taxa within a clade are always
grouped within that clade. Posterior probabilities express the
probability of relationships given the data and the model of
evolution.

The phylogenetic signal of the data was explored using dis-
tance tree reconstruction in MEGA3. Parsimony reconstruc-
tion was accomplished using PAUP*, version 4.0b10 (Swofford
2001), and a bootstrap analysis with 1000 replicates was con-
ducted, with bootstrap values over 70 representing supported
relationships. Bayesian consensus tree reconstruction was
accomplished using MrBayes, version 3.0b4 (Ronquist and
Huelsenbeck 2003), with default values as the starting param-
eters. Five million tree generations were conducted, and trees
were saved every one-thousandth generation. The consensus
tree was generated with a burn-in at 20,000 tree generations,
and posterior probabilities above 90 represented supported
relationships. Members of the Coniferales, Ginkgoales, and
Gnetales were assigned as a monophyletic outgroup based on
putative sequence similarity to ancient taxa (Shutov et al. 1998).

Results

Isolation and Characterization of the Quinoa 11S Genes

Two BAC clones, representing distinct 11S seed storage
globulins from quinoa, have been identified and characterized.
The nucleotide sequences of the coding and flanking regions
of both genes were obtained directly from the BAC clones by
using a primer walking strategy, and these have been assigned
GenBank accession numbers DQ917482 and DQ917483.
Coding and flanking regions of BAC clone DQ917482 are
99.5% identical to those of cDNA clone AY562549; likewise,
the coding and flanking regions of BAC clone DQ917483 are
99.8% identical to those of cDNA clone AY562550, suggest-
ing that the cDNAs represent transcripts of the two 11S gene
loci. We have named the two loci 11SA and 11SB, respectively.
A comparison between 11SA and 11SB shows 97% homology
in the coding regions and 92% homology in the untranslated
regions. Each gene includes three introns whose positions are
conserved between the two genes. The 11SA gene encodes a poly-
peptide of 480 amino acids, whereas the 11SB gene encodes a
polypeptide of 479 amino acids.

An alignment of the amino acid sequences of the two qui-
noa 11S proteins clearly shows that the quinoa 11S proteins
are similar to the 11S seed storage proteins found in other spe-
cies (fig. 1). The first 25 hydrophobic amino acid residues are
typical of a signal peptide found in other legumin-like seed
storage proteins. The conserved asparaginyl endopeptidase rec-
ognition site (between asparagine 292 and glycine 293 in
11SA and between asparagine 291 and glycine 292 in 11SB)
at which the precursor polypeptide is separated into acidic
and basic subunits is highlighted in figure 1. Cleavage at this
conserved site yields acidic subunits with 266 or 267 amino
acids and basic subunits with 188 amino acids. As shown in
figure 1, there are four conserved cysteine residues involved in
disulfide bond formation in 11S proteins of other species.
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11S Gene Expression and Protein Accumulation

To determine the 11S gene expression profile, we collected
quinoa seeds at 8- and 10-d intervals after anthesis until desic-
cation from nine accessions: NL-6, KU-2, Mocko, Maniqueña,
Ollague, Ratuqui, Sayaña, Chucapaca, and 0654. Accessions
were chosen on the basis of geographic origin (ecotype) and
maturation rate (table 1). Altiplano ecotypes originate either
in the Salares (areas containing salt flats) or in valley regions,
while coastal ecotypes are native to the Chilean lowlands. To-
tal RNA was extracted and quantified from each accession,
and relative quantification of 11S mRNA in seeds from differ-
ent developmental stages was determined by one-step reverse
transcriptase real-time PCR using the GAPDH gene as an en-
dogenous control. Relative amounts of 11S globulin protein
were assayed via SDS-PAGE. Figure 2 shows the results of the
11S mRNA and globulin quantification at specific days after
anthesis (DAA). The bars in the graph (fig. 2) depict the rela-
tive quantity of globulin mRNA at each developmental time
point, whereas the bands below the bars are a qualitative rep-

resentation of globulin protein as seen on SDS-polyacrylamide

gels. In general, only minor amounts of 11S mRNA transcripts

were detected during early seed development, followed by a

substantial accumulation of 11S protein concurrent with peak

gene expression levels. As seeds became mature, expression

decreased and protein accumulation remained high.
On the basis of days to desiccation and 11S RNA and pro-

tein accumulation patterns, five classes of maturation rates

were identified and are listed together with accession names

and geographic locations in table 1. Type I consists of two

Chilean lowland accessions (KU-2 and NL-6) that showed peak

gene expression and 11S globulin accumulation at 24 DAA

and maturity between 32 and 40 DAA. Type II consists of

Maniqueña and Mocko, two Salares Altiplano ecotypes that

showed peak gene expression at 24 DAA, detectable 11S glob-

ulin quantity occurring at 32 DAA, and maturity achieved be-

tween 40 and 50 DAA. Ollague (Salares Altiplano), Ratuqui,

and Sayaña (Northern Altiplano) were included as type III acces-

sions and showed peak 11S transcript levels and substantial

Fig. 1 Alignment between the 11SA (AAS67036) and 11SB (AAS67037) amino acid sequences from quinoa and between the AlaBlb

(BAC78522) and A3B4 (BAB15802) amino acid sequences from soybean. Shaded portions represent identical amino acids between the four

sequences. The asterisk represents cleavage sites. Underlined cysteine residues represent those involved with disulfide bond formation (Adachi
et al. 2003).
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11S globulin accumulation at 40 DAA and reached maturity
between 50 and 60 DAA. Chucapaca (Salares Altiplano eco-
type) and 0654 (Peruvian valley ecotype) were included as
types IV and V, respectively. Both showed detectable 11S pro-
tein quantities at 50 DAA; however, Chucapaca reached ma-
turity at ca. 60 DAA, and 11S transcript levels reached a
maximum of 40 DAA, while 0654 reached maturity signifi-
cantly later (between 60 and 70 DAA) and showed maximal
11S transcript levels at 50 DAA. As shown in figure 2, the in-
creases in 11S globulin levels in these different varieties appear
to be correlated with the expression profiles for the 11S gene.

Phylogenetic Analysis of 11S Seed Storage Proteins

A comparison of 11S globulins from quinoa and 49 other
species was performed to determine the phylogenetic rela-

tionship of the quinoa protein with homologous proteins from
other plant species. The coding DNA sequences of complete
legumin sequences from 50 different plant species were trans-
lated, aligned, and evaluated for phylogenetic signal quality.
Common name, species, families, and orders for the plant spe-
cies used in the phylogenetic analysis are presented in table 2.
Alignments were created from the whole or portions of the
legumin sequence. Using distance-based and maximum parsi-
mony methods for tree reconstruction in MEGA3, we evalu-
ated preliminary trees to assess the quality of the alignments.
An amino acid alignment generated from the basic subunit
sequence of the legumin gene resulted in detectable amino acid
conservation, consistency between trees generated by the afore-
mentioned methods, and taxonomic clustering. It was there-
fore selected for further analysis.

A second phylogenetic analysis of the basic subunits was
performed using the Bayesian algorithm in MrBayes. In order
to do this appropriately, we used MODELTEST to determine
the likelihood model with the fewest number of parameters
that failed to differ from the most general model. This analy-
sis resulted in the identification of the GTR model with mea-
sures of invariable sites (I) and rate heterogeneity (G) as the
most appropriate model for these data. Bayesian approaches
for phylogeny reconstruction do not initially assume specific
parameter values but iterate through the process of calculat-
ing trees and then parameter values from those trees until pa-
rameters converge on values that are emergent from the data.
For this analysis, we let the algorithm iterate through 5 million
tree generations.

Figures 3 and 4 show the parsimony and Bayesian tree
reconstructions, respectively. In both reconstructions, with
posterior probabilities and bootstrap values of 100, the two

Table 1

Quinoa Accession, Location, and Maturation Type for Which 11S
Gene and Protein Expression Data Were Obtained

Accession Ecotypea Maturation type

KU-2 Coastal I

NL-6 Coastal I

Maniqueña Salares II
Mocko Salares II

Ollague Salares III

Ratuqui Altiplano III
Sayaña Altiplano III

Chucapaca Altiplano IV

0654 Valley V

a Valley and Salares are subdivisions of the Altiplano type.

Fig. 2 11S gene expression and protein accumulation during the development of quinoa seeds. Quinoa accessions and days after anthesis are

listed on the horizontal axis. Gene expression was measured in log10(relative quantification) units using the GAPDH gene as an endogenous
control. The results of the SDS-PAGE analysis are shown below the graph. A, Acidic subunit of the 11S polypeptide; B, basic subunit of the 11S

polypeptide.

285BALZOTTI ET AL.—QUINOA 11S GLOBULIN PROTEIN



Table 2

Organism Common Name, Species, Family, Order, and GenBank Accession Number
from Which the 11S Gene cDNA Sequences Were Obtained

Common name Species Family Order Accession no.

Arrowhead Sagittaria sagittifolia Alismataceae Alismatales Y09116

Aftrican oil palm Elaeis guineensis Arecaceae Arecales AF261691

Sunflower Helianthus annuus Asteraceae Asterales M28832
Thale cress Arabidopsis thaliana Brassicaceae Brassicales NM_123779

Rape Brassica napus Brassicaceae Brassicales M16860

Radish Raphanus sativus Brassicaceae Brassicales X59808
White mustard Sinapsis alba Brassicaceae Brassicales AY846388

Quinoa 17B7a Chenopodium quinoa Amaranthaceae Caryophyllales AY562549

Quinoa 8B14a C. quinoa Amaranthaceae Caryophyllales AY562550

Amaranth Amaranthus hypochondriacus Amaranthaceae Caryophyllales X82121
Buckwheat Fagopyrum esculentum Polygonaceae Caryophyllales AF152003

Incense cedar Calocedrus decurrens Cupressaceae Coniferales X95540

Japanese cedar Cryptomeria japonica Cupressaceae Coniferales X95542

Dawn redwood Metasequoia glyptostroboides Cupressaceae Coniferales X95544
White spruce Picea glauca Pinaceae Coniferales X63192

Eastern white pine Pinus strobus Pinaceae Coniferales Z11486

Douglas fir Pseudotsuga menziesii Pinaceae Coniferales L07484

Pumpkin Cucurbita pepo Cucurbitaceae Cucurbitales M36407
Yam Dioscorea caucasica Dioscoreaceae Dioscoreales X95510

Ephedra Ephedra gerardiana Ephedraceae Ephedrales Z50777

Brazil nut Bertholletia excelsa Lecythidaceae Ericales AY221641
Peanut Arachis hypogaea Fabaceae Fabales AF125192

Chickpea Cicer arietinum Fabaceae Fabales Y15527

Soybean A2B1aa Glycine max Fabaceae Fabales D00216

Soybean A5A4B3a G. max Fabaceae Fabales AB195712
Wild soybean Glycine soja Fabaceae Fabales X79467

Lupine Lupinus albus Fabaceae Fabales AJ938034

Pea LegAa Pisum sativum Fabaceae Fabales AJ132614

Pea LegKa P. sativum Fabaceae Fabales X07015
Fava bean A2a Vicia faba Fabaceae Fabales X55014

Fava bean B4a V. faba Fabaceae Fabales X14237

Norbonne vetch Vicia narbonensis Fabaceae Fabales Z46803
Tare LegAa Vicia sativa Fabaceae Fabales Z32835

Tare LegBa V. sativa Fabaceae Fabales Z32796

Hazelnut Corylus avellana Betulaceae Fagales AF449424

Japanese chestnut Castanea crenata Fagaceae Fagales AF525749
English oak Quercus robur Fagaceae Fagales X99539

English walnut Juglans regia Juglandaceae Fagales AY692446

Coffee Coffea arabica Rubiaceae Gentianales AF054895

Ginkgo Ginkgo biloba Ginkgoaceae Ginkgoales Z50778
Buko Gnetum gnemon Gnetaceae Gnetales Z50779

Beefsteak mint Perilla frutescens Lamiaceae Lamiales AF180392

Sesame Sesamum indicum Pedaliaceae Lamiales AF240004
Magnolia Magnolia salicifolia Magnoliaceae Magnoliales X82464

Castor bean Ricinus communis Euphorbiaceae Malpighiales AF262998

Cotton Gossypium hirsutum Malvaceae Malvales M16905

Wild ginger Asarum europaeum Aristolochiaceae Piperales X95508
Oat Avena sativa Poaceae Poales X17637

Rice Oryza sativa Poaceae Poales XM_464834

Wheat Triticum aestivum Poaceae Poales S62630

Corn Zea mays Poaceae Poales AF371279
Almond Prunus dulcis Rosaceae Rosales X78119

Cashew Anacardium occidentale Anacardiaceae Sapindales AF453947

Navel orange Citrus sinensis Rutaceae Sapindales U38914

Welwitschia Welwitschia mirabilis Welwitschiaceae Welwitschiales Z50780

a Type of subunit.



quinoa 11S sequences form a monophyletic group with an
Amaranthus hypochondriacus 11S sequence (GenBank acces-
sion X82121), the only other reported sequence from a spe-
cies within the Amaranthaceae family. On the basis of amino

acid alignments, the 11S basic subunit shows more than 74%
sequence identity between amaranth and quinoa. Other mono-
phyletic and well-resolved taxonomic groups represented
in both trees include taxa from the Poaceae, Brassicaceae,

Fig. 3 Parsimony tree reconstruction of legumin basic subunit coding DNA sequences. Unresolved portions of the tree represent bootstrap

values under 70. Colored portions represent monophyletic groups identified by both Bayesian and parsimony tree reconstructions.
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Cupressaceae, and Pinaceae families, the Fagales order, and
the clade for gymnosperms. The sequences from members of
the Fabaceae family form two monophyletic groups, each
containing 11S sequences derived from different subfamilies.

The phylogenetic relationships between the gymnosperm out-
group taxa are well resolved in both trees and reveal a clear
bifurcation of angiosperm and gymnosperm legumin gene line-
ages.

Fig. 4 Bayesian consensus tree reconstruction of coding DNA sequences of the legumin basic subunit. Unresolved portions of the tree represent

posterior probabilities below 90. Colored portions represent monophyletic groups identified by both Bayesian and parsimony tree reconstructions.
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Discussion

11S Gene Sequences

BAC clones and cDNAs representing two quinoa genetic
loci, 11SA and 11SB, that encode an 11S legumin-like seed
storage protein have been identified and characterized. The
cDNAs for 11SA and 11SB have 99.7% and 99.9% sequence
identity with their corresponding BAC clone sequences. The
small sequence divergence observed between the cDNAs and
the BACs is most likely due to sequence heterogeneity in qui-
noa Real, which was used to construct both the BAC and the
cDNA libraries.

On the basis of the deduced amino acid sequence analysis,
the domains and residues required for processing and assem-
bly are conserved in the quinoa 11S preproprotein. The first
25 amino acid residues constitute a putative signal peptide
responsible for localizing the proprotein to the lumen of the
ER. As reported by Brinegar and Goundan (1993), the first
21 amino acids of the N-terminus of the quinoa 11S basic
subunit are GLEETICSARLSENIDDPSKA, suggesting that the
asparaginyl endopeptidase cleavage site is between Asp292
and Gly293 in 11SA and between Asp291 and Gly292 in 11SB.
The position of the cleavage site and the N-terminal sequence
of the basic subunit are highly conserved among 11S proteins
(Utsumi 1992). Glycinin, the legumin-like protein from soy-
bean, has four major protein binding domains, as revealed by
its crystal structure (Adachi et al. 2003). These domains are
also found in the quinoa 11S protein, suggesting that it has a
hexamer quaternary structure similar to that of glycinin. Four
cysteine residues that participate in disulfide bond formation
in other species are found in the quinoa sequences (fig. 1). The
first two cysteine residues (Cys37 and Cys70) form an intra-
chain disulfide bridge within the acidic subunit, and the sec-
ond two cysteine residues (Cys113 and Cys299/300) form an
interchain disulfide bridge between the acidic and basic sub-
units (Utsumi 1992).

The quinoa 11S amino acid sequence is well balanced and
shows a high level of essential amino acids with respect to
human nutrition. Typical of 11S storage proteins, the quinoa
protein is rich in glutamate/glutamine, aspartate/asparagine,
arginine, serine, leucine, and glycine (Brinegar and Goundan
1993). We note, however, that the 11S gene is only one of two
major seed storage proteins in quinoa seed and that it is the
combined contribution of the 11S and 2S seed proteins that
produce quinoa’s unique seed protein quantity and composi-
tion. Thus, the cloning, sequencing, and expression charac-
terization of the 2S albumin remains an important goal to
complete our understanding of how quinoa seeds accumulate
such a high quantity of protein and essential amino acids.

Expression Patterns of 11S Genes in Different
Quinoa Accessions

The gene expression and protein data presented here indicate
that the accumulation of seed storage protein is correlated to
maturation rate. For example, 11S mRNA begins peaking at
16 DAA and 11S protein at 24 DAA in the early-maturing va-
rieties KU-2 and NL-6, whereas similar increases in mRNA
and protein accumulation are not seen in late-maturing varieties
until at least 24 and 32 DAA, respectively. In extreme cases

(i.e., Chucapaca and 0654), the 11S protein is not detected un-
til 50 DAA. These data suggest that high expression of 11S
mRNA occurs, on average, during late maturation, consistent
with the pattern of storage protein (including 11S) accumula-
tion during seed development in other plant species (Nakamura
et al. 2004). While analyzing plants grown in the greenhouse
is important and informative, we recognize that future field-
based experiments are needed to confirm our observations. Fur-
thermore, a quantitative study of total protein content per seed
is needed to determine whether the timing of gene expression
has an effect on the overall quantity of seed protein in quinoa.

Phylogenetic Relationships between Legumins
of Various Species

The legumin coding DNA sequence of the basic subunit
was used to analyze phylogenetic relationships between the
11S gene of quinoa and other species. The basic subunit of le-
gumin is well conserved and contains sequence elements that
are necessary for its proper assembly and packaging. These in-
clude the amino acids involved in the recognition of the pep-
tide cleavage site between the acidic and basic subunits and a
cysteine residue involved in disulfide bond formation (Adachi
et al. 2003). Indeed, several researchers have used the legumin
basic subunit sequence or portions of the basic subunit for
studies involving the molecular evolution of seed storage pro-
teins (Fischer et al. 1996; Häger and Wind 1997; Shutov and
Bäumlein 1999).

The maximum parsimony and Bayesian analyses used in the
phylogenetic reconstructions reported here (figs. 3 and 4, re-
spectively) use very different assumptions. Maximum parsi-
mony assumes that the best tree is one in which evolutionary
steps are minimized, while Bayesian analysis implements a
model of evolution in addition to the sequence data in order
to maximize the probability of a tree. Because one method
lacks outside parameters, assuming that one evolutionary event
is just as likely as another, and the other uses established pa-
rameters in order to predict associations, we assumed that re-
lationships established by both reconstructions would be well
supported. Indeed, all monophyletic groups defined by the
maximum parsimony tree were also supported by the Bayesian
tree. Both phylogenetic trees were well resolved between closely
related taxa, and the placement of the quinoa 11S sequences
with amaranth exhibited posterior probabilities and bootstrap
values of 100.

In both analyses, all monophyletic groups were equally sup-
ported; however, the data suggest that the Bayesian analysis
was better suited for resolving relationships between more dis-
tantly related taxa than was the parsimony method. Indeed,
most unresolved portions of the Bayesian reconstruction an-
giosperm backbone had posterior probabilities just under 90.
Third and fourth nodes with posterior probabilities of 83 and
88, respectively, were present following the bifurcation of lower
angiosperm legumin sequences in ginger, mint, and yam. The
third node represented the divergence in a sequence from ar-
rowhead, while the fourth node separated two clades from the
remaining angiosperms, one including sequences from mem-
bers of the Poaceae family (magnolia, African oil palm, almond,
and coffee) and one composed of sequences from sesame, pump-
kin, orange, and buckwheat. Although these relationships are
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based on posterior probabilities under 90, they are still well
supported by the majority of the data.

Following the divergence between gymnosperms and angio-
sperms, there appears to have been a sudden increase in se-
quence divergence among the legumin genes as evidenced by
the presence of multigene families and the lack of resolution
in the phylogenetic tree reconstruction. Multigene families for
the legumin-like genes have been identified in many species,
including those of legumes (Domoney et al. 1986; Nielsen et al.
1989; Heim et al. 1994), brassicas (Pang et al. 1988; Breen and
Crouch 1992; Depigny-This et al. 1992), and cereals (Shotwell
et al. 1988; Okita et al. 1989). Multigene families have also
been identified in gymnosperms (Häger et al. 1995; Wind and
Häger 1996; Häger and Wind 1997). Interestingly, these gym-
nosperm genes have a much higher degree of sequence homol-
ogy with each other than do the legumin gene sequences of the
angiosperms. We also note that there does not appear to be an
11S multigene family in quinoa (Stevens et al. 2006), nor have
there been any identified in amaranth (Barba de la Rosa et al.
1996). However, other 11S genes or pseudogenes may be pres-
ent in the quinoa genome but have not yet been identified be-
cause of sequence dissimilarity.

The ability to resolve relationships between sequences from
gymnosperms and other ancient taxa is shown by both parsi-
mony and Bayesian trees. We note, however, that the radiation
at the angiosperm level, as well as the lack of sufficient sequence
data to match the broad range of angiosperm species, creates

some challenges when using the legumin sequence as a phylo-
genetic tool. Indeed, without adequate sequence data and the
added complication of multigene families that may have arisen
at different evolutionary points, it is difficult to know whether
homologous genes are being compared, and thus, taxa may be
grouped inappropriately. However, it appears that there is suf-
ficient phylogenetic signal, even from diverse species, to sup-
port future studies investigating the molecular evolution of
legumin genes in angiosperms.

Quinoa is a putative allotetraploid, and we postulate that
the two copies of the 11S gene may be located on homeolo-
gous chromosomes and may represent genes present in the
diploid ancestors of quinoa. Although the sequences for both
loci are similar, transcript levels from each may not be equal.
Alternatively, it is also possible that the unusually high protein
content of quinoa is a direct result of tetraploidization and the
unaltered expression of both genes because polyploidy gener-
ally increases gene expression levels overall (Osborn et al.
2003). Indeed, seeds containing higher protein reserves for
germination and the developing seedling may have been a se-
lective force in the tetraploidization of quinoa.
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